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Utenje z zlivanjem heterogenih podatkov

POVZETEK

Podatkovno-intenzivni postopki v tehnologiji in znanosti nam v zadnjih letih omo-
gocajo zajem velike koli¢ine heterogenih podatkov, ki opisujejo sisteme na razli¢nih
nivojih granularnosti in z razli¢nih zornih kotov. Zbrani podatki so pogosto predsta-
vljeni v povsem razlicnih podatkovnibh domenah, kar predstavlja izziv za algoritme, ki
gradijo napovedne modele z zlivanjem podatkov. Nase raziskave temeljijo na premisi,
da je heterogene podatke mogoce “organizirati,” tako da vzpostavimo ustrezne presli-
kave med posameznimi dimenzijami vhodnih podatkovnih domen. Ozko grlo, ki nas
lo¢i od bolj$ega razumevanja podatkovne domene in s tem tudi od bolj u¢inkovite gra-
dnje napovednih modelov z zlitjem velikih heterogenih podatkov, je prepoznava vrste
informacije, ki jo je moZno prenesti med povezanimi podatkovnimi nabori, objekti
razli¢nih tipov in napovednimi nalogami. V disertaciji predlagamo ve¢ zanimivih in
zmogljivih napovednih modelov za ucenje iz heterogenih podatkov. Ti pristopi so
splodni, dosegajo visoko napovedno toénost in so enostavni za uporabo: v veliki meri
se izognejo dolgotrajnim in zahtevnim predobdelavam podatkov, na katere se zanasa-
jo trenutni modeli, ki heterogene podatke najpogosteje poskusajo preslikati v enovit
podatkovni prostor. Razviti algoritmi so se izkazali za obetavne na vecih podro¢jih ¢lo-
vekovega delovanja, a smo se v tem delu osredoto¢ili na reSevanje aktualnih problemov
v molekularni in sistemski biologiji. Ti med drugim vklju¢ujejo napovedovanje gen-
skih funkcij in farmakoloskih akcij, rangiranje obetavnih genov za nadaljnje bioloske
raziskave, odkrivanje vzorcev povezav med boleznimi, odkrivanje toksi¢nosti zdravil in

analizo umrljivosti.

Pomemben vidik nasih raziskav predstavlja Studij latentnib faktorskih modelov. Razvije-

mo ve¢ latentnih modelov s faktoriziranimi parametri, ki lahko so¢asno naslavljajo ve¢



Povzetek M Zitnik

vist podatkovne heterogenosti; to je, raznolikosti, ki zaobsega heterogene podatkovne
domene, ve¢ tipov entitet in razliéne napovedne naloge. Prednost nasih algoritmov
pred uveljavljenimi pristopi je sposobnost ohranitve strukture odvisnosti med podatki
tekom gradnje napovednih modelov, kar smo empiri¢no preverili v ve¢ih Studijah. Na-
$e nedavno delo na tem podrodju obsega pristope za gradnjo mrez z analizo podatkov iz
vecih morebitno razli¢nih podatkovnih porazdelitev, ki smo jih uporabili za avtomati¢-
no gradnjo genskih regulatornih mrez pri bolezni raka. Modelirali smo tudi epistazo,
ki predstavlja pomemben koncept v genetiki. V ta namen smo predlagali u¢inkovi-
te algoritme za dolo¢itev vrstnega reda delovanja genov v genskih poteh, ki porabijo

nekajkrat manj ra¢unskih virov od znanih tehnik.

Ena izmed osrednjih tem doktorske disertacije je analiza velikih podatkovnih zbirk. V
empiri¢nih Studijah smo namre¢ opazili, da je za zanesljive napovedi v bioinformatiki,
zazeljene na primer pri odkrivanju odvisnosti med boleznimi in ocenjevanju vpleteno-
sti genov v razne fenotipe, pogosto koristno sklepati na osnovi meritev, ki izhajajo iz
razli¢nih eksperimentalnih ali predhodnih ra¢unskih postopkov. Med drugim v delu
analiziramo 30 heterogenih podatkovnih zbirk, ki nam sluZijo za ocenjevanje toksi¢-
nosti zdravil, in ve¢ kot 40 zbirk o odvisnostih med geni v ¢loveku. Slednje predstavlja
analizo najobseznejse zbirke podatkov v dosedanjih $tudijah latentnih faktorskih mode-
lov. Toliksna razseznost podatkov poraja nova vprasanja o izbiri ustreznih podatkovnih

virov za zlivanje, za kar predlagamo splosni pristop ocenjevanja ob¢utljivosti med viri.

Kljucne besede: napoved genskih funkcij, genska prioritizacija, gradnja mrez, so¢asna
matri¢na faktorizacija, matri¢no dopolnjevanje, faktorski modeli, zlivanje podatkov,

bioinformatika, statisti¢no relacijsko ucenje, strojno ucenje
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ABSTRACT

It has become increasingly common in science and technology to gather data about
systems at different levels of granularity or from different perspectives. This often gives
rise to data that are represented in fotally different input spaces. A basic premise behind
the study of learning from heterogeneous data is that in many such cases, there exists
some correspondence among certain input dimensions of different input spaces. In
our work we found that a key bottleneck that prevents us from better understanding
and truly fusing heterogeneous data at large scales is identifying the kind of knowledge
that can be transferred between related data views, entities and tasks. We develop
interesting and accurate data fusion methods for predictive modeling, which reduce or
entirely eliminate some of the basic feature engineering steps that were needed in the
past when inferring prediction models from disparate data. In addition, our work has
a wide range of applications of which we focus on those from molecular and systems
biology: it can help us predict gene functions, forecast pharmacological actions of
small chemicals, prioritize genes for further studies, mine disease associations, detect

drug toxicity and regress cancer patient survival data.

Another important aspect of our research is the study of latent factor models. We aim
to design latent models with factorized parameters that simultaneously tackle multi-
ple types of data heterogeneity, where data diversity spans across heterogeneous input
spaces, multiple types of features, and a variety of related prediction tasks. Our algo-
rithms are capable of retaining the relational structure of a data system during model
inference, which turns out to be vital for good performance of data fusion in certain
applications. Our recent work included the study of nerwork inference from many po-

tentially nonidentical data distributions and its application to cancer genomic data. We

iii
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also model the epistasis, an important concept from genetics, and propose algorithms

to efficiently find the ordering of genes in cellular pathways.

A central topic of our Thesis is also the analysis of large data compendia as predictions
about certain phenomena, such as associations between diseases and involvement of
genes in a certain phenotype, are only possible when dealing with lots of data. Among
others, we analyze 30 heterogeneous data sets to assess drug toxicity and over 40 hu-
man gene association data collections, the largest number of data sets considered by a
collective latent factor model up to date. We also make interesting observations about
deciding which data should be considered for fusion and develop a generic approach

that can estimate the sensitivities between different data sets.

Key words: gene function prediction, gene prioritization, network inference, collective
matrix factorization, matrix completion, factor models, data fusion, bioinformatics,

statistical relational learning, machine learning
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1 Introduction M Zitnik

The main interest of our research presented in this Thesis has been in understanding
the different types of heterogeneity in predictive modeling and in developing com-
putational approaches for learning in such settings. Which are efficient and effective
ways of considering circumstantial evidence during model inference? How to include
drug side effects into a model that predicts associations between diseases? Or, how can
we take into account different types of movie roles actors have played when recom-
mending which movie a user should see next? How to map the heterogeneous input
spaces to a common space and construct a single prediction model with good general-
ization performance? Which data sets are complementary when making predictions?
How to detect problematic data sets from a collection of tens or even hundreds of data
sets? Answers to such questions are important for most problems in science and engi-
neering where we can obtain data sets that describe the observed system from various

perspectives and record the behavior of its individual components.

These settings open many new applications, yet they pose new challenges from the
algorithm perspective. How can we link seemingly uncorrelated prediction tasks to
mutually boost their learning performance? Different tasks might seem to be rozally
uncorrelated with each other if their examples are in different data spaces. For example,
in cross-lingual classification, the first task might be classifying a set of English docu-
ments whose input space consists of English vocabulary, and the second task might be
classifying a set of Slovenian documents whose input space consists of Slovenian vocab-
ulary. Another example is simultaneous classification of documents and images. Here,
the first task might be document classification where input space consists of the docu-
mentvocabulary, and the second task is image classification, whose input space consists
of the image vocabulary, such as features extracted from different image regions. Yet
another example is gene function prediction in bioinformatics, where different tasks
correspond to the different functional roles that genes might have in the cell, and rele-
vant vocabularies span the space of related cellular pathways that genes belong to and
diseases that genes are associated with. The possibility of jointly learning multiple ar-
bitrary tasks described with heterogeneous input spaces so that they could benefit from
each other is vital to a range of application areas from the cross-lingual classification,
movie recommendation, the identification of disease-disease associations, drug toxicity

detection and gene function prediction to experimental design in biology.

A basic premise behind the study of learning from heterogeneous data is that in many
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real applications, there might exist some correspondence among certain input dimen-
sions of different tasks. In the example of cross-lingual classification, there is a natural
correspondence between the words from two different languages (e.g., a “boat” in En-
glish means “¢oln” in Slovenian); in the example of document-image classification,
some words can be naturally translated into some image regions; in the example of
gene function prediction, genes are linked via the protein-protein interactions or co-
morbidity of diseases that these genes cause. The correspondence across different input

spaces hence provides an important connection among different tasks.

The goal of learning by fusing heterogeneous data is to leverage different types of data
heterogeneity to improve the performance of predictive modeling. We study three
types of data heterogeneity and also their combinations, where multiple types of data
heterogeneity can interleave and lead to increasingly more challenging tasks in predic-

tive modeling:

= Relation heterogeneity: Compared with traditional task heterogeneity, where the
input space is homogeneous across different tasks, learning via data fusion is able

to borrow consistent patterns across many potentially heterogeneous input spaces.

u Object type heterogeneity: Compared with traditional relation heterogeneity, where
the examples are described by features of a single type across different data sets,
data fusion in a multi-object type setting is able to leverage heterogeneous types

of features to improve the learning performance in each task.

= Task heterogeneity: Compared with traditional collective study of multiple object
types, where each prediction task is modeled independently across different types
of objects, data fusion exploits related prediction tasks to transfer knowledge

between data views.
1.1 Motivation and applications

Traditionally prediction models were constructed by utilizing a single data source where
practitioners typically aimed at encoding it into an example-by-feature data table. For
example, when classifying tissue samples into cancerous and non-cancerous, one might
describe each sample with a profile (a vector) containing levels of gene expression in

that sample and a binary value indicating whether the sample was cancerous or not.
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A plethora of machine learning and data mining models have been developed in re-
cent decades to tackle such data representations and predict quantities of interest, e.g.
whether a patient suffers from a particular disease or not. Though such off-the-shelf
models are very expressive, they often fail to scale to diverse data representations that
potentially come from heterogeneous input spaces. Moreover, many times we need to
work with tens or even hundreds of diverse data sets to reliably estimate a quantity of

interest; thus, the focus moves to the study of heterogeneous data collection as a whole.

Today with the ubiquity of high-throughput technologies across engineering, natural
and life sciences, there are several opportunities to study phenomena and systems at
large scale and from different perspectives that were not possible before. This can be

summarized by the following three points:

= Observations of natural phenomena (e.g., human genome) and technological
systems (e.g., web) have detailed data that describe complex relationships be-
tween many entities of different types (e.g., genes, RNA molecules and cellular
pathways in the case of the human genome; users, events and groups in the
case of the web), where many of the entities are circumstantially and in a priori
unknown way related to the problem of interest (e.g., the relevance of environ-
mental exposure to a particular genetic disease; the influence of user’s online

social circle on her movie preferences).

= “Big data” generated by such experiments can be seen as “a large collection of
small or medium-sized data sets” opposed to “a single homogeneous big data

set” (Zoubin Ghahramani, personal communication).

= Such rich data come with various levels of uncertainty in their measurements and
in diverse data representations, such as feature-based data tables, associations,

networks and ontologies.

For example, ENCODE (Consortium et al., 2012) is an encyclopedia of DNA ele-
ments that aims to identify all functional elements in the human genome sequence.
Teams of computational and laboratory-based scientists have worked to apply high-
throughput biotechnological approaches to detect sequence elements, which might
carry biological functions. This new and varied content has in addition to the human

genome (Venter et al., 2001) and numerous studies in molecular biology and func-
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tional genomics led to a flurry of research activity in systems biology that aims to mine
the diverse content and infer useful data from it (e.g. detection of disease causing vari-
ants and stratification of cancer patients). Other such examples from different data
domains include: data generated by ATLAS experiment at the CERN (Toor et al,,
2012) that searches for new particles using head-on collisions of protons at high en-
ergy to detect diverse types of events; online recommendation systems (Feuerverger
et al.,, 2012), which are capable of considering movie preferences, demographics data
and movie, actor and genre information to support thousands of users selecting which
movie to see next; the fusion of multiple global navigation satellite systems (Li et al.,
2015) to improve the reliability of positioning and optimize the spatial geometry; or
for example, online social networks (Szell et al., 2010; Mucha et al., 2010) that capture
various complex communication patterns, such as “likes,” “upvotes,” and sharing of

posts between either individuals or online communities.

Ubiquity of high-throughput data presents many unique opportunities and challenges.
A key bottleneck that prevents us from better understanding and truly fusing hetero-
geneous data at large scales is defining the kind of knowledge that can be transferred
between related data views, entities and tasks. Throughout this Thesis our algorithms

rely on one of the following three assumptions:

= Relation transfer: We build the relational map called a data fusion graph of all
the relations considered in data fusion and relax the assumptions about inde-

pendently and identically distributed relations.

= Object type transfer: We assume that there exists a common feature space shared

by the input spaces, which can be used as a bridge to transfer knowledge.

= Parameter transfer: We make use of latent model parameterization and assume
that heterogeneous input spaces have shared latent parameters and hyperparam-

eters.

The approaches to sharing of information between related views are aligned with the
types of heterogeneity considered in this Thesis. To model individual heterogeneity
types and their blend we follow the following three steps in this Thesis:

s STAGE 1 — Exploration: We ask a question, which is motivated by a current

challenge in molecular and systems biology, do background research and con-
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struct a hypothesis. We gather data from public biological data repositories and
in-house data from our collaborating institutions, perform measurements and
identify one or more types of heterogeneity, which need to be considered during

model inference.

= STAGE 2 — Modeling: Given observations about different types of data hetero-
geneity, we design models that give predictions and probabilistic estimates about
a problem of interest. We test our hypothesis by doing experiments and further

analyze our data.

STAGE 3 — Algorithms: Finally, we present new generic algorithms for data fusion
and empirically evaluate their effectiveness and prediction power against state-
of-the-art systems. Depending on a question asked, our predictions are further

validated by biologists in the wet laboratory.

We study six cases where we show that principled approaches of learning by fusing
heterogeneous data can improve the quality and performance of inferred prediction

models. The six cases are reflected in the map of this Thesis shown in Fig. 1.1.

Thus, the Thesis naturally breaks into six pieces as also shown in Table 1.1: the rows
correspond to the research challenges and the columns correspond to previously de-
scribed types of heterogeneity that are modeled by the respective parts. Next we give

the motivation for each of the six parts, following by the summary of our contributions.

Table 1.1

Structure of this Thesis with references to the parts.

Thesis Types of data heterogeneity
part Relation  Object type  Task

PartI  Network side information v v
Part II  Network inference v
Part III' Compressive data fusion v v v
Part IV Latent chaining and profiling v
Part V' Regression by data fusion v v
Part VI Large-scale data fusion selection | Exploring types of heterogeneity




Data fusion

Latent
chaining & profiling

Network side

Regression by
information

data fusion

Compressive
data fusion

Large-scale data
fusion selection

1.1.1  Relation heterogeneity

In many data analysis tasks there exist several different ways to describe the same set
of objects. This can lead to multiple distinct representations, “relations” or “views,”
that encode patterns relevant to the problem of interest. How can we integrate these
representations in a way that allows us to effectively identify these patterns? In some
applications we may have access to a set of relations that are entirely consistent — the same
patterns occur across all relations. The problem then becomes estimation of a single
consensus model summarizing the patterns common to all relations. However, in some
cases, substantial discord may exist between the data in different relations. An effective
data fusion procedure must detect common patterns, reconcile the disagreements while

also preserving patterns that are specific to each relation.

Applications.  The predictive modeling of multi-relation domains has found the fol-

lowing applications in this Thesis:

Figure 1.1
‘The map of this Thesis.




1 Introduction M Zitnik

u Modeling background knowledge represented with networks: Rich relational data
can naturally be modeled and encoded with networks. Our methods form
means of including network side information within the inference of a latent
data model to improve prediction of genetic interactions. Our methods are use-
ful when making predictions for objects that are entirely missing from a certain

relation, i.e. addressing the cold-start problem.

u Epistasis analysis: One of the cornerstone questions in genetics is concerned with
the estimation of how mutation in a gene affects the activity of genes that act
downstream in a certain cellular pathway. How does a cell orchestrate complex
relationships when pathways contain many genes? Until now, it was computa-
tionally very hard to infer gene networks based on epistasis analysis. Our results
help form a promising basis for inference of pathways from genome scale data

that can readily be investigated by biologists.

= Network inference: When data in multiple relations come from potentially 7on-
identical data distributions, powerful data fusion algorithms should be capable

of jointly modeling the data while accounting for statistics of each distribution.

1.1.2  Object type heterogeneity

It has become increasingly common to gather data about a system at different levels
of granularity or from different perspectives. This can give rise to data that are repre-
sented in totally different input spaces. Consider, for example, a typical online book
recommendation service, which aims to recommend books that would be of interest
to a user. A primary data set for such recommendation engine might be user’s reading
history, i.e. a user-by-book data table. However, one can easily envision the potential
of considering authors’ biographies, i.e. an author-by-biography data table, during

model inference.

The challenges arising in multi-object type domains are typically resolved in a labor-
intensive way through feature engineering that transforms data into profiles describing
objects of a single type, e.g. users. Data preprocessing is neither standardized nor
trivial and may lead to loss of information. Can we design algorithms that can model

multi-object type data without them necessitating substantial feature engineering?
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Applications.  Working on heterogeneous object types has led us to develop novel

methodology to study:

u Object profiling in the latent space: Analyzing heterogeneous object types within
a single prediction model gives us means to chain latent spaces of individual
object types. This allows for easy profiling of one object type in the latent space
of another object type. Profiles constructed by chaining are useful as input to

general machine learning algorithms.

= Gene prioritization: The identification of genes involved in a certain disease often
requires time consuming and expensive examination of many candidate genes,
since genome-wide techniques such as association studies and linkage analysis
frequently select many hundreds of candidates. Using many heterogeneous data
sets we can more accurately prioritize genes at scales that were not possible be-
fore. Our work allows us, for example, to identify which genes are most likely

involved in mechanisms of bacterial resistance in Dictyostelium.

» Mining disease associations: To find relationships between diseases one needs to
shift away from linking diseases simply based on their shared genes towards ev-
idence from fusing all available molecular interaction and ontology data. Our
work highlights the importance in the paradigm shift towards systems-level data

fusion.

= Drug toxicity detection: Development of tools for early identification of adverse
effects in drugs is a major challenge within pharmaceutical industry and clinical
medicine. Our large-scale efforts to forecast drug-induced liver injuries suggest
that joint analysis of toxicogenomic data together with circumstantial data sets
allows prediction of liver injuries in humans from animal data. The ability to
model objects of different types, e.g. genes, drugs, samples and biological pro-
cesses, is important by itself as it allows us to discover patterns not found in data

sets that are limited to a single object type.
1.1.3  Task heterogeneity

‘The third type of heterogeneity addressed in this Thesis deals with the analysis of data

from two or more tasks. Whereas single-task learning solves each task in isolation
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and ignores potential relations between the tasks, multi-task learning solves the tasks
jointly. Such analysis exploits the relations between the tasks to reduce the hypothesis
space and improve generalization. The advantage of learning multiple tasks across
heterogeneous input spaces manifests when the tasks are truly related and the transfer of
information between related tasks is properly employed. To take a recent example from
the pharmacology domain, prediction of aspirin’s pharmacological actions benefited
largely from joint modeling of aspirin as an “inhibitor of platelet aggregation” as well
as an “cyclooxygenase inhibitor,” rather than independent analysis of the two chemical

actions. However, directly modeling many tasks on a large scale proved difficult.

Applications.  In this Thesis, different tasks are permitted to have different input spaces.
Our models assume that each task has its own features but might also share features

with other tasks:

= Gene function prediction: Development of effective methods that can predict
gene functions in an easily extensible way is an important goal in computational
biology. The data fusion in our work is achieved by simultaneous analysis of data
and sharing of latent data structure between data sets and tasks. This allows,
for example, prediction of ontological annotations in slime mold D. discoideum
and recognition of proteins in baker’s yeast S. cerevisiae that participate in the

ribosome or are located in the cell membrane.

» Mining pharmacological data: Integrative analysis of gene ontological annota-
tions is related to the prediction of pharmacological actions for small chemicals.
It forces us to develop general algorithms and tools that scale to large heteroge-

neous data collections.

1.1.4 Dual and triple data heterogencity

Ultimately we aim at designing methods capable of addressing problems with multiple
types of data heterogeneity. In several chapters of the Thesis (Table 1.1) we break the
limit of a single type of data heterogeneity in an attempt of extending our methods to
a wider range of applications. Our algorithms are thus designed to take advantage of
the consistency across many data relations, the ease of modeling heterogeneous object

types, and the relatedness of multiple tasks.
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Applications.  Our focus on analyzing and modeling dual and triple data heterogeneity
is useful, for example, when trying to understand the complexity of cellular machinery

or to predict cancer progression in patients:

u Model selection in data fusion: When tackling several tens of genome-wide data
sets, which is a common theme of the Thesis, one becomes interested in how
changes of one relation (data set) affect the latent model representation of an-
other relation in the context of a given data fusion algorithm. How, for example,
would a change of casting affect user’s preferences in a user-movie recommenda-
tion system? Our results help identify surprising data sets and problematic data

sets that contain potential experimental errors.

= Survival regression: Cancer subtype classification is a prominent problem in can-
cer genome studies, whereby a heterogeneous population of tumor samples is
broken into clinically meaningful subtypes. Stratification of tumors typically
relies on the similarity of molecular profiles. It aims at predicting important
clinical properties including patient survival time and response to chemother-
apy. Although individual data sets have long been used to stratify patients, strat-
ification based on multiple types of data, such as expression, methylation and
somatic mutation profiles, has been more challenging. These data sets are fun-
damentally different from each other, both in type and in structure. Our work
in this area demonstrates that problems originating from data diversity can be
largely surmounted by data fusion, which provides gains in accuracy through

data integration.
1.2 Thesis overview and contributions

The Thesis addresses a number of important questions regarding the inference in set-
tings where plenty of heterogeneous data are available. It investigates how to organize
diverse data sets such that predictive modeling can benefit from transferring informa-

tion between related data views, types of objects and prediction tasks.

The work presented here focuses on modeling heterogeneous data with latent factor
models where we achieve the transfer of information via sharing of latent parame-

ters or by a factorized representation of model parameters (Zitnik and Zupan, 2012).

Ir
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Opverall, the Thesis aims to show that factorized parameterization and sharing are two
powerful techniques that can transform traditional models, which typically learn from
homogeneous data, like Markov networks or matrix factorization, into general data
fusion methods. Our Thesis has a “six-by-three” structure: it analyzes six problem
domains where each of them is examined from the perspective of at least one out of
three types of data heterogeneity: Relation heterogeneity, Object type heterogeneity
and Task heterogeneity. Most Thesis parts investigate dual or even triple data hetero-
geneity. Table 1.1 gives the overall structure of our research with the mapping to the

parts of this Thesis.

In what follows we describe the main questions this Thesis asks and answers. We break
each of them into three steps that follow the above mentioned stages: Exploration,

Modeling and Algorithms, which are consistent with the scientific method.

1.2.1  Part I — Network side information

To develop an integrative approach to data analysis one needs to include additional
information into the model inference itself. A celebrated model that might benefit
from inclusion of side information is matrix completion, which estimates a factorized
latent model from a relational data table that contain many unobserved entries. A
common assumption employed by matrix completion algorithms is that observed data
has been generated by an unknown (i.e., hidden or latent) process with substantially
fewer degrees of freedom (i.e., dimensions) than the dimensionality of the original

data.

The first part of the Thesis presents our results on a Bayesian view of matrix comple-
tion, which readily allows us to couple the inference of with the network-based side

information in order to improve the quality of a latent data model itself.

Stage 1 — Exploration: What is the role of network side information in various prediction

settings?

First we present a study, which evaluates the significance of side information for four
distinct patterns of unknown entries that might appear in a data matrix (Zitnik and Zu-

pan, 2014d). The simplest pattern has unknown elements distributed independently
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and uniformly at random. While this scenario is most often empirically evaluated, it is
less relevant in real world applications where unknown entries typically have a certain
structure. In more realistic situations all matrix entries corresponding to a subset of
objects might be unknown, or all interactions between two disjoint subsets of objects
might be missing. These scenarios occur, for example, in genetic interaction studies,
where interactions within a group of essential genes typically cannot be measured, or
when two genetic interaction data sets that share a subset of genes are combined into
one large data set. Another example of the latter setting are patient data from studies
that used various experimental platforms to collect the same type of measurements for
different patient subgroups. The fourth prediction setting, which represents the hard-
est challenge from the learning perspective, hides all values from a subset of rows or
columns of a data matrix. It is known as a cold start setting and arises in interaction
studies when complete genetic interaction profiles are missing. We explored several
genetic interaction data sets and observed that inclusion of additional genomic data is
crucial when our goal is to predict interactions that follow a structured pattern (Zit-
nik and Zupan, 2014d). These findings are important for reccommendation systems in

collaborative filtering and interaction studies in genetics.

Stage 2 — Modeling: How can we model network side information?

We examine network side information by studying a Bayesian matrix completion model
and prior knowledge presented with potentially many weighted networks. We formu-
late a probabilistic model, in which distribution of a latent feature vector depends on
the latent vectors of its direct neighbors in the provided networks (Zitnik and Zupan,
2015d). It is the individual latent vectors that collectively give rise to the propagation
of their influence over the network. A latent vector of a given object “A” in our model
should thus be “close” to the latent vectors of objects located in the network neighbor-
hood of “A”. In fact, our network-guided matrix completion is capable of transferring
information across all available measurements and network neighborhoods, which can
lead to more accurate inference than simply estimating a particular target measurement

independently of any additional knowledge.

I3
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Stage 3 — Algorithms: How do we effectively infer latent models using circumstantial net-

work data?

Last we examine a question of how one can effectively learn the latent vectors and es-
timate network weights. We used the maximum a posteriori principle to develop an al-
gorithm that maximizes the posterior probability over the latent vectors. In contrast to
previous models, network-guided matrix completion includes side information encode
in connectivity of the networks, which allows it to predict matrix rows and columns
of objects for which none of the entries is observed, i.e., a cold start setting, while still
being mathematically tractable. We show how network side information can be used
to predict genetic interactions in epistatic miniarray profile (E-MAP) data assays. In a
validation study with several large-scale interaction data sets we were able to demon-
strate superior performance of network-guided matrix completion over competing local
models, which rely on neighbor-based methods and local least squares, and globa/ mod-
els, which assume a global covariance structure between all genes in the E-MAP data
set (Zitnik and Zupan, 2015d). We found that global methods perform poorly when
groups of genes predominantly have distinct local similarity patterns and that local
methods achieve solid performance across data sets of various size. Moreover, we em-
pirically studied model generalization in various prediction settings. We showed that
distribution and the abundance of unmeasured genetic interactions have a significant
impact on predictive performance and can limit direct application of non-integrative
prediction methods to E-MAPs.

Contributions and impact:

= We developed the network-guided matrix completion, which is a generic and
mathematically tractable probabilistic matrix completion model. Moreover,
network-guided matrix completion is unique in fusing relational data with net-
work side information through inference of a single prediction model. We tar-
geted gene interaction data sets and showed that our approach achieved very

good generalization.

= Our work on analyzing genetic interaction data has high practical value for the

prediction of entire gene interaction profiles for genes whose interactions otherwise
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cannot be measured directly due to limits of biotechnology.

1.2.2 Part Il — Network inference

In the first part of the Thesis our focus is on employing network data as background
knowledge to improve completion of partially observed data matrices. The second part
of the Thesis investigates the inverse question—it presents our results on statistical
network inference, where our goal is to estimate the network edges between objects
for which experimental data are available. In bioinformatics, developing insights into
complex associations in high-dimensional data sets is important for inference of gene
regulatory networks, automatic reconstruction of gene pathways, suggesting promising

drug targets and finding potential disease causing genes, among others.

The most straightforward approach to network inference is to observe correlations be-
tween data profiles, which typically infers dependencies that are circumstantial rather
than causative. Whereas direct network inference provides useful knowledge about, for
example, genes that participate in a common biological process or share a cellular func-
tion, we turned our attention to model-based network inference, which, for example,
carries the potential to identify, which gene acts upstream of another gene in a cel-
lular pathway. We investigated two cases of such inference via undirected graphical
models and probabilistic scoring of epistatic relationships and we were able to estimate
networks through integrative analysis on a large scale. We found that network edges
estimated by our models can be related to causal inference and reveal complex depen-
dencies that cannot be uncovered otherwise using either techniques of direct network

inference or a single data source.

Stage 1 — Exploration: What are patterns of gene-gene relationships and probability distri-

butions describing them?

Here we examine how different types of data follow distinct data distributions. Our ba-
sic premise is that disregarding information about data distribution can adversely affect
performance of prediction models. This work had influence on developing a Markov
network model for inference from multiple related but non-identical data distributions

(Zitnik and Zupan, 2015b). For example, to date, bioinformatic studies commonly
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assumed that data follow a Gaussian distribution. While this assumption holds for
log ratio gene expression values generated by the microarrays, we found that increas-
ing quantity of high-throughput omics data, such as that from the next-generation
sequencing, come from skewed distributions. For example, gene expression levels gen-
erated by the RNA-sequencing technology count how many times a transcript maps
to a specific genomic location and as such these data would be more appropriately
modeled with the Poisson or the negative binomial distribution rather than a Gaussian
distribution. Another example is data on different types of mutation and copy number
variation that follow a categoric data distribution. We showed that such data can be
effectively modeled if one considers a broad class of exponential family distributions.
Surprisingly, despite the growing body of non-Gaussian data and our ability to collect
them, computational approaches to support non-Gaussian distributed data are at best
scarce. Moreover, there is only a handful of techniques that support epistasis analysis,
an important concept from classical genetics capable of estimating the order-of-action

in gene pathways from mutant-based phenotypes.

Stage 2 — Modeling: How can we jointly model multiple non-identical dara distributions?

We present two models that utilize heterogeneous data for network inference. First,
Réd estimates gene networks that are consistent with observed gene-gene epistatic re-
lationships (Zitnik and Zupan, 2014c). This means that Réd aims to minimize the
number of edges that violate the rules defined by the epistasis analysis. The model
relies on quantitative but potentially noisy and missing mutant phenotype data. Réd
defines a probabilistic latent model for the entire set of pairwise gene relationships. In
contrast to previous small-scale models that perform local structural changes to the
evolving network, Réd uses global latent data representation to account for noise and
data sparsity. We show that accurate scores indicating preference for different types of
gene-gene relationships, i.e. epistasis, partial interdependence and parallelism, can be
derived from Réd’s latent data model. Whereas Réd is addressing the scarcity of com-
putational methods for epistasis analysis in genetic interaction studies, it lacks a broad
appeal of a general network inference method. To this end, we develop FUseNErT,
which is a generic approach for network assembly from data arising from potentially
many nonidentical exponentially family distributions (Zitnik and Zupan, 2015b). The

principal innovation of this work is a latent parameterization of a Markov network
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model such that latent parameters are shared between models for different exponential
family distributions. We show that FUSENET’s power of generalization comes from its
two key components: the ability to model non-Gaussian distributions and the fusion

of data through reuse of latent model parameterization.

Stage 3 — Algorithms: How can we predict interdependence of genes at large scales?

We developed algorithms for Réd and FuseNET that handle genome-scale genetic in-
teraction data sets and large-scale heterogeneous cancer genomic data of The Inter-
national Cancer Genome Consortium and The Cancer Genome Atlas. Réd shows
promising performance in accuracy and speed relative to the competing techniques.
Using the latent model of Réd we efficiently search the space of all possible networks
and estimate model parameters for networks with thousands of genes in a matter of
minutes, while alternative approaches use ensembling and sampling with a runtime of
several days (Zitnik and Zupan, 2014¢). On a related note, FUSENET couples model
parameters of different data distributions and thus cannot directly utilize existing opti-
mization algorithms for undirected graphical model selection. To this end, we propose
to fit FuseNET’s models through a cyclical coordinate descent along the entire path of

regularization parameters (Zitnik and Zupan, 2015b).

Contributions and impact:

= We developed FuseNET, an off-the-shelf network inference framework for mixed
data arising from any combination of exponential family distributions. Further-
more, FUSENET is the first model that is able to combine the theory of Markov

network inference and data fusion.

= We analyzed heterogeneous data from the International Cancer Genome Con-
sortium and found that joint network inference by FUseNET from multiple re-
lated data sets, i.e. RNA-sequencing and somatic mutation data, showed greater

functional enrichment than networks learned from any data type alone.

= We developed Réd, an approach to epistasis-based gene network inference that
is able to reconstruct known cellular pathways more accurately than competing

methods.

7
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= Réd allowed us to infer networks consistent with the theory of epistasis analysis
by considering hundreds of thousands of genetic interaction measurements, the

largest data compendium considered for epistasis analysis up to date.

= Réd has been harnessed by the molecular biology community, e.g. by Uro$
Petrovi¢ at Institut Jozef Stefan and the group of Thomas Helleday from Scil-
ifeLab at Karolinska Institutet.

1.2.3  Part Il — Compressive data fusion

The third part of the Thesis presents our work on triple data heterogeneity, namely
the development of models that address relation, object type and task heterogeneity
(Table 1.1). Recently, a variety of real applications emerged, which exhibit triple het-
erogeneity. We show how modeling of multiple types of data heterogeneity gives as
opportunities to predict biological functions of genes and pharmacological actions of
small chemicals using large amounts of diverse data that were previously practically

impossible to consider.

Stage 1 — Exploration: What is a relational map of heterogeneous data?

We present fusion graph, a relational map of heterogeneous data compendium that is
considered for data fusion (Zitnik and Zupan, 20152). We view each data set as a
dyadic relation that encodes relationships between objects of two types. This abstrac-
tion is of sufficient generality to apply to many data-rich problem domains, e.g., func-
tional genomics, pharmacology, social networks and recommendation systems, that

contain tens or even hundreds of data sets, each potentially relating different object

types.
Stage 2 — Modeling: How can we model triple data heterogeneity?

We present our work on multiplex, multiscale and multi-object type matrix factoriza-
tion models. Researchers in data mining and machine learning have long been excited
about “matrix decomposition,” where the intuition is to approximately decompose a

large data matrix into a “useful” product of several much smaller data matrices typically
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referred to as latent matrices or latent factors. We develop DFME a penalized ma-
trix tri-factorization model that collectively tri-factorizes many data matrices such that
each data matrix is decomposed into a product of three latent matrices. The essence of
the model comes from its design, which reuses the latent matrices when co-factorizing
related data matrices (Zitnik and Zupan, 2014a). This formalization has a wide range

of applications in the area of relational learning.

DFMF modifies standard factorization formulation such that it can consider multi-
relational and multi object-type data without necessitating substantial data transfor-
mation. In this way it breaks through conventional feature-based data types and fac-
torization of a single dyadic relation. Few existing matrix factorization approaches
for data integration (see Zitnik and Zupan (2015a) and references therein) can model
multiple relations between the same two sets of objects, e.g., genes and drugs, or can
vary object types along one dimension of data matrices. They would often require full
set of pairwise relations between all pairs of object types. On the contrary, DFMF can
model multiple relations between multiple object types without imposing any assump-

tions about structural properties of the matrices.

Stage 3 — Algorithms: How can we predict gene functions and pharmacological actions via

collective latent modeling?

The collective penalized matrix tri-factorization model has also led us to efficient and
theoretically sound algorithms for collective matrix factorization. Our approach prov-
ably finds a quality estimate of the latent matrices (Zitnik and Zupan, 20152). We
utilized the approach for gene function prediction in yeast and amoeba, where the
task was to predict ontological annotations of genes derived from the Gene Ontol-
ogy (Zitnik and Zupan, 20152, 2014a). The approach was flexible and, in contrast
to state-of-the-art kernel-based methods required minimal preprocessing of the input
data. The whole-genome gene function prediction on compendia with tens of data sets
required minutes of computation time compared to hours required by competing al-
gorithms. We showed that inclusion of circumstantial evidence improved the accuracy
of prediction models. Beyond the task at hand, we showed that the same algorithm

can be used to decide the pharmacological actions of small chemicals.
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Contributions and impact:

= We developed DFME, a model for collective matrix factorization and its vari-
ant for collective matrix completion. We proved that latent matrices found by
our algorithm for the estimation of DFMF model locally minimize the total

reconstruction error of a data system presented with the data fusion graph.

= We found that latent matrices estimated by the DFMF algorithm have high
predictive power relative to the performance of methods that transform data into
asingle feature-based data table, i.e. early integration, and methods that explicitly
address the multiplicity of data via multiple kernel learning, i.e. intermediate

integration.

= Our approach is general and flexible. We successfully used it for prediction of
gene annotations in amoeba, identification of chemical actions and for recog-
nizing yeast proteins that participate in the ribosome or are located in the cell
membrane. Follow-up works with collaborators at Baylor College of Medicine
and Karolinska Institutet showed promising performance of our approach on
human cancer data sets, mouse data related to the development of retinal dis-
eases, data from fruit fly model organism and on large-scale data from amoeba

organism.

1.2.4 DPart IV — Latent chaining and profiling

To use latent models in various prediction settings one also needs to understand the
different roles that latent data matrices returned by a particular decomposition algo-
rithm might have. The fourth part of the Thesis presents our work on utilizing latent
models of data systems with tens of data sets for clustering, association mining and
gene ranking. We show how integrative analysis allows us to recognize patterns that

were practically invisible in small-scale studies (Zitnik et al., 2015b).
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Stage 1 — Exploration: How does systems-level view complement disease-disease, gene-phenotype

and gene-drug associations?

Here we examine how the advent of genome-scale genetic and genomic studies enables
new insights into identification of genes involved in the onset of a phenotype, discov-
ery of disease-disease associations and into prediction of drug toxicity levels. We build
on a recent shift from relating human diseases simply based on pathological analysis
and clinical symptoms towards systems-level integration of molecular data. By fusing
11 genome-scale human data sets we identify several disease-disease associations that were
not present in Disease Ontology for which we find strong support in the literature and
significant comorbidity effects in associated diseases (Zitnik et al., 2013). We show
that even sparse data sets with only a few data points might be important for effec-
tive integration. Surprisingly, we found that genetic interaction data were the most
predictive underlying factor of disease-disease associations despite their current small
size. Another evidence in support of a systems-level view is our study on 29 foxi-
cogenomic data sets, where we find that drug-induced liver injuries in humans can be
predicted from animal data and circumstantial data sets (Zitnik and Zupan, 2014b).
Furthermore, starting from 14 whole-genome data sets from amoeba and only four genes
relevant to bacterial response in Dictyostelium, we were able to recommend eight can-
didate genes that were readily validated as necessary for the response of Dictyostelium to

Gram-negative bacteria (Zitnik et al., 2015a).

Stage 2 — Modeling: How can we reduce degrees of data heterogeneity?

We also study the utility of inferred latent factors for prediction. We analyzed the re-
construction quality of data matrices, each of which may have only a few percentage of
observed cells. We further co-clustered objects of various types, e.g., drugs, diseases and
genes, based on their latent profiles obtained via co-factorization of a data system. To
revert triple heterogeneity exhibited by our applications in molecular biology domain
to problems with dual heterogeneity, i.e. relation heterogeneity and task heterogene-
ity, we introduce Collage, a model that chains latent matrices along paths defined by the
fusion graph (Zitnik et al., 2015a). These findings are important for construction of a
feature-based data tables that can subsequently be used as an input to an established

machine learning algorithm.
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Stage 3 — Algorithms: How do we prioritize genes, disease and drugs relative to the reference

knowledge?

Last, we present way of how latent space of a data system induced by a collective factor
model can be used to profile objects in the input space of any other object type based
on the connectivity in the data fusion graph. We show that lazent matrix chaining is an
effective technique for construction of dense profiles that include the most informative
features obtained by collectively compressing a data system via matrix factorization.
Our approach (Zitnik and Zupan, 2014b) ranked first in the “Critical Assessment
of Massive Data Analysis” competition, where the task was to predict drug adverse
effects from in vivo and in vitro animal toxicogenomic data, hematological and clinical
chemistry data, and human gene expression data. Beyond prediction of drug toxicity,

we used the same algorithm to successfully mine relationships between human diseases.

Contributions and impact:

= We developed Collage, an approach to gene prioritization. Given a handful
of seed genes important for a biological function of interest, Collage aims to
identify the most promising candidate genes for further studies. In contrast to
gene-centric prioritization algorithms, Collage represents an advancement in the
breadth of data it can incorporate, the ease of data integration without complex
feature engineering, and the ability to retain the relational data structure during

model inference.

= Our formalization of gene prioritization and models for detection of drug tox-
icity and discovery of disease-disease associations have had a wide range of im-
plications for researchers in the life sciences. For example, the identification
and characterization of four seed genes for the bacterial resistance study was a
laborious task that required several months of laboratory work per gene. Col-
lage substantially simplified this task by suggesting eight genes that were successfully
validated in the wet lab.

= Our approach for drug toxicity detection in toxicogenomic studies received the
best analysis award at ISMB CAMDA 2013 conference (Zitnik and Zupan,
2014b).
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= Follow-up works with collaborators from Baylor College of Medicine later con-
firmed the potential of our gene prioritization approach to identify promising

genes involved in human retinal diseases.

1.2.5  Part V — Regression by data fusion

Whereas methodology presented in the third part and the fourth part of the Thesis
focuses on finding a compressed, i.e. latent, data representation of a heterogeneous data
system, the fifth part of the Thesis presents our results on simultaneous estimation of a
latent data model and regression against a target data variable. Our results in survival
analysis highlight the benefits of data fusion for inference of survival models that are

predictive of clinical outcomes.

Stage 1 — Exploration: Which are insightful data types in cancer genome studies?

Individual cancer data sets have long been used to partition a population of tumor
samples into clinically meaningful subtypes. We analyzed one of the largest available
collections of cancer data from The International Cancer Genome Consortium, trying
to find how well different types of data, such as levels of protein expression or somatic
mutation data, predict the clinical outcomes of patients. We observed substantial dif-
ferences in predictive performance when estimating survival models using different
data types (Zitnik and Zupan, 2015¢). We also found that transformation of high-
dimensional cancer genomic data to a low-dimensional space was vital for modeling

patient survival time.

Stage 2 — Modeling: How can survival models consider circumstantial evidence?

Stratification of patients based on multiple types of data, such as expression, methyla-
tion and somatic mutation profiles, is an important challenge in cancer bioinformatics.
The challenge stems from fundamentally different data sets, both in type and in struc-
ture. For example, somatic mutation profiles are sparse and discrete since typically only
a small fraction of genes are mutated and patients diagnosed with the same cancer type
share few mutations. On the other hand, methylation data are typically dense and real-

valued. We developed a DFMF-SR model that couples the additive survival regression

23




24

1 Introduction M Zitnik

model with collective matrix factorization into a joint inference procedure (Zitnik and
Zupan, 2015¢). In contrast to existing survival regression models, DFMF-SR allows
simultaneous modeling of patient latent data profiles and estimation of the influence of

latent factors on survival time.

Stage 3 — Algorithms: How do we predict patient survival times?

Last, we developed an efficient algorithm for DFMF-SR model that is based on com-
puting a solution to the Sylvester matrix equation, a well-characterized type of linear
matrix equation. Our approach (Zitnik and Zupan, 2071 5¢) ranked first in the “Critical
Assessment of Massive Data Analysis” competition, where the question was whether
the integration of comprehensive cancer data consisting of gene expression, microRNA
expression, protein expression profiles, somatic mutations and methylation can iden-
tify disease causal changes. We also showed that DFMF-SR gave information about the
time-varying effects of latent factors on patient survival time. We found that the most
informative factors are related to known cancer processes. Beyond the task at hand, our
findings point to a potential utility of the proposed approach for uncovering critical

factors and their changing influence on cancer progression.

Contributions and impact:

= We developed DFMF-SR, a data fusion approach to survival regression, and
an efficient algorithm for the estimation of model parameters. We showed for
selected cancer data from The International Cancer Genome Consortium that
DEMF-SR performs well relative to a popular approach that first transforms
data into the latent space and then does survival regression independently of
data transformation. Moreover, DFMF-SR is the first approach that is able to
infer a latent data model and regression coefficients of a survival model az the

same time.

Our approach for survival regression via data fusion received the best analysis
award at ISMB CAMDA 2014 conference (Zitnik and Zupan, 201 5e).
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1.2.6  Part VI — Large-scale data fusion selection

The work presented in the first five parts of the Thesis generally consider many data
sets for each prediction task at hand. In the sixth part we take a step back and ask an
important question of how changes in one data set affect the latent representation of
another data set in the context of a given collective latent factor model. Answers to
this question are vital if we would like to select how many and which data sets should
be considered for data fusion. In the sixth part we aim to understand the sensitivity of
one data set to perturbations in another data set when both data sets are modeled by a

collective matrix factorization.

Stage 1 — Exploration: How changes in one relation affect the latent representation of an-

other relation?

For example, in a user-movie recommendation system, how would a change of anima-
tion technology affect users’s preferences? We study a data system of 13 data sets from
molecular biology and another system of 40 experimental protein physical interaction
data sets, the largest data compendium considered by a collective latent factor model to
date (Zitnik and Zupan, 2015¢). We investigate how additions or removals of data sets
change the quality of the fitted latent data models and find that there does not exist a
simple relationship between, for example, the number of data points in a data set and

its affect on the latent representation of other modeled data sets.

Stage 2 — Modeling: What is sensitivity between different relations of a latent model?

Motivated by our observations, we present our work on modeling the inter-relation
sensitivity in collective matrix factorization. We use concepts from matrix algebra and
the Fréchet derivation to develop FORENSIC, a generic approach to sensitivity estima-
tion that is readily applicable to many different collective factorization models (Zitnik
and Zupan, 2015¢). In fact, our work is the first to directly quantify the amount of
sensitivity between relations in large data collections analyzed with latent models. We
arrive at a simple yet surprisingly accurate scoring technique with high levels of agree-

ment when applied to different factorization models and scores that report sensitivities,
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which are intrinsic properties of a relational data structure rather than a confound of

a given factorization model.

Stage 3 — Algorithms: How can we select data for fusion and identify surprising data sets?

Last, we develop an algorithm that uses the LAPACK norm estimator to efficiently
estimate FORENSIC’s scores. FORENSIC is capable of estimating sensitivity for any pair
of modeled relations for which it needs a one-time-only inference of a factorized model. In
this way, FORENSIC avoids computational burdens associated with the repeated runs of
a factorization algorithm. We found that FORENSIC opens many new applications that
were previously not possible. When analyzing large compendiums of data sets their
sheer number increases the likelihood that there will be an outlier data set of lower
quality. We showed how FOReNsIC can be used to detect low-quality experimental data
sets. FORENSIC also provides recommendations as to which data sets should be used for
integrative analysis and offers insights into “surprising,” i.e. potentially problematic,

data sets.

Contributions and impact:

= We developed FoRreNsic, a general and computationally efficient approach to
inter-relation sensitivity estimation in collective latent factor models. Moreover,
Forensic is the first principled model offering such functionality for collective
latent factor models. FORENSIC shows promising results to be used as a scoring

technique for selection of data sets for fusion.

We analyzed a compendium of 40 experimental protein physical interaction data
sets, which is to the best of our knowledge the largest collection of data sers ex-
amined with a collective latent factor model reported in the literature up to date.
We demonstrated that Forensic can correctly identify data sets that contain

experimental errors.

Next, we present basic concepts and preliminaries, introduce the notation and briefly

survey the related work. We then proceed with each of the six main parts of the Thesis.
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In this chapter we review the basic concepts and terminology used in this Thesis and
introduce the most important notation. Next, we survey the work on machine learn-
ing methods that learn from heterogeneous data, as well as latent factor models and

methods that estimate their parameters.
2.1 Basic concepts and definitions

Next, we briefly define concepts and terminology that is used throughout the Thesis.
We introduce factorization of a single data matrix and review fundamental concepts

from molecular biology needed for fully understanding the problems addressed in the

Thesis.

2.1.1  Single matrix factorization for data analysis
£

Let us consider tabulated data, organized in the observed matrix X € R™™ which we
would like to approximate by a product of two matrices UVT, where U € R™* and
V € R™* 1f we view the rows of X as data vectors X, ;» then each such data vector is
approximated by a linear combination U; VT of the rows of V1. We think of the rows
of VT as latent factors and the entries of U as coefficients of the linear combinations. In
a geometrical setting, the data vectors U; € R™ are approximated by a k-dimensional
linear subspace spanned by the rows in 7. The converse also holds: the columns of
X can be viewed as linear combinations of the columns of U. We refer to U and V'

as latent matrices or latent factor matrices.

If we do not impose additional constraints on matrices U and V', then the matrices,
which can be exactly factored as X = UVT are those matrices of rank at most k.
That is, approximating a matrix X by an unconstrained factorization is equivalent to

approximating it by a rank-k matrix.

We were ambiguous about the notion of “approximating” the data matrix. In what

sense do we desire to approximate the data? And, what is the measure of discrepancy
N

between the data X and the model X that we would like to optimize for? Can we see

the “approximation” as fitting a suitable probabilistic model?
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Unconstrained factorizations. 'The most common measure of discrepancy between the
data X and the model X is the sum-squared error, or the Frobenius norm of the dif-
ference between X and X:

I1X - X1, = Y (X, - X,)? (2.1)

Fro ) s :
i.Jj

The popularity of the Frobenius low-rank approximation is due to the simplicity of
computing the factorization. It is a standard result that the k-rank matrix X, which

minimizes the Frobenius distance to X, is given by the k leading components of the

singular value decomposition of X (Jolliffe, 2002).

Constrained factorizations.  So far we referred to unconstrained matrix factorization,
where U and V' can vary over all matrices in the space R™* and R"™ ¥ respectively.
This means that X = UV is limited only by its rank. In data analysis it is often
appropriate to additionally constrain the factor matrices, i.e. introduce additional reg-
ularization terms in the objective function. This can alleviate the interpretation of the
factor matrices, or in order to reduce the complexity of the model, allow identifica-
tion of more factors. Imposing constraints on the factor matrices removes the degrees
of freedom on the factorization UVT of a reconstructed X. Lee and Seung (2000)
studied various constraints on the factor matrices, including a very popular constraint
about non-negativity of the latent matrices. We refer the reader to Zitnik and Zu-
pan (2012); Wang and Zhang (2013) for a comprehensive review of different types
of regularization, such as nonnegativity, orthogonality, stochasticity, sparseness and

preservation of local topological properties, and the relationships between them.

A unified view of matrix factorization.  Recently, Singh and Gordon (2008b) presented
a unified view of matrix factorization that frames the differences among popular meth-
ods, such as non-negative matrix factorization (Lee and Seung, 2000), weighted singu-
lar value decomposition (Srebro et al., 2003), exponential principal component anal-
ysis (Collins et al., 2001), maximum margin matrix factorization (Srebro et al., 2004),
probabilistic latent semantic indexing (Hofmann, 1999), Bregman co-clustering (Gor-

don, 2002), and many others in terms of a small number of modeling choices.
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Definition 1: A matrix factorization can be defined by the following choices, which

are sufficient to include many “popular approaches” (Fig. 2.1):
1. Data weights W € R}
2. Prediction link £ : R"™" — R"™ "
3. Hard constraints on factors, U,V € 6.
4. Weighted loss between X and X = JiULZD) 9(X||)?, W) >0.
5. Regularization penalty, Z(U, V') > 0.

Given these choices, the optimization for the model X ~ f ovTis

argmin (X || f(UVT), W) + Z(U, V). (2.2)
UVe®

Here, prediction link f allows nonlinear relationships between UV and the data
X (Singh and Gordon, 2008b).

A concept very closely related to matrix factorization is that of matrix completion. The
aim of matrix completion is to recover an unknown matrix from a subset of its en-
tries (Todeschini et al., 2013; Lee and Shraibman, 2013). The problem has received
prominent attention in the context of recommendation systems, cf. e.g., Shi et al.
(2012a). A central approach to this problem is to generate a matrix of the lowest
possible complexity that agrees with the partially observed matrix. Here, complexity
is typically measured using rank or trace norms. The performance of this approach
has been well studied under the assumption that observed matrix entries are sampled

uniformly at random (Candés and Recht, 2009; Candés and Tao, 2010).

Factor models in data analysis.  Matrix factorization has turned out to be very good at
discovering intricate structures in high-dimensional data and is therefore applicable to
many domains of business, science and government. In addition to beating records in
collaborative filtering and recommendation systems (Bell and Koren, 2007), it has had
many successes in dimensionality reduction (Jolliffe, 2002; Li et al., 2009¢; Maurus

and Plant, 2014), clustering (Hochreiter et al., 20105 Arora et al., 2013) and low-rank
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Figure 2.1
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approximation (Matsushita and Tanaka, 2013), among others.

One way to measure the fit of a learned factor model is to use metric such as root
mean squared error. 'This metric was adopted in the Netflix Prize Contest (http:
//www.netflixprize.com) as the evaluation metric. However, it is now recognized
that approaches optimized to minimize the error rate can achieve poor performance
on classification and ranking tasks (Rendle, 20105 Rendle et al., 2010). In collabora-
tive filtering, users focus their attention on only a small number of recommendations,
effectively ignoring all but a short list of recommended items. For this reason, the
ultimate goal of factor models in collaborative filtering is to generate a top-N list of rel-
evant items to individual users. Generation of recommendation lists is a ranking task,
i.e. ranking items according to their relevance to the user. Consequently, new learning
algorithms and factor models that are being developed optimize for a variety of metrics
used for ranking, classification and regression (Rendle et al., 2009; Rendle, 2010; Shi
etal, 2012b, 2013). Factor models can thus be applied not only to regression, where
the estimated latent matrices can be used directly as predictors and the optimization
criterion is e.g., the minimal least squared error, but also for binary classification, where
parameters are optimized for hinge loss or logit loss (Rendle, 2010), and for ranking,
where optimization is done with pairwise or listwise classification loss functions (Shi
et al., 2013). This posits that factor models are general predictors working with any
data matrix representation (Rendle, 2010). They model interactions between variables

using factorized parameters and are capable of estimating interactions between vari-


http://www.netflixprize.com
http://www.netflixprize.com
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ables even in problems with huge sparsity, such as recommendation systems, where

other methods fail (Rendle, 2013).

2.1.2  Important concepts from molecular biology

“Computers are to biology what mathematics is to physics.”
— Harold J. Morowitz

Next, we attempt to provide enough background for a computer scientist to be able to
appreciate the relevance of biological applications studied in the Thesis. This section
provides a very brief overview, interested reader is referred to Hunter (1993); Alberts

et al. (2007) for a better understanding of cell biology.

Inherited characteristics of an organism are contained in a single molecule: deoxyri-
bonucleic acid, or DNA. These characteristics are encoded in a simple, linear, four-
element code, which is known as organism’s genotype. The resulting physical properties

of an organism are called its phenotype.

The composition of cells.  Organisms can either be single-cellular or multi-cellular. The
main advantage of multi-cellular organisms is specialization. This means that not every
cell in a multi-cellular organism needs to be able to protect itself, extract nutrients,
sense the environment, reproduced itself, etc. These complex tasks are typically divided
so that many different classes of cells work together and accomplish tasks that single
cells cannot. Groups of cells specialized for a particular function are tissues. We say
that cells in a tissue have differentiated. When a cell differentiates, it typically cannot
change from one type to another. Despite all of the variation, all cells in a multicellular
organism have exactly the same genetic code. These differences can be explained by
differences in gene expression, that is, whether or not the product that a gene codes for
is produced, and how much of the product is produced. Genes code for products that
turn on and off other genes, which in turn regulate other genes, and so on (Hunter,
1993). One of the key research areas in biology is development: how the interrelated
genetic regulatory processes are managed, and how cells “know” what to differentiate

into, and when and where they do it (Alberts et al., 2007).
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Despite the many differences, most cells have a great deal in common with each other:
they contain cytoplasm and genetic material, are enclosed by a membrane and have
the basic mechanisms for mranslating genetic material into the main type of biological

molecule, the protein.

Genetic material codes for all other parts of the cell. This information is typically stored
in long strands of DNA. While proteins are the workhorses of the biochemical world,
nucleic acids, e.g., DNA, are the drivers; they control the action. Besides DNA, an-
other very important polymer is ribonucleic acid or RNA, which directs the synthesis
of proteins. Both types of nucleic acids are polymers of four simple units called 7u-
cleotides. There are four nucleotides found in DNA: adenine (A), guanine (G), cytosine
(C) and thymine (T). Nucleotides are sometimes called bases, and, since DNA consists
of two complementary strands bonded together, these units are often called base pairs.
In RNA, uracil (U) takes the place of thymine.

Proteins are the molecules that accomplish most of the functions of the living cell. The
number of different functions and structures that proteins take on in a single organism
is staggering. They make possible all of the chemical reactions in the cell by acting as
enzymes that promote chemical reactions, which would otherwise occur slowly. Pro-
teins also provide structural support and are vital for the immune system to distinguish
itself from the invaders. They provide the means for acquiring and transforming en-
ergy, as well as the transmission of information. All proteins are constructed from
linear sequences of smaller molecules known as amino acids. There are twenty natu-
rally occurring amino acids. Long proteins may contain as many as 4,500 amino acids.
Hence, the space of possible proteins is very large: 20%% or 103%°, Additionally, pro-
teins fold up to form three dimensional shape, which give them their specific chemical

functionality.

The defining part of eukaryotic cells are the nuclei. The nucleus contains the genetic
material of the cell in the form of chromatin, i.e. long stretches of DNA in a variety of

conformations.

Other important parts of cells include membranes, cytoplasm, ribosomes, mitochon-

dria and chroloplasts, endoplasmic reticulum, Golgi appratus and lysosomes.
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Genes, the genome and the genetic code.  The genetic information of an organism can
be stored in one or more distinct DNA molecules; each is called a chromosome. In some
organisms, called diploids, each chromosome contains two similar DNA molecules that
physically bound together, one from each parent. Human beings are diploid with 23
pairs of chromosomes. All of the genetic information of an organism is referred to as
its genome. 'The primary role of nucleic acids is to carry the encoding of the primary
structure of proteins. Each non-overlapping triple of nucleotides is called a codon and
corresponds to a particular amino acid. Four nucleotides can form 4% = 64 possible
triplets, which is more than the 200 triplets that are needed to code for each amino

acid. Most amino acids are encoded by more than one codon. For example, alanine is

represented in DNA by the codons GCT, GCC, GCA and GCG.

The basic process of synthesizing proteins involves mapping a sequence of codons, i.e.
a gene, to a sequence of amino acids, i.e. a protein. However, there are many important
complications. The structure of a gene typically consists of many elements of which the
actual protein coding sequence may be only a small part. The non-coding sequences
are called introns and are spliced out before the sequence is mapped into amino acids.
The segments of DNA that actually end up coding for a protein, i.e. segments that get
expressed, are called exons. DNA contains a large amount of information in addition to

the coding sequences of proteins (Hunter, 1993; Alberts et al., 2007).

Transcription and translation.  The process of mapping a DNA sequence to a folded
protein in eukaryotes involves many steps. The most important steps are: (1) transcrip-
tion, which transforms a portion of DNA into an RNA molecule called a messenger
RNA (mRNA); (2) intron splicing, which splices the exons together; (3) translation,
which uses mRNA as a blueprint for the production of a protein at the ribosome; and
(4) protein folding and post-translational modifications. Once the protein has folded,
other transformations can occur. Various chemicals can be bound to different places
on the proteins, which can change the shape of the protein, and may be necessary to

make the protein active, or may keep it from having an effect before it is needed.

Model organisms. Model organisms are a vital source of biological knowledge. The
investigation of even a single organism can take many scientists many careers worth of

time. Moreover, biological experimentation is often complex, time consuming and dif-
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ficult. Some of the most valuable biological methods are invasive, or require organisms
to be sacrificed, or require many generations of observation, or observations on large
populations (Hunter, 1993). Such work is impractical or unethical to carry out on hu-
mans. Hence, biologists have selected a variety of model organisms for experimentation.
These creatures have qualities that make possible controlled laboratory experiments at
reasonable cost and difficulty with results that can often be transiated to people. The
main models used in molecular biology include: bacterium Escherichia coli, brewer’s
yeast Saccharomyces cervesiae, common weed Arabidopsis thaliana, common fruit fly
Drosophila melanagaster, mouse Mus musculus, nematode worm Caenorhabditis elegans,

and amoeba Dictyostelium discoideum.
2.2 Machine learning approaches to data integration

Computational methods for integrative data analysis are capable of analyzing hetero-
geneous data. These methods combine data arising from diverse background distribu-
tions, relations, dimensions and formats to enhance the statistical significance and to
obtain more accurate predictive models (Bostrom et al., 2007). Data fusion, a term
borrowed from engineering (Hall and Llinas, 1997), has in recent years emerged in
various areas of predictive modeling to reflect combining distinct heterogeneous data
sources, even when they differ in their conceptual, contextual and typographical rep-

resentations (Aerts et al., 2006).

Data heterogeneity may arise due to various reasons. It may be due to differences in
data extraction methods or different perspectives/scales at which the problem of inter-
est is being studied. Furthermore, there might be heterogeneity at the measurement
scale, data dimensionality or the types of features. For example, data representations
range from high-resolution images, text documents, feature-based data tables to struc-
tured data, such as networks, hierarchies of associations and ontologies. Different data
types naturally use different formats and can be nominal, ordinal, represented with in-
tervals, ratios, etc. Some of the successful applications include integrative methods for
gene prioritization (Aerts et al., 2006; Sifrim et al., 2013), gene and protein function
prediction (Savage et al., 20105 Saddiki et al., 2014; Klein et al., 2014), signal pro-
cessing (Subrahmanya and Shin, 2010), visual object recognition (Bucak et al., 2014),

information retrieval (Dwork et al., 2001; Zhu et al., 2013), network analysis (Tang
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Figure 2.2

Data integration strate-
gies. Early integration
transforms all data sets
into a single, feature-based
table and treats this as a
single data set that can

be explored by any of the
well-established attribute-
based machine learning
algorithms. It relies on
procedures for feature
construction and often
neglects possible relational
structure of the data. In
late integration, each data
set gives rise to a separate
model. Prior to model
inference, it is necessary to
transform each data set to
encode relations to the tar-
get concept (non-trivial).
Intermediate integration
actively includes additional
information in the method
itself.
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et al,, 2012), and text processing (Lin and Kolcz, 20125 Rebholz-Schuhmann et al.,

2012).

According to Pavlidis et al. (2002); Schélkopf et al. (2004); Maragos et al. (2008);
Greene and Cunningham (2009), data fusion approaches can be classified into three
main categories depending on the modeling stage at which fusion takes place (Fig. 2.2).
In early integration, features from different sources are concatenated and fed to a single
learner. Late integration involves feeding different features to different classifiers whose
decisions are then combined by a fixed or trained combiner. The youngest branch
of data fusion algorithms is intermediate integration. Intermediate integration does
not merge the input data, nor does it develop separate models for each data source. It
instead retains the structure of the data sources by incorporating it within the structure
of predictive model. Algorithms in this category explicitly address the multiplicity of
data and fuse them through inference of a single joint model by actively including
additional information by the fusion algorithm itself. This particular approach is often
preferred because of its superior predictive accuracy (Pavlidis et al., 2002; Lanckriet
et al., 2004¢; Gevaert et al., 2006; Tang et al., 2009; van Vliet et al., 2012), but for a

given model type, it requires the development of a new inference algorithm.
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Although there are many applications, which attempt to estimate prediction models
from heterogeneous data, most often these are heuristic approaches that depend heavily
on specific problems that are being studied. Such methods might be difficult to gen-
eralize. On the other hand, kernel-based methods and graphical models are two general
approaches with many successful applications in learning from multiple data sets. This
Thesis is premised on the notion that collective latent factor models represent another

group of general machine learning predictors that are appropriate for data fusion.

In what follows we briefly overview each of the three classes of methods for integrative
data analysis. Further related work focused on a specific field of study, e.g., network
inference or gene function prediction, is provided in the respective chapters of the

Thesis.

2.2.1  Graphical model-based methods

Bayesian modeling has been widely used in multi-task learning and multi-view learning
over the last decade, where the goal has been to harness multiple data views, i.e. data
sets, describing a given set of objects and to leverage related tasks to improve the learn-
ing performance in each task. Research dedicated to Bayesian hierarchical modeling
has demonstrated effectiveness and improvement in predictive performance (Balker
and Heskes, 2003; Guo et al., 20115 Han et al., 2012). These methods have been suc-
cessfully applied to areas, such as information retrieval (Blei et al., 2004) and computer
vision (Luo et al., 2013; Ding et al., 2012). Typical approaches to transfer information
among multiple views and tasks include: sharing hidden nodes in neural networks,
placing a common prior in hierarchical models (He and Lawrence, 20115 Zhang et al.,
2011a; Yang and He, 2014), sharing a common structure on the predictor space (Yu
etal., 2005; He et al., 2014), and structured regularization in kernel methods (He and

Lawrence, 2011), among others.

2.2.2 Multiple kernel-based methods

Kernel methods are nonparametric learning methods that use kernel functions (Shawe-
Taylor and Cristianini, 2004) to implicitly define the similarity of a pair of data points

according to the features describing them. There are several advantages to the use of
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kernel methods for data fusion. Due to nonparametric characteristic of the kernels, one
does not need to make prior assumptions about data distributions. Furthermore, ker-
nel functions can effectively model nonlinear relationships between data features. Also,
since the size of the kernel matrices depend only on the number of data points and not
on the number of features, kernel-based methods are suitable for high-dimensional
data with many features. Most popular kernel functions include linear, polynomial
and Gaussian, although many other forms, e.g., diffusion, string and tree kernel func-
tions (Lodhi et al., 2002; Zhu et al., 2004; Da San Martino et al., 2012), have been

successfully employed.

Multiple kernel learning.  In recent years, several methods have been proposed to com-
bine multiple kernels instead of using a single one (Génen and Alpaydin, 2011). Mul-
tiple kernels are useful for modeling either a single homogeneous data set or many
heterogeneous data sets. In the first setting, one can vary kernel functions and their
parameters to construct multiple kernel matrices over a given data set. For the purpose
of integrative analysis on heterogeneous data, a separate kernel matrix can be created

for each data set.

In contrast to Bayesian modeling, multiple kernel learning typically does not need to
model prior data distributions and relationships between different types of features.
However, selecting appropriate kernel function and its parameters in an important
issue in multiple kernel learning methods. Typically, a cross-validation procedure is
used to choose the best performing kernel function among a set of kernel functions on

a separate validation set different from the training set.

A common implementation of multiple kernel learning can be seen as a technique,
that optimizes the parameters used to combine a set of predefined kernels, i.e. we
assume that kernel functions and the corresponding kernel parameters are known be-
fore training (Qiu and Lane, 2009; Cortes et al., 2010). It is also possible to enhance
multiple kernel learning, such that parameters integrated into the kernel functions are
optimized during training (Yang et al., 2009; Génen and Alpaydin, 2008). Most of
the existing algorithms fall into the first category and #ry to combine predefined kernels

in an optimal way.

The reasoning behind combining many kernels is similar to combining different clas-
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sifiers. Instead of choosing a single kernel function, it is better to have a set promising
kernel functions and let an algorithm do the selection of a kernel or their combination.

There can be two uses multiple kernel learning:

= First, different kernels correspond to different notions of similarity and instead
of trying to find, which works best, a learning method does the picking for us,
or may use a combination of them. Using a specific kernel may be a source of
bias, and in allowing a learner to choose among a set of kernels, a better solution

can be found.

= Second, different kernels may be using inputs coming from different represen-
tations, from different sources or modalities. Since these are different repre-
sentations, they have different measures of similarity corresponding to different
kernels. In such a case, combining kernels is one possible way to combine mul-

tiple information sources in a sense typical of intermediate data integration.

There are different ways in which kernel combination can be done. The most popular
are methods that combine kernels via an unweighted sum, i.e. using the sum or the
mean of the kernels as the combined kernel, or through a weighted linear combina-
tion (Lanckriet et al., 2004b). Other multiple kernel learning algorithms use nonlin-
ear functions of kernels, e.g., multiplication, power, exponentiation (Varma and Babu,
2009), or use specific kernel weights for each data point determined in a data-driven

way (Yang et al., 2010).

2.2.3  Collective latent factor models and parameter sharing

A collective latent factor model typically factors each data matrix using a generalized-
linear link function, but whenever an object type is involved in more than one data rela-

tion, it ties the factors of respective relations together.

Multi-object type latent factor models. Wang et al. (2008) and Wang et al. (20112)
proposed tri-SPMF and S-NMTFE, respectively, a collective clustering of multi-type re-
lational data via symmetric nonnegative matrix tri-factorization. These two methods
consider both inter-type data relations, i.e. relationships between objects of different

types, and intra-type data relations, i.e. relationships between objects of the same gype.
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Data sets are viewed as dyadic relations and are encoded in relation and constraint
matrices. A relation matrix R;; is a n; X n; real-valued matrix, in which rows cor-
respond to objects of type i, columns to objects of type j and the element R;;(k,I)
represents the relationship between objects k and I. A constraint matrix ©; is a n; X n;
real-valued matrix that relates objects of type i to themselves. It contains pairwise con-
straints indicating dissimilarity/similarity between objects. The objective function of
a latent factor model is such that latent matrices minimizing it achieve good recon-
struction of observed elements in the relation matrices and adhere to the constraints

(Fig. 2.3). For example, in matrix tri-factorization models, R;; is approximated by

ij
three latent matrices such that R;; ~ Fj; SijGiC’ where F;; € R"<kij, S;; € RKuxeij
and G; ;€ R"i*¢j  Here, k; ; and ¢; j are factorization ranks, which typically in predic-
tive modeling are substantially smaller than the original data dimensionality, k; ;< ny,
¢;j < n;. Since profiles, i.e. row vectors in R;;, of many objects are represented by
relatively few vectors from S;; and low dimensional vectors in G; and G, a good ap-
proximation can only be achieved if these vectors span a space that reveals some latent
structure present in the original data (Fig. 2.3). Collective factor models of Wang et al.
(2008) and Wang et al. (20112) are able to tri-factorize a collection of relation and con-
straint matrices but require that relations between any two modeled object types are
available. This requirement is rarely satisfied in real-world data fusion settings, where
we do not have access to relation matrices between all possible pairs of object types.
While these models require little engineering by hand and can take advantage of in-
creases in the amount of available data, new generic and effective learning algorithms
that are currently being developed for collective data analysis will extend their applica-

bility to various data domains and prediction tasks.

In the context of text processing, matrix tri-factorization can be interpreted as fol-

lows (Li et al., 2009b). Given a term-by-document matrix R;;, latent matrices F;;

ijo
and Gy; specify soft membership of terms and documents in one of k;; and ¢;; classes,
respectively, where F;; represents knowledge in the word space, i.e. i-th row of F};
represent the posterior probability of word i belonging to the k;; classes, and Gj;; rep-
resents knowledge in document space, i.e. the i-th row of G;; represents the posterior
probability of document i belonging to the ¢;; classes. A third latent factor, .S;;, pro-

vides a condensed view of R;;. When performing collective matrix decomposition,

the strategy of sharing latent factors between relation matrices depends on a particular
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design of collective latent model (Wang et al., 2008, 20113; Zitnik and Zupan, 2015a).

Phenotype-phenotype
similarity constraints

Gene-gene
similarity constraints

Gene latent
matrix

Phenotypes

Latent component
interaction matrix

Phenotype latent
matrix

Genes

S

Memberships of a gene
in gene latent components

Memberships of a .
phenotype in phenotype™,
latent components R

Multiple data features of different types can also be modeled with tensor decomposi-
tions. However, in present tensor decompositions (Kolda and Bader, 2009; Sutskever,
2009; Rendle et al., 2011; Rettinger et al., 20125 Xu et al., 2014), tensors become
increasingly sparse and computationally intractable for higher dimensions.

Multi-relational latent factor models. ~ Zhang et al. (2012) proposed a collective matrix
factorization to decompose a number of data matrices R; into a common latent ma-
trix W and different coefficient matrices H;, such that R; ¥ W H; by minimizing
> lIR; — WH, ill%m. This is an intermediate integration approach but it can only
describe relations that involve fixed objects across data matrices. Similar two-factor
approaches but with various regularization types were also proposed (Li and Yeung,

2007; Zhang et al., 2011b; Singh and Gordon, 2008a, 2010).

There is an abundance of work on factorized models that consider a single data matrix
or multiple data matrices over the two types of objects (Wang et al., 2008; Sutskever,
2009; Li et al., 2009a; Wang et al., 2012). For example, Nickel et al. (2011) proposed
a tri-factorization model for multiple dyadic relations, which factorizes every R; as

R, ~ AS,-AT, where latent matrix A is shared between all data relations.
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Figure 2.3

Constrained matrix tri-
factorization of an exem-
plar gene-by-phenotype
matrix. The matrix is
accompanied by two con-
straint matrices expressing
similarity between genes
(matrix in yellow and
orange) and between phe-
notypes (matrix in blue
and green). Elements in
constraint matrices that
have greater negative values
are must-link constraints,
i.e. the corresponding
genes (phenotypes) should
have more similar latent
profiles. Positive values in
constraint matrices repre-
sent cannot-link constraints
and penalize the latent data
model if the corresponding
genes (phenotypes) have
similar latent profiles.
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Matrix completion is among the most popular techniques in relational learning, where
one of its most celebrated application areas include collaborative filtering. One chal-
lenge of matrix completion is how to utilize available auxiliary information to improve

prediction accuracy.

In this chapter we study the problem of including side information as an additional
feature of matrix completion. We incorporate the mechanism of information propaga-
tion over the networks into the factorized model in a principled way. To inject network
influence in our model we make latent features of every object dependent on the la-
tent features of its direct neighbors in the network. Using this idea, latent features of
objects indirectly connected in the network become dependent and hence information

gets propagated.

Cold start objects, e.g., genes for which no measurements are available, are an impor-
tant challenge in matrix completion models. Since cold start objects rely more on the
auxiliary information compared to the objects with many measurements, the effect of
using the principle of information propagation is vital for poortly characterized objects.
Moreover, in many genomic data sets a very large portion of genes might not be con-
sidered in any of the experiments for various reasons, such as gene essentiality, but
these genes appear in the background knowledge represented here in the form of gene
networks. Hence, using only observed measurements would not allow to learn the
latent features for such genes. The model presented in this chapter forces gene feature
vectors to be close to those of their neighbors. As such, the model is capable of learning

the latent features for genes with no or very few measurements.

We have conducted experiments on several large-scale genetic interaction data sets.
Our experiments demonstrate that modeling propagation of information over the net-
works while inferring a latent factor model leads to a substantial increase in prediction

accuracy, in particular for cold start genes.
3.1 Background
The epistatic miniarray profile (E-MAP) technology (Schuldiner et al., 2005; Collins

et al., 2006; Roguev et al., 2008; Wilmes et al., 2008; Surma et al., 2013) is based

on a synthetic genetic array (SGA) approach (Tong et al., 2001, 2004) and generates
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quantitative measurements of both positive and negative genetic interactions (GIs) be-
tween genes. E-MAP was developed to study the phenomenon of epistasis, wherein the
presence of one mutation modulates the effect of another mutation. The power of epis-
tasis analysis is greatly enhanced by quantitative measurements of interactions (Collins
et al., 2006). E-MAP has provided high-throughput measurements of hundreds of
thousands of Gls in yeast (Schuldiner et al., 2005; Collins et al., 2007; Wilmes et al.,
2008) and has been shown to significantly improve gene function prediction (Collins
etal., 2007). However, E-MAP data suffer from a large number of missing values that
can be as high as ~40% for a given assay (see also Table 3.1). Missing values correspond
to pairs of genes for which the strength of the interaction could not be measured during
the experimental procedure or that were subsequently removed due to low reliability.
A high proportion of missing values can adversely affect analysis algorithms or even
prevent their use (Nanni et al., 2012). Missing data can introduce instability in clus-
tering results (de Brevern et al., 2004) or bias the inference of prediction models (Liew
et al,, 2011). Accurate imputation of quantitative GIs is therefore an appealing op-
tion to improve downstream data analysis and correspondence between genetic and
functional similarity (Collins et al., 2007; Pu et al., 2008; Bandyopadhyay et al., 2008;

Ulitsky et al., 2008; Jirvinen et al., 2008).

The missing value problem in E-MAPs resembles that from gene expression data where
imputation has been studied well (Troyanskaya et al., 2001; Brock et al., 2008; Liew
etal., 2011). The objective of both tasks is to estimate the values of missing elements in
the given incomplete data matrix. Both types of data may exhibit correlation between
mutant and gene profiles that is indicative of pathway membership in the case of E-
MAP data (Ryan et al., 2010) and co-regulation in the case of gene expression data. E-
MAP data sets are therefore often investigated with tools originally developed for gene
expression data analysis (Zheng et al., 2010). However, there are important differences
between E-MAP and gene expression data that limit direct application of gene expres-
sion imputation techniques to E-MAPs (Ryan et al., 2010). E-MAP matrices report on
pairwise relations between genes and have substantially different dimensionality than
gene expression data sets. They often contain substantially more missing values than
gene expression data sets with the latter having up to 5% missing data rate (Bo et al,,
2004; Liew et al., 2011). These differences coupled with the biological significance of

E-MAP studies have spurred the development of specialized computational techniques
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for recovery of missing interaction measurements in E-MAP-like data sets (Ryan et al.,

2010).

In this chapter we present network-guided matrix completion (NG-MC), a hybrid and
knowledge-assisted method for imputing missing values in E-MAP-like data sets. NG-
MC builds upon two concepts: probabilistic matrix completion and propagation of
NG-MC-inferred latent gene interaction profiles. Matrix completion uses information
on global correlation of elements in the E-MAP score matrix. Propagation of latent
profiles exploits the local similarity of genes as specified by the gene networks. The
use of prior knowledge in the form of gene networks gives NG-MC the potential to
improve imputation accuracy beyond purely data-driven approaches. This could be
especially important for data sets with small number of genes and high missing data
rate such as E-MAPs. In what follows we present mathematical formulation of the
proposed approach and in a comparative study that includes several state-of-the-art

imputation techniques demonstrate its accuracy across several E-MAP data sets.
3.2 Related work on data imputation

Imputation algorithms for gene expression data sets are reviewed in Liew et al. (2011)
where they are categorized into four classes based on how they utilize or combine lo-
cal and global information from within the data (local, global and hybrid algorithms)
and their use of prior knowledge in imputation (knowledge-assisted algorithms). Local
methods based on k-nearest neighbors that include KNNimpute (Troyanskaya et al.,
2001), local least squares (LLS) (Kim et al., 2005) and adaptive least squares (LSim-
pute) (Bo etal., 2004) rely on local similarity of genes to recover missing values. Global
methods decompose data matrices using variations of singular value decomposition
(SVDimpute) (Troyanskaya et al., 2001), singular value thresholding algorithm for
matrix completion (SVT) (Cai et al.,, 2010) and Bayesian principal component anal-
ysis (BPCA) (Oba et al., 2003). Hybrid imputation approaches for gene expression
data make predictions by combining estimates from both local and global imputation

methods (Jérnsten et al., 2005).

Only a handful of missing data imputation algorithms directly address E-MAP-like
data sets. Ulitsky et al. (2009) experimented with a variety of genomic features, such

as the existence of physical interaction or co-expression between genes, that were used
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as input to a classification algorithm. The NG-MC differs from this approach as it di-
rectly uses the matrix of measured GI scores and does not require data-specific feature
engineering. Ryan et al. (2010, 2011) considered four general strategies for imput-
ing missing values—three local methods and one global method—and adapted these
strategies for E-MAPs. They modified unweighted and weighted k-nearest neighbors
imputation methods (uKNN and wNN, respectively) ans adapted LLS and BPCA al-
gorithms to handle symmetric E-MAP data. We refer the reader to Ryan et al. (2010)
for details on the algorithm modifications. We compare their imputation approaches
with the NG-MC (Sec. 3.4). Panetal. (2011) proposed an ensemble approach to com-
bine the outputs of two global and four local imputation methods based on diversity
of estimates of individual algorithms. In this chapter, we focus on the development
of a single algorithm that, if necessary, could be used in an ensemble, and therefore

compare it with ensemble-free algorithms.

Another venue of research focuses on predicting qualitative, z.e. binary instead of quan-
titative interactions. Here, predictions estimate the presence or absence of certain types
of interactions rather than their strength (Wong et al., 2004; Kelley and Ideker, 2005;
Qi et al,, 2008; Pandey et al., 2010). A major distinction between these techniques
and the method presented in this chapter is that we aim to accurately impute quan-
titative genetic interactions using the scale of GI scores. Individual GI may by itself
already provide valuable biological insight as each interaction attests to a functional
relationship of a pair of genes. Prediction of synthetic sick and lethal interaction types
in §. cerevisiae was pioneered by Wong et al. (2004), who applied probabilistic deci-
sion trees to diverse genomic data. Wong et al. introduced 2-hagp features to capture
the relationship between a pair of genes and a third gene. For example, if protein g
physically interacts with protein A, and gene w is synthetic lethal with the encoding
gene of A, then this observation increases the likelihood of a synthetic lethal interac-
tion between the encoding gene of g and gene w. Two-hop features were shown to be
crucial when predicting Gls (Wong et al., 2004; Bandyopadhyay et al., 2008; Ulitsky
et al., 2009) and are the rationale behind our concept of propagating latent profiles

over gene networks.
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3.3 Network-guided matrix completion

We start by presenting a probabilistic model of matrix completion for missing value
imputation in E-MAP-like data sets in which the prediction of missing interaction
measurement depends only on the E-MAP score matrix. We then develop an efficient
model fitting approach called network-guided matrix completion (NG-MC), which
can additionally consider the prior knowledge in the form of any number of gene net-
works. NG-MC uses information on topology of gene networks to propagate latent
gene interaction profiles among neighboring genes. It exploits the transitivity of in-
teractions, that is, the property of the relationship between a gene pair and a third
gene (Sec. 3.2). As such, NG-MC predicts missing values by integrating E-MAP data
with available network data. Any type of knowledge that can be expressed in the form
of gene networks can be passed to NG-MC. In our experiments we consider Gene
Ontology (Ashburner et al., 2000) semantic similarity network and protein-protein

interaction network.
3.3.1  Problem definition

In the E-MAP study we have a set of n genes, {g], &, ..., &, }. Genetic interaction of
two genes is scored according to the fitness of the corresponding double mutant and
reported with an S-score, which reflects both the magnitude and the sign of observed
interaction measurement (Collins et al., 2006). Scored GIs are reported in partially
observed matrix G € R™". In this matrix, the element G, ; contains measurement

of GI between g; and g;. We assume that G is symmetric, G;; = G};, and has its

ij
values scaled to [0, 1]-interval. Genetic interactions are mapped to [0, 1]-interval by

normalizing G before data imputation is performed.

Network-guided matrix completion can simultaneously consider multiple gene net-
works. Given a weighted adjacency matrix P € R™" of a gene network from a col-
lection of networks &, N, gP denotes a set of direct neighbors of g in P, where for
heN ; the value Py, (P,;, # 0) represents the strength of association of gene g with
gene h. Prior to the inference of factorized model we normalize each row of P by the
sum of the weights of incident edges such that Z;’zl P;; = 1foralli. Anon-zero entry

P,, denotes the dependence of g-th latent feature vector on A-th latent feature vector.
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Using this idea, latent features of genes that are indirectly connected in the network P
become dependent after a certain number of algorithm iterations, the number of steps
being determined by the distance between genes in the network. Hence, information

about gene latent representation propagates through network P.

The model inference task is defined as follows: given a pair of genes, g; and g;, for
which G;; (and G ;) is unknown, predict quantitative GI between g; and g; using G
and 2. Let F € R*" and H € R¥" be gene latent feature matrices with column
vectors F; and H; representing k-dimensional gene-specific latent feature vectors of g;
and g;, respectively. Let W € R™I?! be the networks weighting matrix where W,
represents the influence of g;’s neighborhood in P € 9 on the latent feature vector of
g;. Network-guided matrix completion infers gene latent feature matrices and network
weighting matrix and utilizes them for missing value imputation in E-MAP-like data

sets.
3.3.2  Preliminaries

We begin with a probabilistic view of matrix completion for missing value imputation
that does not consider prior biological knowledge. This approach builds upon prob-
abilistic matrix factorization of Mnih and Salakhutdinov (2007) and Salakhutdinov
and Mnih (2008) and we refer to it as MC. Genome-scale genetic interaction map-
ping (Costanzo et al., 2010) has suggested the existence of coherent groups of genes
participating in related biological processes. Hence, a desirable computational model
of interactions should model interactions not only in terms of pairwise measurements,
but also in terms of how these measurements relate to each other. Matrix completion
models this intuition by assuming E-MAP score matrix G has low rank and factorizes
observed values in G into a product of two low-dimensional latent feature matrices, F
and H. In order to learn gene latent feature matrices MC formulates the conditional

probability of observed interactions as:
n n G
pGIF, H,c}) = [[[]¥(G,leF H)).02)", (1)

i=1 j=1

where J (x|u, %) is Gaussian distribution with mean y and variance 62 and I g is

ST
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an indicator function that is equal to 1 if the interaction measurement of g; and g; is
available and is equal to 0 otherwise. As such, the conditional probability of interaction
data regards only observed entries in matrix G. It should be noted that predictions of
matrix completion are not biased by a priori setting the missing entries in G' to some
fixed value selected in an ad hoc manner, which is otherwise common in matrix fac-
torization algorithms (Lee and Seung, 2000; Lee et al., 20125 Wang et al., 2013). An-
other appealing property of matrix completion is sharing of gene latent feature vectors
between all estimates of interaction measurements that involve a certain gene. In par-
ticular, latent feature vector F; is used in estimations of interaction measurements G J
for all j. Similar factor sharing is used in estimations of H. The function g is a logistic
function, g(x) = 1/(1 + e~%>), which bounds the range of g(FiTH ;) within interval
(0, 1). Our assumption of Gaussian distribution in Eq. (3.1) is justified by the scoring
scheme of genetic interactions in E-MAP technology that uses a modified t-value score,
called S-score (Collins et al., 2006). We further assume a zero-mean Gaussian prior for
gene latent feature vectors in F given by p(F |0'%,) =[], #(F0, 0'%1 ) and simi-
larly, endow H with Gaussian prior distribution, p(H|0'%I) = 7:1 N(H;|0, 0'%11),

parameterized by 0'12, and O'i], respectively.

Through Bayesian inference we obtain the log-posterior probability of latent feature
matrices given the interaction measurements, p(F, H|G, aé, 612,, a%{). We then select
the factorized model consisting of F and H by finding maximum a posteriori estimate
with gradient descent technique while keeping the observation noise variance O'é and

prior variance 6% and 67, fixed.

3.3.3  Network-guided matrix completion

Network-guided matrix completion (NG-MC) extends matrix completion model (MC)
from the previous section by borrowing latent feature information from neighboring

genes in networks Z.

An illustration of NG-MC algorithm with prior knowledge in the form of a gene
network is shown in Fig. 3.1. The figure shows a hypothetical E-MAP data set with
five genes given, {g,...,&s}. Prior knowledge is presented through a gene network
P. Gene interaction profiles are listed next to corresponding nodes in gene network

P (left in Fig. 3.1) and are shown in the sparse and symmetric matrix G (right in
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Fig. 3.1).Different shades of grey quantify interaction strength while white elements
in G denote missing values. Matrices F and H are gene latent feature matrices. Gene
latent feature vector F, depends in each iteration of the NG-MC on the latent feature
vectors of g;’s direct neighbors in P. For instance, the latent vector of gene g; in F
depends in the first iteration of the NG-MC algorithm on latent vectors of its neighbors
84 and g5 (F, and F,, are shown on input edges of g|) whose degrees of influence
are determined by P4 and P5, respectively. In the second iteration, the update of
Fgl depends also on the latent vector of g;’s 2-hop neighbor, g,, hence the influence
of gene latent feature vectors propagates through P. Gene latent feature matrix H is

not influenced by gene neighborhoods in P.

The biological motivation for the propagation of interactions stems from the tran-
sitive relationship between a gene pair and a third gene (see Sec. 3.2) and indicates
that the behavior of a gene is affected by its direct and indirect neighbors in the
underlying gene networks 9. In other words, the latent feature vector of gene g,
F,, is in each iteration of NG-MC algorithm dependent on the latent feature vec-
tors of its direct neighbors A € N, in networks . The influence is formulated as
F\g = peo We, ZheNg P, Fy, where F\g is the estimated latent feature vector of g
given feature vectors of its direct neighbors and W, is the weight of g in network P
as inferred by NG-MC. Thus, latent feature vectors in F of genes that are indirectly
connected in networks & are dependent and hence information about their latent rep-
resentation propagates according to the connectivity of gene networks as the NG-MC

algorithm progresses.

Suppose that for a given i and j, the observation in G;; comes from distribution:
2
N (G ;|g(F H)),07). (3.2)
Considering that interaction measurements are generated independently, we model
partially observed matrix G as:
n n G
I
nGIF. H.o3) = [[[] #(GylsF H).o3)". (3.3)

i=1 j=1

We achieve the coupling of interaction measurements by sharing latent gene profiles

among all measurements of a certain gene. Note that incorporating prior knowledge
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Figure 3.1

A toy application of
network-guided matrix
completion (NG-MC)
algorithm. Given is a
hypothetical E-MAP

data set with five genes,
{g1,...,85}. Prior knowl-
edge is presented through
a gene network P. Gene
interaction profiles are
listed next to correspond-
ing nodes in gene network
P (lefr) and are shown

in the sparse and sym-
metric matrix G (right).
See Sec. 3.3.3 for further
explanation.
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in the form of gene networks & does not change our probabilistic model of observed
interaction measurements from Eq. (3.1). Instead, it only affects the formulation of
gene latent feature vectors in F. We describe them with two factors: a zero-mean
Gaussian prior to avoid overfitting and a conditional distribution of gene latent feature

vectors given the latent feature vectors of their direct neighbors:

p(FIP,W,0},0%) « [ (F10,05D) %

i=1

17l
i=1

2 W, X BF.oLD. (.4

Pe»r jENiP

Such formulation of gene latent matrix keeps gene feature vectors in F both small and
close to the latent feature vectors of their direct neighbors. Because NG-MC borrows
its strength across all available observations and gene neighborhoods in estimating each
G;, it can lead to more accurate inference than simply learning G;; independently of
any additional domain knowledge. In a Bayesian estimation setting of our NG-MC
model, one is interested in the behavior of the posterior distribution of gene latent
feature matrices F and H given the observed genetic interaction scores G and gene
networks P. It follows that the posterior p(F, H|G, P, W, O'é, 0';, 0'12,, 0'%1) is pro-

portional to the following expression:
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n n

N (Gyjlg(F H)).o0)" xH/V(FI X W 2 P,;F,.0%I)x
i=1 j=1 PeP jEN‘

X H/V(Em, o2I)x I_II/V(HJ-|0, o3 D). (3.5)
i= j=

We then compute the log-posterior probability In p(F, H|G, P, W, Gé, 62/), 0'%-, O'%I)

to obtain the expression:

1 v %6 T 2 S
-5 IS8(G,; — g(F H))* - Z F, ey HIH,-
G i=l j=1 i=1 H j=1
1 “ T

"7 ZE LW, 2 BRI - ) W, Z P F)-

Op i=1 Pe> /EN[P eP N

1 n n
—znk(ln6F+ln6H+ln0'9,)—— Z Ninog +6. (5.6)

Our goal is to learn F, H and W' that maximize the conditional posterior probability
over gene latent feature vectors. To do so, we formulate a minimization problem that
is equivalent to maximization of the log-posterior probability in Eq. (3.6) and employ
gradient descent technique on F, H and W to solve it. In particular, we minimize

the objective function:
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where Ap = ogloy, Ay = ogloy and Agp = o log,. We normalize interaction
measurements in G before performing numerical optimization such that the elements
of G are in [0,1] interval. Normalization is due to estimates in G = g(F' H) being
2
¢ and
prior variances O'%, 0'%{ and oéa fixed and use gradient descent algorithm to find the

bounded by the logistic function g. We keep the observation noise variance o,

local minimum of Z(G, P, W, F, H) and estimate gene latent feature matrices. The
parameters Ay and Ag serve as to regularize latent gene profiles and the presence of A4
trades off the sole reliance on observed measurements against the inclusion of domain

knowledge.

NG-MC algorithm (Algorithm 1) iteratively updates gene latent feature vectors F; and
H; for each i and j based on the latent feature vectors from the previous iteration and
gene neighbors in networks 2. In each iteration, NG-MC also refines weights of genes
in considered gene networks given in W in order to account for the contribution of
genes to current latent feature vectors of their neighbors. Successive updates of F; and
H; converge to a maximum 4 posteriori estimate of the posterior probability formulated
in Eq. (3.5). In practice, the algorithm stops iterating once the reconstruction error
over observed interaction measurements does not decrease after the update of F, H
and W. We observed that parameter values Ay = Ap = 0.01 and learning rates
a = 0.1 and ag = 0.001 gave accurate results across a number of different data sets.
Parameter Ag, which controls the influence of gene networks & on gene latent feature

vectors in F, depended on data set complexity (Brock et al., 2008).
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Algorithm 1

NG-MC, the proposed approach for matrix completion prior knowledge presented in the form of networks. Source code is
available at http://github.com/marinkaz/ngmc.

Input:
= Sparse matrix G € Rn containing interaction measurements,
= gene networks & = { P € R™"},
= parameters Ap = Ay, Ag,
= rank k,

= learning rates a and ag.

Output:
» Data matrix G,
= latent matrices F and H
= gene networks weights W'.
1. Normalize each row of P € & such that Z;’zl P; =1
2. Sample F ~ %[0,11°" and H ~ %[0, 11" and sec W = [ 2171,

3. Repeat until convergence:

a. Fori,j=1,2,...,n
0L c
&z 2 ITH;g'(FT H))(e(F H)) - G;)) + ApF; +

oF,
+)”9’(Fi_ 2 ip Z ij j

PeP /GNP
—Ag 2 Z WipPji( Z Wi, Z R; F)).
pex {j|lENjP Rex IENjR

n
= Z IS Fg'(FTH))(g(F' H)) - G;)) + Ay H;.
i=1

o
oH,

b. Fori=1,2,...,nand p=1,2,...,|9%|:

0L - _ —AgFl Y PjF+aW, Y PFT Y PyF+
aI'Vip P P P
JEN; /GN kEN;
Z P,Fl Y W, Y P,F,.
/GNP Pe?  jeNnF
p#p

c. SetF<—F—a forl—12

d. Set H; <—Hj—a forj—12

e. Set W, « W’ip—ag,m fori=1,2,...,nand p=1,2,...|%|.
4. Compute G = g(FT H). Predict interaction of g; and g; as (éij + éjl-)/2.
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3.4 A case study: imputation of genetic interactions

Next, we evaluate the performance of network-guided matrix completion against sev-
eral alternative approaches for prediction of genetic interactions in yeast S. cerevisiae.
We also study how the amount and distribution of missing values affect predictive
performance and whether performance can be improved through inclusion of side in-

formation.

3.4.1  Experimental setup

In the experiments we consider an existing incomplete E-MAP matrix from each of
the E-MAP studies and artificially introduce an additional 1% of missing values for a
set of randomly selected gene pairs representing unmeasured interactions (Ryan et al.,
20103 Pan et al,, 2011). These gene pairs and their data constitute a test set on which
we evaluate performance of imputation algorithms. Because of E-MAP symmetry, for
a given test gene pair and its corresponding entry Gy;, we also hide the value of G ;.

We repeat this process 30 times and report on the averaged imputation performance.

It may be noted that established performance evaluation procedure of missing value
imputation methods for gene expression data is not directly applicable to E-MAPs
for several reasons discussed in Ryan et al. (2010). That procedure first constructs
a complete data matrix by removing genes with missing values and then artificially
introduces missing values for evaluation. Gene expression data contain substantially
lower fraction of missing data than E-MAPs (Table 3.1) and removing a small number
of genes and experimental conditions does not significantly reduce the size of gene

expression data sets, whereas this does not hold for E-MAP data sets.

We select the latent dimensionality k and regularization parameters Ay and Ag of the
NG-MC with the following procedure. For each data set and before the performance
evaluation, we leave out 1% of randomly selected known values and attempt to impute
them with varying values of parameters in grid search fashion. Parameter values that
result in the best estimation of the left-out values are then used in all experiments in-
volving the data set. Notice that the left-out values are determined before performance
evaluation and are therefore not included in the test data set. We set the parameters

of competitive methods to values recommended by Ryan et al. (2010) (for wNN, LLS
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and BPCA) or optimize parameter selection through grid search (for SVT, MC and
NG-MCQ).

We consider two measures of imputation accuracy. These are the Pearson correlation
(CC) between the imputed and the true values, and the normalized root mean square
error (NRMSE) (Oba et al., 2003) given as NRMSE = v/ E((§ — ¥)2)/V ar(y), where
y and ¥ denote vectors of true and imputed values, respectively. More accurate impu-

tations give a higher correlation score and a lower NRMSE.

To test if the differences in performance of imputation methods are significant, we
use the Wilcoxon signed-rank test, a non-parametric equivalent of a paired t-test. Its
advantage is that it does not require Gaussian distribution or homogeneity of variance,
but it has less statistical power, so there is a risk that some differences are not recognized

as significant.

3.4.2 Data

We consider four E-MAP data sets in a comparative evaluation of NG-MC with five
state-of-the-art methods for missing value imputation. The evaluated data sets are from
budding yeast S. cerevisiae; they include S-scores of interaction measurements, but

differ in the subset of studied genes and the proportion of missing values (Table 3.1):

= Chromosome Biology (Collins et al., 2007) is the largest data set considered, en-
compassing interactions between 743 genes involved in various aspects of chro-
mosome biology, such as chromatid segregation, DNA replication and tran-

scriptional regulation.

= RNA processing (denoted by RNA) (Wilmes et al., 2008) focused on the rela-
tionships between and within RNA processing pathways involving §52 mutants,

166 of which were hypomorphic alleles of essential genes.

= The Early Secretory Pathway (denoted by ESP) (Schuldiner et al., 2005) gener-
ated genetic interaction maps of genes acting in the yeast early secretory pathway

to identify pathway organization and components of physical complexes.

= Lipid E-MAP (Surma et al., 2013) focused on lipid metabolism, sorting, traf-

ficking and various aspects of lipid biology, and its data were indicative of a
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dedicated bilayer stress response for membrane homeostasis.

Table 3.1

Overview of the E-MAPs considered.
Data set Genes Missing Measured

Interactions Interactions

Chromosome Biology 743 34.0% 187,000
Lipid 741 9.2% 250,000
RNA 552 29.6% 107,000
Early Secretory Pathway 424 7.5% 83,000

We have considered two data sources for gene network construction. The first network
is constructed based on Gene Ontology (Ashburner etal., 2000) (GO) annotation data.
It is a weighted network of genes included in the E-MAP study whose edge weights
correspond to the number of shared GO terms between connected genes, excluding
annotations inferred from GI studies (i.e. those with the 161 evidence code). The
second network represents physical interaction data from BioGRID 3.2 (Stark et al.,
2006). The physical interaction network is a binary network in which two genes are
connected if their gene products physically interact. Depending on the considered
network, we denote their corresponding NG-MC models by NG-MC-GO and NG-
MC-PPI, respectively.

3.4.3 Imputation performance

Table 3.2 shows the CC and NRMSE scores of imputation algorithms along with the
baseline method of filling-in with zeros. NG-MC-PPI and NG-MC-GO achieved
highest accuracies on all considered data sets. We compared their scores with the per-
formance of the second-best method (i.e. LLS on Chromosome Biology data set, SVT
on ESP data set and MC on RNA data set) and found that improvements were signif-

icant in all data sets.

We did not observe any apparent connection between the proportion of missing values

in a data set and the performance of any of the imputation methods. The performance
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was better on smaller ESP and RNA data sets, although differences were small and

further investigation appears to be worthwhile.

The baseline method of filling-in with zeros had the worst performance on all data sets.
While this approach seems naive, it is justified by the expectation that most genes do
not interact. We observed that BPCA failed to match the performance of weighted
neighbor-based and local least squares methods, wNN and LLS, respectively, on all
three evaluated E-MAP data sets. Local imputation methods, wNN and LLS, demon-
strated good performance across all three data sets. Solid performance of neighbor-
based methods on larger data sets could be explained by a larger number of neighbors
to choose from when imputing missing values, which resulted in more reliable missing

value estimates.

Global methods, BPCA, SVT and MC, performed well on the ESP data set but poorly
on a much larger Chromosome Biology data set. These methods assume the existence
of a global covariance structure between all genes in the E-MAP score matrix. When
this assumption is not appropriate, e. when genes predominantly exhibit local similar-
ity substructure, the imputation becomes less accurate. The comparable performance
of SVT and MC across data sets was expected. Both methods solve related optimiza-
tion problems and operate under the assumption that the E-MAP score matrix has low

rank.

The superior performance of NG-MC models over other imputation methods can be
explained by their ability to introduce circumstantial evidence into model inference.
As a hybrid imputation approach, NG-MC can benefit from both global information
present in the E-MAP data and local similarity structure between genes. One could
vary the level of influence of global and local patterns on the imputation through Ag
parameter of the NG-MC model, where a higher value of 44 indicates more emphasis
on locality. In this way, our approach can adequately address data of varying under-
lying complexity (Brock et al., 2008), where data complexity indicates the difficulty
of mapping the E-MAP score matrix to a low-dimensional space. To quantify the
complexity of gene expression matrices, Brock et al. (2008) devised an entropy-based
imputation algorithm selection scheme that was based on observation that global im-
putation methods performed better on gene expression data with lower data complexity

and local methods performed better on data with higher complexity. Their selection
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Table 3.2

Accuracy as measured by the Pearson correlation coefficient (CC) and normalized root mean squared error (NRMSE) across
three E-MAP data sets and eight imputation methods. MC denotes matrix completion model (Sec. 3.3.2). The NG-MC-

GO and NG-MC-PPI are network-guided matrix completion models (Sec. 3.3.3) that utilize Gene Ontology annotation and
physical interaction data, respectively. For descriptions of other methods see Sec. 3.2. Highlighted results are significantly better
than the best non-NG-MC method according to the Wilcoxon signed-rank test at 0.05 significance level.

Approach Chromosome Biology ESP RNA
CC NRMSE CC NRMSE CC NRMSE

Filling with zeros 0.000 1.021 0.000 I.0II  0.000 I.000
BPCA (k = 300) 0.539 0.834 0.619 0.796  0.589 0.804
wNN (k = 50) 0.657 0.744 0.625 0.776  0.626 0.787
LLS (k = 20) 0.678 0.736 0.626 0.764  0.626 0.776
SVT (k = 40) 0.631 0.753 0.672 0.719  0.649 0.765
MC (k = 40) 0.641 0.742 0.653 0.722  0.651 0.760
NG-MC-GO (k = 60) 0.691 0.693 0.732  0.648 0.727  0.641
NG-MC-PPI (k = 60) 0.722 0.668 0.742 0.667  0.701 0.652

scheme could be adapted to work with E-MAP-like data sets and be used to set A in

an informed way.

We studied the sensitivity of NG-MC to variations in algorithm parameters. In partic-
ular, we investigated how NG-MC imputation performance was affected as a function
of parameters values. The parameters of NG-MC algorithm are the latent dimension-
ality of the factorized model (k), the degree of regularization of latent matrices (4)
and the impact of network neighborhood (14). In additional experiments performed
on ESP data set (Fig. 3.2) and with NG-MC-GO model we found that performance

of our NG-MC approach is robust for a broad range of parameters values.

3.4.4 Missing value abundance and distribution

Ulitsky et al. (2009) described three different scenarios of missing values in E-MAP
experiments (Fig. 3.3). The simplest and the most studied scenario is the Random
model for which we assume that missing measurements are generated independently

and uniformly by a random process. The Submatrix model corresponds to the case
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where all interactions within a subset of genes (e.g. essential genes) are missing. The
Cross model arises when interactions between two disjoint subsets of genes are missing.
This model concurs with the situation when two E-MAP data sets that share a subset of
genes are combined into a single large data set. We identified the fourth missing value
configuration, which we call the Prediction scenario (Fig. 3.3). It occurs when complete
GI profiles are missing. Learning in such setting is substantially harder than learning
with other missing value arrangements as genes with missing values in the Prediction
scenario do not have any associated interaction measurements. In the previous section,
we compared the imputation methods using the Random configuration and we study
other configurations in this section. We were here interested in the effect that various
missing data configurations have on NG-MC and we compared the NG-MC algorithm

to its variant, which does not use domain knowledge (MC).

Fig. 3.4 reports on the predictive performance of our matrix completion approach
obtained by varying the fraction of missing values in the four missing data scenarios
presented in Fig. 3.3. Forx = 5, 10,20, ..., 90 we hid x% of E-MAP measurements in
the ESP data and inferred prediction model. Our results are reasonably accurate (CC
> 0.4) when up to 60% of the E-MAP values were hidden in the Random and Subma-
trix models. It should be noted that when we hide 60% of the ESP E-MAP measure-
ments, the E-MAP scores are present in less than 40% of the matrix because the original

ESP data set already contains ~8% missing values (Table 3.1). When more than 80%
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Figure 3.2

Sensitivity of network-
guided matrix completion
to selection of latent di-
mensionality (left) and reg-
ularization (right). When
studying the latent dimen-
sionality we set the regu-
larization to A = 0.01
and 4 = 0.01, and when
investigating the influence
of regularization we set the
latent dimensionality to

k = 60 and the remaining
regularization parameter

t0 0.01. Results are for the
carly secretory pathway and
the network derived from
Gene Ontology. Similar
behavior was observed with
other E-MAP data sets.
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Figure 3.3

‘The four patterns of
missing values. Random
configuration has hid-

den genetic interactions
selected uniformly at ran-
dom. Submatrix and Cross
configurations have hidden
all interactions within a
random set of genes or be-
tween two random disjoint
sets of genes, respectively.
In the Prediction scenario,
complete genetic interac-
tion profiles of genes are
removed.
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Cross Prediction

Submatrix

of the data were removed, the three considered prediction models still achieved higher
accuracy (CC & 0.2) than filling-in with zeros. As expected, predictions were more
accurate for the Random model than for the Submatrix model for almost all fractions
of hidden data (cf. Fig. 3.4). However, the difference in performance between the
Random and the Submatrix models tended to be small when less than 30% or more
than 70% of the measurements were hidden. From this experiment we conclude that
inclusion of additional genomic data is more useful in structured missing value scenar-
ios, i.e. the Submatrix and the Cross model (Fig. 3.4), demonstrating that individual

gene networks provide complementary information.

Imputation accuracy has improved (Fig. 3.4) when E-MAP data were combined with
gene annotation (NG-MC-GO) or protein-protein interaction (NG-MC-PPI) net-
works. These results support findings from experimental studies (Tong et al., 2004;
Collins et al., 2007; Costanzo et al., 2010) that showed that if two proteins act to-
gether to carry out a common function, deletions of their corresponding encoding
genes may have similar GI profiles. Furthermore, Gene Ontology annotations and
synthetic lethality are correlated with ~12% and ~27% of genes that genetically in-
teract having either identical or highly similar Gene Ontology annotations, respec-
tively (Tong et al., 2004; Michaut and Bader, 2012). Our NG-MC-GO and NG-
MC-PPI models could exploit these strong links between functionally similar genes,
physically interacting proteins and Gls. Performance of integrated models in Fig. 3.4
suggests the importance of combining interaction and functional networks for predic-

tion of missing values in E-MAP data sets.
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We observed deterioration of imputation accuracy when complete genetic interaction
profiles were removed and NG-MC could only utilize circumstantial evidence (Fig. 3.4,
second row, right). Decreased prediction performance suggests that measured gene
interactions are the best source of information for predicting missing values in the
E-MAP data. However, when the proportion of missing interactions was increased,
the inclusion of additional genomic data was more helpful. With the exception of
the Prediction model for which the opposite behavior was observed, the performance
difference between MC and NG-MC was small (~10%) as long as <50% of the data

were removed, but rose to above 20% when >60% of the data were removed (Fig. 3.4).

3.4.5  Dara impuration by integration of gene networks

We studied imputation performance of our proposed approach on the recent lipid E-
MAP data set by Surma et al. (2013). Fig. 3.5 shows the Pearson correlation between

the imputed and true interaction measurements when different types of circumstantial
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Figure 3.4

Performance of imputation
methods (Pearson correla-
tion coefficient) proposed
in this chapter for different
missing data rates and
missing value configura-
tions (first row: Random
and Submatrix scenarios,
second row: Cross and Pre-
diction scenarios). Refer to
the main text and Fig. 3.3
for description of the miss-
ing value scenarios. MC
denotes matrix completion
approach (Sec. 3.3.2).
Network-guided matrix
completion (Sec. 3.3.3) is
represented by NG-MC-
GO and NG-MC-PPL.
Performance was assessed
for the early secretory
pathway E-MAP data set
because it contains the least
missing values. The Cross
configuration is not appli-
cable when more than 50%
of the values are missing.
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Figure 3.5

Imputation performance
of network-guided matrix
completion (NG-MC)

for different fractions of
missing values in the lipid
E-MAP data set and for
various sources of biolog-
ical network information.
Shown are results for the
Random (left) and Cross
(right) scenarios. Prior
knowledge is included in
the form of protein-protein
interaction network (PPI),
a network derived from
Gene Ontology annotation
data (GO) and collective
consideration of both PPI
and GO.
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evidence were considered and various amounts and distributions of genetic interactions
were excluded from the training set. Similarly as in experiments with the ESP data set
(Fig. 3.4), prediction models inferred from the lipid E-MAP data that included prior
knowledge performed better than models, which considered only interaction measure-
ments. Fig. 3.5 also reveals that best performance was attained when our NG-MC ap-
proach collectively considered both protein-protein interaction network and network
derived from gene functional annotation data (NG-MC-GO-PPI). The NG-MC can
simultaneously consult multiple gene networks during model inference and modify
gene weights in each of the networks to achieve better prediction accuracy. As such, it
does not require substantial network preprocessing prior model inference and is able
to adjust for network influence by taking into account entire collection of consid-
ered networks. Fig. 3.5 also conveys that the inclusion of additional knowledge into
prediction models is more pronounced in scenarios with high missing data rates and
non-trivial structure of missing measurements. Good performance of our approach in
such scenarios is an appealing property and hence, NG-MC seems to be an attractive

data imputation approach.

(e
1 NG-MC-GO
- NG-MC-PPI
m N NG-MC-GO-PPI

% % 40% 60%  70%  80%  90% - % 10%
% of hidden values

30% 0%

20%
Y% of hidden values

3.5 Conclusion

We have proposed a new missing value imputation method called network-guided

matrix completion (NG-MC) that targets gene interaction data sets. The approach is
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unique in combining gene interaction and network data through inference of a single
probabilistic model. Experiments with epistatic MAP interaction data sets show that
inclusion of prior knowledge is crucial and helps NG-MC to perform better than a
number of state-of-the-art algorithms we have included in our study. The results are
encouraging and have potentially high practical value for prediction of genetic inter-

actions that are otherwise unavailable to existing interaction measurements.
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Epistasis analysis is an essential tool of classical genetics for inferring the order of func-
tion of genes in a common pathway. Typically, it considers single and double mutant
phenotypes and for a pair of genes observes if a change in the first gene masks the effects
of the mutation in the second gene. Despite the recent emergence of biotechnology
techniques that can provide gene interaction data on a large, possibly genomic scale,
very few methods are available for quantitative epistasis analysis and epistasis-based

network reconstruction.

In this chapter we describe a conceptually new probabilistic approach to gene network
inference from quantitative interaction data. The approach is founded on epistasis
analysis. Its features are joint treatment of the mutant phenotype data with a factorized
model and probabilistic scoring of pairwise gene relationships that are inferred from
the latent gene representation. The resulting gene network is assembled from scored
pairwise relationships. In an experimental study, we show that the proposed approach
can accurately reconstruct several known pathways and that it surpasses the accuracy

of current approaches.
4.1  Background

Epistasis analysis is a tool of classical genetics for inferring the order of genes in path-
ways from mutant-based phenotypes (Botstein and Maurer, 1982; Avery and Wasser-
man, 1992). Epistasis asserts that two genes interact if the mutation in one gene masks
the effects of perturbations in the other gene. Then, assuming a common pathway,
the first, masking gene would be downstream, and the products of the second gene
would regulate the expression of the first one (Avery and Wasserman, 1992; Huang
and Sternberg, 1995; Roth et al., 2009; Cordell, 2002). Epistasis analysis uncovers
the relationship between a pair of genes. Its logic can be further extended to uncover
parallelism, where both genes have an effect on the phenotype but where there is no
epistasis (Zupan et al., 2003; Battle et al., 2010). Uncovered pairwise relationships in a
group of genes can give rise to a reconstruction of more complex multi-gene networks.
An enlightening demonstration of the power of epistasis for assembly of gene networks
is for instance a reconstruction of a four-gene cell death pathway in C. elegans (Met-

zstein et al., 1998).

Fig. 4.1 shows a toy example of epistasis analysis with three genes, u, v and w. The
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phenotype a double or single knockout mutants are denoted with R. For example,
R(uAvA) and R(vA)) correspond to the quantified phenotypes of a double knock-
out mutant #AvA and single knockout mutant vA, respectively. Expected double
mutant phenotypes, which assume no interaction between genes, are denoted with E
(e.g. E(uAvA)). Three types of pairwise gene relationships are typically considered in

epistasis analysis:

Fig. 4.1a: A double mutant uAvA has a phenotype similar to that of a single mutant

vA, which indicates that v is epistatic to u.

Fig. 4.16: From the activity of genes v and w we conjecture that gene v partially de-
pends on gene w, i.e., v also acts through a separate pathway because their dou-
ble mutant vAwA has a phenotype that is equally similar to the single knockout
R(wA) and the expected phenotype E(VAWA).

Fig. 4.1c: The phenotype of double knockout uAwA is close to the expected pheno-
type of uAwA, E(uAwA), which may be explained by u and w acting inde-
pendently in parallel pathways.

Given gene-gene relationships that are concordant with the phenotypic measurements,
the goal of epistasis-based gene network inference is to estimate a joint network, which
is consistent with observations and scored gene-gene relationships. The multi-gene

network in Fig. 4.1d represents such a candidate pathway on genes u, v and w.

Emergent technologies from molecular biology that record phenotypes of single and
double mutants at a large, possibly genomic scale, prompt for the development of
systematic approaches for epistasis analysis and pose the need to devise computational
tools that support gene network inference. Approaches of mutagenesis by homologous
recombination (Tong et al., 2004; Collins et al., 2006) or RNA interference can yield
phenotype observations for thousands or even millions of mutants (Costanzo et al.,
2010). Several past studies considered mutant assays with qualitative phenotypes (Zu-
pan et al., 2003), quantitative fitness scores (Drees et al., 2005; St Onge et al., 2007;
Beerenwinkel et al., 2007; Battle et al., 2010; Phenix et al., 2011, 2013) or even whole-
genome transcriptional profiles (Van Driessche et al., 2005; Hughes, 2005). Majority
of these studies present gene networks as collections of directly observed pairwise inter-

actions (e.g., St Onge et al. (2007); Phenix et al. (2013)) and do not propose a generally
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Figure 4.1

A hypothetical example of
epistasis analysis with three
genes, u, 0 and w. Nodes
in the central graph repre-
sent mutant phenotypes.
The phenotypic difference
between a double knockout
(e.g. R(uAvA)) and a sin-
gle knockout mutant (e.g.
R(vA)) is given by the
length of the correspond-
ing dotted edge. Expected
double mutant pheno-
types, which assume no
interaction between genes,
are denoted with E (e.g.
E(uAvA)). See Sec. 4.1 for
further explanation.
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(a) Epistasis

u — v —
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(b) Partial interdependence

R(uAwA) ~ E(uAwA)

(c) Parallelism

u
—
/
w
N— —
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e
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applicable formalism to model the data. Only few general purpose algorithms for infer-
ence of epistatic networks have been proposed. Zupan et al. (2003) introduced formal
rules and inference algorithm to infer different types of relationships between genes,
but could treat only qualitative phenotypes and could not handle noise. These limita-
tions were elegantly bypassed by a Bayesian approach of Battle et al. (2010) that can
handle larger data sets with few hundred genes. This algorithm is to our knowledge

also the only modern approach to inference of epistasis networks.

Gene epistasis analysis infers interactions that stem directly from mutant phenotypes.
Its causative reasoning is different from other network reconstruction tools that observe

correlations between gene profiles (e.g. Ahn et al. (2011); Mohammadi et al. (2012))
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and infer relationships that are circumstantial (Hughes et al., 2000). Despite the grow-
ing body of quantitative genetic interaction data and our ability to collect such data
computational approaches and tools to support epistasis are at best scarce (Battle et al.,
2010; Jaimovich and Friedman, 2011; Zhang and Zhao, 2013). Devising methods
for inference of gene pathways from mutant-based phenotypes and developing related

software tools remains a major challenge of computational systems biology.

We here present a new epistasis analysis-inspired computational approach to infer gene
networks from a collection of quantitative mutant phenotypes. We refer to our method
as Réd (pronounced as 74, meaning “order” in Slovene). Our work was motivated by
the Bayesian learning method of Battle et al. (2010), henceforth denoted by APN (ac-
tivity pathway network), that starts from a random network and then iteratively refines
it to best match data-inferred relationships. The model refinement in APN is carried
out through a succession of local structural changes of the evolving network. This pro-
cedure may substantially depend on (arbitrary) initialization of network structure, and
hence requires ensembling across many runs of the algorithm to raise accuracy of the

final network.

Our approach is conceptually different from APN. We first simultaneously infer a
probabilistic model for the entire set of pairwise relationships. Relationship proba-
bilities serve as preferences for different types of pairwise relationships (e.g. epistasis,
parallelism and partial interdependence) used in a single-step construction of a gene
network. In contrast to APN'’s local network changes, Réd applies a global procedure
to infer the relationships between genes and does not require ensembling. The proba-
bilistic model of Réd uses matrix completion-derived latent data representation to ac-
count for noise and sparsity. Inference of factorized model also includes construction
of a gene-specific data transformation to account for the differences in single mutant
backgrounds, which may affect the phenotype of double mutants. In an experimental
study, we show that both components are necessary for inferring gene networks of high

accuracy.
4.2 Probabilistic view of epistatic relationships

Réd, the proposed gene network reconstruction algorithm (Algorithm 2), considers

quantitative phenotype measurements over a set of single and double mutants, pro-
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Figure 4.2

An overview of Réd, a
novel approach for au-
tomatic gene network
inference from mutant
data. Inputs to the pref-
erential order-of-action
factorized algorithm of Réd
include a matrix of double
knockout phenotypes (G),
a vector of single knock-
out phenotypes (.S) and a
matrix of expected pheno-
types corresponding to the
assumption of absent inter-
actions between genes (H).
Réd estimates a factorized
model from G, whose gene
latent feature vectors cap-
ture the global structure of
the phenotype landscape,
and learns a parametrized
logistic map W, which is a
gene-dependent nonlinear
mapping from latent to
phenotype space. A scoring
scheme is then applied to
the inferred model to es-
timate the probabilities of
pairwise gene relationships
of different types. Finally,

a multi-gene network is
reconstructed, which aims
to minimize the number
of violating and redundant
edges.
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vides preferential order-of-action scores of possible pairwise relationships, and assem-
bles them in a joint gene network. The essential steps of the algorithm are overviewed
in Fig. 4.2 and are described in detail below.

4.2.1  Problem definition

In quantitative analysis of genetic interactions we typically observe pairwise interac-
tions between n genes and measure mutant phenotypes, such as the fitness of an or-
ganism or expression of a reporter gene (Reporter). Measurements over a set of double
knockout mutants are given in a sparse matrix G € R™" and those of single knockout

mutants in a vector S’ € R". In these matrices, G, , quantifies a phenotype of double

mutant #uAvA and S, denotes a phenotype of single mutant uA. The expected mutant
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phenotypes, which represent phenotypes of double mutants in the absence of genetic

interactions, are given by a matrix H.

We aim to reconstruct a gene network that is consistent with pairwise gene relationships
inferred from G, H and S. Inputs to network reconstruction are preferential scores
for all four modeled gene relationships that include epistasis 4 — v, epistasis u <
v, parallelism v||u, and partial interdependence v/A\u (Table 4.1). Réd represents
the scores as P = (P~, P, Pl PA) and computes them from the latent gene

representation, which is obtained in the inference of a factorized model.

4.2.2  Facrorized model of interactions

To deal with noise and address possibly incomplete input data, Réd estimates probabil-
ities of gene relationships through a factorized model. We utilize a Bayesian inference
approach and formulate the conditional probability of observed double mutant phe-

notype data, given their latent representation, as:

n

n
G
pGIU V. ¥, 0%) = [[[[(/(G.olsUS V¥, ). 020",

u=1 v=1

where A (x|p, %) is a normal distribution with mean p and variance 62, and I, MGU

indicates if the phenotypic measurement of uAvA is available.

We assume that the observed phenotype of uAvA is governed by the latent features
associated with both genes 1 and v. In order to learn the latent features of # and v, we
factorize double mutant phenotype data (G) into a product of two low-dimensional
latent matrix factors U**" and V¥ Their column vectors, U, and V,,, represent k-
dimensional u-specific and v-specific gene latent feature vectors, respectively. Instead
of using linear latent Gaussian model of gene interactions, we pass the dot product
U!'V, through a parameterized logistic function g. Thus, the model of interaction be-
tween genes u and v is represented by the factorized parameter (U V,; ¥, ). Inthe
factorization, gene interactions depend on each other as they overlap and share param-
eters. For instance, given genes u, v, and w, their factorized parameters g(UI V; ¥, .)

and g(UTV,; W, ) share a common gene latent feature vector U,,.
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Parametrized logistic function g is given by:
3

@ @y = 4
1+ w0 exp(—y@x)

gty y

and bounds the range of factorized parameters by modeling saturation of the Reporzer.

Here, parameter u/(3 )

@

represents the limiting value of the output past which g can-

represents the number of times that U V,, must grow to reach
2

not grow and y
the value of U/(S). If ' is positive, g is increasing in x, otherwise g is a decreasing
function. Notice that g(x; 1, 1, 1) corresponds to the well-known sigmoid function.
For every double mutant uAvA we represent its logistic function parameters in a triple
¥,, = (‘I‘,(lll),, ‘I‘,(lzl),, ‘I‘,(fl),) and define ¥ to hold the parameterized logistic function rep-
resentation over all possible double mutants: ¥ = (‘I’(]), ‘I‘(z), \I‘(3)). We reduce the
complexity of this factorized model in Sec. 4.2.3 by replacing dense parameterization of
W (one parameter set for every factorized parameter, |¥| = 3n?) with gene-dependent

parameterization (one parameter set for every gene, |¥| = 3n).

We employ a Gaussian prior centered at 1 for logistic function parametrization ¥ over

given phenotypic measurements:

p(¥lod) = H

3 n n
i=1

(N ED 1, 62 I)) .
1

u=1 v=

For gene latent feature vectors in U and V' we assume zero-mean Gaussian priors to

avoid overfitting:

n

pWle}) = [[ /@, 10,64 D), pVisy) =] #V,10.05 D).

u=1 v=1

Through Bayesian inference we derive the posterior probability of gene latent vectors

and logistic function parametrization given the available double mutants phenotypes:
pU.V.¥|G.0}.0}.07.08) « pGU V., W, 62)pUl|op)
p(V|o},)p(¥oy). (4.1)

We select the factorized model according to the maximum @ posteriori (MAP) esti-

mation by maximizing the log-posterior of Eq. (4.1) over latent feature matrices and
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logistic function parametrization. The measurement noise variance (0'(2;) and prior
. 2 2 2 .. . . .

variances (oy;, 07, and oy,) are kept fixed. Finding maximum 4 posteriori is equivalent

to minimizing the following objective function, which is a sum of squared errors with

quadratic regularization terms:

n

n
Z(G,U,V.¥) = Y I18(G,, - U]V, ¥, ,))

u=1 v=1

p— I

U T Vv T
+—§UU+—§VV
zuzluu 2U=1vv

N =

3 n

n
+%P Z Z Z IuG,u(\pr(Ai)v - 17, (4.2)

i=1 u=1v=1
— 52752 _ 272 _ 2,2
where Ay = oloy;, Ay = ogloy, and Ay = o /oy,

Here, ¥, U and V are unknown, and unfortunately the function & is not convex in
all unknowns. In particular, & is convex in either U or ¥ but not in both factors
together, which is a known result from matrix factorization studies (Lee and Seung,
20003 Koren et al., 2009). In our study, & is further coupled by the parametrization
of W. Thus, it is unrealistic to expect an algorithm to solve the optimization problem
defined by Z in the sense of finding global minimum. We thus estimate latent features
and logistic function parameters by finding a local minimum of the objective function

& through application of gradient descent. Derivatives of & with respect to gene
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latent features and logistic parameters are given by:

07 <

o = 2w Vg UV ) + U, (43)
u v=1

0L

= Y A, 0)U,8 UV, W, + AV, (4.4)
v u=1

3 2
0% hu 0¥ exp(P Ul V,)
1 (2) g7 T Dy2
d\Pu,u (exp(\Pu,uUu I,u) + ‘Pu,u)
h \P(l)\FG) UT v \p(z) T
02 _ hwo)¥, Y, .U, V,exp(¥, U, V,)

+t(u, v, 1), (4.5)

+ t(u,v,2), (4.6)
v (exp(¥ D UTV,) +¥)?
< h(u,v
@ v) + t(u, v, 3), (4.7)

3 1 2
MWy 1+ exp(-FLUL )
where for convenience of notation A(u, v) is substituted for:
h(u,v) =18 (sUIV,:¥,,) - G
u,v) =1 U, V,;¥,,) wo)>

penalty term #(u, v, i) stands for t(u, v,i) = Ay I,fU(TxL — 1), and g'(x; ¥, ) is lo-
gistic function derivative with respect to x. Efficiency in training Réd model comes
from finding point estimates of model unknowns instead of inferring the full posterior

distribution over them.

4.2.3  Gene-dependent weighting

We further reduce complexity of the model described in the previous section by com-
bining evidence from multiple phenotypic measurements through their latent repre-
sentation. We replace entrywise (double-mutant-phenotype-dependent) logistic func-
tion parametrization ¥ with gene-dependent parametrization that is given by ‘I‘(u'),, —
ﬁ > ‘I‘(ul)w for i = 1,2,3. This reduces the number of parameters in W that have
to be learned from 3n? to 3n. Intuitively, measurements that involve gene u are not
independent from each other but are rather governed by the gene pathways in which
u participates. Gene-dependent parametrization of W represents a method of regular-

ization allowing us to remove penalty terms in Eqgs. (4.5)—(4.7).
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Derivatives of W utilize only available phenotypic measurements due to the application
of an indicator function (cf. Egs. (4.5)—(4.7)). We relax this limitation by considering
current estimates of G’ when computing the derivatives of W. These estimates are given
by é\u’v =gUTV,; W, ), where U and V are latent matrix factors from the previous

iteration of gradient descent (step 3¢ in Algorithm 2).
4.2.4  DPreferential order-of-action scoring of gene pairs

Probabilities of gene-gene relationships in P are computed from the inferred pheno-
types given by G = g(UTV ;W) with the rules outlined in Table 4.1. Estimated
probabilities in P approach 1 when inferred phenotypic values in G are close to the
phenotypes, which would be expected if a certain network structure (=, «, ||, /N\)
existed between genes, and they slowly vanish when the inferred values deviate from

the values expected by a certain type of relationship.

For instance, an epistatic genetic interaction u < v is inferred when the trait é,w of
the double mutant uAvA is very similar to the single mutant uA phenotype .S, and the
two single mutant phenotypes are different (S, # ). This brings |§u’u —S,| close
to 0 and, consequently, P, close to 1. With different single mutant phenotypes, the
expected phenotype H, , of the double mutant that assumes no genetic interaction is
different from both single mutant phenotypes (S, # S, = S, # H, ,AS, # H,,),
bringing Pul!lv and Pu% close to 0. Likewise, the phenotype of vA would be different

from the phenotype of the double mutant, bringing P, 7, close to 0.

Cases with less pronounced differences between phenotypes would lead to smaller dif-
ferences in relationship probabilities. Preferential order-of-action scores generalize the
epistasis analysis framework by Avery and Wasserman (1992), wherein the signal and
the genes under study were strictly on or off with no intermediate levels of activity. An

appealing feature of scores in P is that they have a direct probabilistic interpretation.
4.2.5  Multi-gene network inference
Given probabilistic scores of gene-gene network structures in P from Sec. 4.2.4, we

reconstruct a detailed multi-gene network that is consistent with the inferred relation-

ship probabilities and contains a minimum number of violating and redundant edges.
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Algorithm 2

Réd, the proposed approach for gene network inference by scoring relationships from a factorized model of interactions. Source
code is available at http://github.com/biolab/red.

Input:
= sparse matrix of double mutant phenotypes G € R™",
= typical interaction values H € R™",
= measured phenotypes of single mutants § € R”,
= parameters Ay, Ay, rates @ and f, and rank k.
Output:
= preferential order-of-action score matrices P,
= completed matrix G,
= gene-dependent logistic function parametrization ¥,

= inferred gene network for a gene subset of interest.
1. Initialize U ~ 4/ (0, D**" and V ~ 4 (0, )"
fori=1,2,3.

3. Repeat until convergence’

2. Initialize ¥ as 1.,

a. Compute 57 9z and with Eq. (4.3) and Eq. (4.4), respectively.

b. Updath(—U—a@ andV(—V—aW

c. Compute 2Z for i = 1,2, 3 using Eqs. (4.5)—(4.7),

6‘P<')
respectively. Substitute A(u, v) therein with h(u, v) = g(UI'V,; L SED. G
where X, , = G, , ifI,fU =land X, , = G G

computed using the latent matrix factors from the previous iteration.

d. Update ¥ « WO _p a{) fori=1,2,3.

e. Set gene-dependent weights ‘I‘(u)v « ﬁ > ‘I’,(;)w fori =1,2,3 and Yu, v.

4. Compute preferential order-of-action scores P, ,, for

v Otherwise. Here, G, , is

i € {—,<,||,/A} and Vu, v using Eqs. from Table 4.1.
5. Normalize P,iu « P,j,u/ Zj PM{U fori € {—=, «<,||,/\} and Vu, v.
6. Compute G, , = g(UIV,; ¥, ).

7. Given a gene subset of interest, infer a network (Sec. 4.2.5).
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Table 4.1

Probabilistic scoring of gene-gene relationships. Given genes u and v, the table shows all four pairwise relationships and their
corresponding network structures. These relationships have already been considered by Battle et al. (2010) but are here studied
with probabilistic scoring functions. See main text for explanation of preferential order-of-action scores.

Gene-gene relationship

Network structure

Preferential order-of-action score

u and v in a linear pathway, v downstream,
gene v is epistatic to gene u
u and v in a linear pathway, u downstream,

U — v —

L ~— U +— v Pop= ——F——
gene u is epistatic to gene U L1+exp(|Gy,p =Sy )
—~ Il 2
u and v affect the reporter separatel = —
porter separiey " T TR
u and v are partially interdependent, each u ~ A N
has also a path to the reporter that is inde- i P uy = Trond, T i ot SonD
pendent of the other v PG,y 3 (ot max(Sy,Sp))l

Examples of inferred networks are given in Figs. 4.4—4.7. A network is a weighted
directed graph with genes as vertices and directed edges that determine the order of
action. A designated vertex represents the observed quantitative trait. A directed edge
from u to v is violating (Fig. 4.3a) if there is evidence in P for bothu — vandu < v
(eg. P, = P,,). A directed edge from u to v is redundanr (Fig. 4.3b) if there is
evidence in P that some intermediate gene exists between u and v. Thatis, v and v are
not adjacent in a genetic network but rather u indirectly affects v, i.e., P, captures

the extent to which strict weak ordering of # and v holds.

Network inference procedure assigns a level to every gene in a manner that if there is
strong evidence in P that gene u is placed upstream of gene v, that is, if v is epistatic
to u, then level(u) > level(v). In the case of stronger evidence of parallelism or partial
interdependence between 1 and v the level(u) & level(v). Several genes can be assigned
the same level, but a designated vertex corresponding to a phenotype of interest is the

only vertex placed on the lowest level.

Inference of a genetic network involves two phases. In the first phase we perform an
approximate topological sort through construction of a directed weighted graph. Given
genes u and v and the inferred epistasis relationships between them, the direction and
weight of a between-level edge are determined by the maximum of the values P,
(edge u — v) and P, (edge u < v). Given a parallelism or partial interdependence

relationship between u and v, a within-level edge is determined by the maximum of
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Figure 4.3

Tllustration of violating (a)
and redundant (b) edges
(in grey) in a pathway with
four genes. Edge y; — v
is violating because there is
evidence that vy is placed
upstream of y; (v} = w)
and w; — y;) butalso
that y| is upstream of

vy (yy = vy). Edge

uy — wy is redundant
because there is evidence of
an intermediate gene v;.
Similarly, edge u, = y, is
redundant because of two
intervening genes, v, and
wy.
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the values PJ]U (no edge between u and v) and PL,!AU (edge u — v). This graph may
contain directed cycles and finding an exact topological ordering of its vertices with
the minimal set of violating edges is a known NP-hard problem (Eades et al., 1993;
Charbit et al., 2007). Thus, we proceed in the following way. We select a vertex with
no incoming between-level edges, assign that vertex to the currently top-most level
and recurse on the graph with that vertex removed. We also look for vertices with
no outgoing between-level edges and assign them to the currently lowest level. If in
some step multiple vertices have no incoming or outgoing between-level edges, they
are assigned the same level. It can happen that all vertices have incoming and outgoing
between-level edges. In this case, we select the vertex with the highest differential
between weighted incoming between-level degree and weighted outgoing between-

level degree.

In the second phase of gene network inference we retain within-level edges and those
edges that link adjacent levels and are directed downwards. The latter procedure elim-
inates violating edges. As a final step, we remove redundant edges according to their

definition above.
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4.3 Present mutant phenotype data and known gene pathways

We assess the accuracy of Réd by applying our inference approach to the data sets of
Jonikas et al. (2009) and Surma et al. (2013) and compare results to known or partially
known networks. Experiments that use data from Jonikas et al. closely follow the setup

by Battle et al. and use the same data sets and reference pathways.

Mutant phenotype data

Jonikas et al. (2009) measured unfolded protein response (UPR) levels in single and
double mutants to systematically characterize functional interdependence of yeast genes
with roles in endoplasmic reticulum (ER) folding. The data set contains 444 genes
that caused high UPR reporter inductions. The interaction data include phenotypes
of 42,240 distinct double mutants (matrix G) corresponding to 43% of all possible
double mutants. Jonikas et al. also computed typical (i.e. expected) values of genetic
interactions for every double mutant (matrix H). They considered multiplicative neu-
trality function (Mani et al., 2008) and computed it using reporter levels of pairs of
single mutants, modified by a Hill function to account for the saturation of the reporter

signal.

Surma et al. (2013) considered 741 genes and observed the growth phenotype (colony
size) for all pairs of double mutants. In total, after filtering out unreliable measure-
ments, their data set comprises 251,383 double mutant fitness scores. We computed
single mutant scores by averaging across all scores of double mutants that included mu-
tations of the corresponding genes. We considered multiplicative model to calculate

the expected fitness of a double mutant in the absence of a genetic interaction.

Gene pathways

We compare gene networks inferred by Réd to a number of known or partially known

cellular pathways that include genes whose perturbations are measured by Jonikas et al.:

= the N-linked glycosylation pathway consisting of 10 genes whose true ordering

is known (Helenius and Aebi, 2004),
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= the ER-associated degradation (ERAD) pathway for which many functional in-

terdependencies between its member genes are known,

= tail-anchored protein biogenesis machinery consisting of tail-anchored (TA) pro-
teins important for transmembrane trafficking and the recently discovered GET
pathway (Stefanovic and Hegde, 2007; Schuldiner et al., 2008; Bozkurt et al.,

2009).

We also compare Réd’s networks to well-characterized cellular pathways of phospho-

lipid biosynthesis whose gene mutants are measured by Surma et al. and that include:

= the Kennedy pathway involved in the synthesis of phosphatidylethanolamine
and phosphatidylcholine (PC), and

= the phosphatidylserine to PC conversion pathway.
Experimental setup

In the first part of the experiments, we use mutant phenotype data to qualitatively
evaluate the reconstruction of five gene pathways from Sec. 4.3. In the second part
of the experiments, we evaluate the accuracy of gene ordering through three different
setups. In the first two setups, the data-inferred gene ordering was compared to the
known pathways. In the third setup, we use cross-validation to estimate the accuracy

of prediction of gene interaction scores with the following experiments:

1. Battle et al. provided 168 test gene pairs (v, ) from common KEGG pathways
(Kanechisa et al., 2008). For 21 gene pairs v is known to be upstream of u, and
for 147 gene pairs v is not known to be upstream of u. Given a gene pair, Réd

predicted the probability of epistasis as P, /(P,,, + P, ), and the accuracy of

predictions on entire set of 168 gene pairs.

2. Using the setup from Battle et al. we evaluate the accuracy of prediction of
direct edges u — v in the N-linked glycosylation pathway (Fig. 4.4) based on

the model-estimated probability of epistasis P, .

3. We estimate the accuracy when predicting that two genes are in epistasis, that is

u — vor v — u. Notice that in the literature this relationship is also referred to
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as an alleviating interaction, where the phenotype of a double mutant is less severe
than expected from the phenotypes of the corresponding single mutants (Mani
et al., 2008; Jonikas et al., 2009). For the data from Jonikas et al. this means
that the double mutant cell responds to ER stress surprisingly better than how
the ER stress would typically be mitigated. The data for this experiment was
preprocessed according to the procedure described by Battle et al.. A positive
set included gene pairs (, v) with significant alleviating genetic interactions, for
which the observed phenotype (interaction score) was negative with a magnitude
greater than |G, , — max(S),, S,))| (see St Onge et al. (2007)). It was further
required that the double mutant phenotype data contained a sufficient number
of observations that included uA or vA, such that the geometric mean of such
measurements for u and for v was at least 180. There are 2723 gene pairs in the
data of Jonikas et al. that match these criteria. In each test run, we form a test
set with a random selection of 5% of the positive gene pairs and a negative set of
equal size of gene pairs that fail to satisfy the selection criteria. We remove the
test data from the interaction score matrix G, and predict whether a test gene
pair is alleviating using the probability that u and v occur together in a linear
pathway, ie. P, + P.,. We report an averaged accuracy across ten different

test runs.

We characterize the accuracy of predictions through the area under the ROC curve
(AUC), with a baseline of 0.5 (random networks) and a perfect score of 1.0 (inferred

networks that are identical to gold standard — known networks).

We compare Réd, our network inference approach, to a recently published Bayesian
approach by Battle et al.. They developed preference scoring functions over all possible
pairwise gene relationships and applied annealed importance sampling to reconstruct
high scoring multi-gene networks. Their method (referred here as APN) was shown to
be superior to a number of other approaches that can infer networks from gene interac-
tion data by Jonikas et al.. These other approaches include baseline techniques such as
Pearson correlation of genetic interaction profiles and raw interaction values as well as
more sophisticated techniques such as Gaussian process regression (GP; Williams and
Rasmussen (1996)), a method that uses the correlation of observed interaction profiles,
the diffusion kernel method (DK; Qi et al. (2008)) and GenePath (Zupan et al., 2003).

For brevity, we therefore focus on comparing our method with APN, which was run
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with default parameters as chosen by Battle et al. for the data set of Jonikas et al., but

we also report the accuracies achieved by GP and DK.

Two essential components of Réd are latent representation of gene interactions and
their transformation through the logistic function. To test the extent to which the per-
formance of Réd depends on these two components we also run experiments where the
algorithm infers probabilities and makes predictions from raw (not factorized) pheno-
types, and where the latent representation is used without logistic transformation. We

refer to these two approaches as RAW and ME respectively.

In all experiments with data from Jonikas et al., the parameters of Réd are set as:
Ay = Ay = 1X 10_4, p = 0.1, a = 0.1, k = 100. The same parameters are
used on data from Surma et al. with the exception of @ = 1 X 1073 and k = 50, that
were selected to minimize the normalized root mean square error of G. This choice
of regularization parameters and learning rates is common (cf. Min and Lee (2005);
Pedregosa et al. (2011)). We also show (see Sec. 4.4.6) that the performance of Réd
does not critically depend on the rank of factorization k. Réd’s optimization by gradi-
ent descent is terminated when the Frobenius distance between G and G over known

values fails to decrease between the two consecutive iterations of optimization.
4.4 A case study: reconstruction of known gene pathways

4.4.1  Reconstruction of a gene pathway from data by Jonikas et al.

We analyzed the ability of Réd to reconstruct the known N-linked glycosylation path-
way. Fig. 4.4 shows the inferred network next to the known pathway as reported
by Helenius and Aebi (2004). Genes CWH41, DIE2 and ALGS are correctly placed
such that they are dependent on the other genes. Also, ALG1z is placed upstream of
ALGy, which is also upstream of ALG3. OST3 is correctly placed downstream, but
OSTs is incorrectly placed, likely because double mutant data with the other ALG
genes were not available. Surprisingly, Réd correctly placed CWH41, a gene which
encodes glucosidase I, an integral membrane protein of the ER involved in sensing ER
stress (Romero et al., 1997), at the beginning of the pathway despite mild downstream
effects observed in CWHy1 mutants. Notice that the interaction profile of CWHyr is
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only moderately correlated with the those of ALG genes, thus CWHyr was not clus-
tered together with them (Jonikas et al., 2009). We hence conclude that Réd inference

of the N-linked glycans synthesis pathway was successful with a network that closely

resembles that reported in the literature.

DIE2 —— ALGS —% ALGI2
ALGY —— ALG6

CWHil ——> 05T __—
—_— e —"

ALG3 —— OST3 - -+ Reporier

“True ordering
0STs

CWHil —» DIE2 —» ALGE — ALG6 —» ALGS — ALGI2 —» ALGY — ALG3
0ST3

4.4.2  Reconstruction of gene pathways from data by Surma et al.

We applied Réd to mutant data by Surma et al. to reconstruct two thoroughly studied
pathways of phospholipid biosynthesis. Réd’s ordering of genes in the phosphatidylser-
ine to phosphatidylcholine conversion pathway is fully consistent with the reference
pathway (Fig. 4.52). In the Kennedy pathway, Réd correctly placed PCT1 upstream
of CPTt and CKIr upstream of CPT1 with high confidence (Fig. 4.5b), but it mis-
placed gene pair PCT1 and CKI1 likely due to the ambiguity in the data. However,
as Réd performs global reasoning by combining evidence from all measurements, it
handled the data uncertainty by assigning PCT1 — CKI1 structure the lowest score

in the reconstruction of the Kennedy pathway.

4.4.3  Reconstruction of partially known gene pathways

Jonikas et al. (2009) identified several pathways that are important for ER protein fold-
ing. Of these, the pathways for ER-associated degradation and tail-anchored protein
insertion were considered in Battle et al. (2010). Réd-inferred networks for these two
pathways are shown in Figs. 4.6—4.7. The solid edges in these figures are those inferred
by our algorithm, while the dotted edges indicate gene interactions reported in the
literature (Jonikas et al., 2009; Battle et al., 2010; Kim et al., 2005; Carvalho et al.,

2006; Nakatsukasa and Brodsky, 2008; Clerc et al., 2009).
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Figure 4.4

Gene network of the
N-linked glycosylation
pathway inferred by Réd.
For reference, we show
the true ordering of this
pathway (Helenius and
Aebi, 2004) as adapted
from Battle et al. (2010).
The inferred gene network
reflects many correct gene
placements.
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Figure 4.5

Gene networks of the
phosphatidylserine to
phosphatidylcholine (PC)
conversion pathway (a)
and the Kennedy pathway
(b) as inferred by Réd. For
reference, we show the true
orderings in both pathways
adapted from Surma et al.
(2013). Réd correctly

and with high confidence
(P > 0.80) inferred

all three pairwise gene
relationships of the PC
conversion pathway. It also
correctly predicted two out
of three gene relationships
of the Kennedy pathway
with the wrong prediction
(PCT1 — CKI1) being
assigned a low confidence
(P =025).

Figure 4.6

The ER-associated degra-
dation (ERAD) pathway
predicted by Réd is shown
by solid edges. Placement
of genes in the inferred
network is very consistent
with known interdepen-
dencies (dotted edges).
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The ordering of inferred networks is entirely consistent with the partially known gene
pathways. In the network for the ER-associated degradation pathway (Fig. 4.6), the
upstream placement of MNLI to YOSy is consistent with existing data showing that
MNLr generates the sugar species recognized by YOSy (Clerc et al., 2009). Also,
MNLz, YOS9, DERr and USAr are placed upstream of HRD3 and HRD1, which
is compatible with data showing that degradation of certain substrates requires all six
components (Kim etal., 2005; Carvalho etal., 2006; Nakatsukasa and Brodsky, 2008).
For the tail-anchored protein insertion pathway Réd inferred a network (Fig. 4.7) that
placed the poorly characterized protein SG72 upstream of the tail-anchored protein
biogenesis machinery components according to its function in the insertion of tail-

anchored proteins into membranes (Battle et al., 2010).

Similarly, positive results of network inference are also reported in (Battle et al., 2010).
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Their method inferred a number of candidate networks of which the best-scored were
shown to be partially consistent with known gene interdependencies. In contrast, for
each pathway, Réd inferred a single network that is entirely consistent with known

gene relationships.
4.4.4  Quantitative analysis of gene ordering

Table 4.2 reports the accuracies of gene ordering prediction obtained by four different
algorithms, Réd, APN, and two simplified variants of Réd. In comparison to APN,
Réd performs substantially better in predicting the edges of the KEGG pathways and
slightly better in predicting the edges of the N-linked glycosylation pathway (Fig. 4.8).

The poor performance of the simplified variants of Réd (RAW and MF) indicates that
Réd’s latent representation inferred from the factorized model, the nonlinear logistic
map and gene-dependent weighting are the essential components of Réd. Without any

of these, Réd would not be able to achieve the resulting accuracy.
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Figure 4.7

Gene network inferred
by Réd that represents
the likely ordering of
genes belonging to the
tail-anchored protein
biogenesis machinery
(solid edges). Known
relationships between
genes are denoted by
dotted edges. Notice that
the predicted ordering
strongly reflects known
interdependencies between
geneSA
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Figure 4.8

The ROC curves for the
prediction of gene order-
ing in KEGG pathways
(left) and the N-linked
glycosylation pathway
(right) by Réd, our pro-
posed approach, and a
Bayesian learning method
APN (Battle et al., 2010)).
Each curve is annotated
with its corresponding area
under the curve (AUC).
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Table 4.2

The predictive accuracy (AUC) of gene ordering by a Bayesian learning method (APN; Battle et al. (2010)), Réd, our proposed
approach, and its simplified variants: without factorization (RAW) and with factorization but in the absence of transformation
by logistic function (MF).

Prediction AUC

RAW MF APN Réd
KEGG pathway ordering 0.563 0.583 0.648 0.728
N-linked glycosylation pathway 0.591 0.638 0.731 0.749

4.4.5  Prediction of alleviating genetic interactions

Given the training and separate test data sets, we predict whether an interaction is al-
leviating (see Sec 4.3). Table 4.3 shows that Réd performs substantially better than
APN (p-value < 0.001). Réd also outperforms standard two-factor matrix factoriza-
tion (MF) by a large margin, which is an indicator that transformation via a logistic
map is essential to the performance of our algorithm. We compare these results with
those obtained by Gaussian process regression (GP) (Williams and Rasmussen, 1996)
using squared exponential autocorrelation model constructed from the genetic inter-
action profiles, and with the interactions predicted with the diffusion kernel method
(DK) (Qi et al., 2008). Réd achieves significantly higher accuracy than GP (p-value
< 0.01) and DK (p-value < 0.001), although the difference with GP is small and
may be worth of further study. Notice that RAW, a Réd variant without factorization,
is not applicable for this experiment as it does not generalize across gene interaction

scores.
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Table 4.3

Prediction of unknown alleviating genetic interactions. We report the accuracy of predicted interactions based on the dif-
fusion kernel method (DK; Qi et al.), predictions based on latent representation obtained with standard two-factor matrix
factorization (MF), APNs learned through a Bayesian method by Battle et al., predicted genetic interaction values from Gaus-

sian process regression (GP; Williams and Rasmussen) that uses the correlation of observed interaction profiles, and Réd, our
proposed approach.
Prediction AUC

MF DK  APN GP Réd

Alleviating interactions 0.723 0.759 0.783 0.862 0.906

We have observed that the probabilities of alleviating gene pairs predicted by Réd are
well correlated to the strength of alleviating interactions (Spearman r = —0.704, p-
value < 1 x 10719; Fig, S3). Réd scores gene pairs with stronger alleviating effects
(negative interaction values with greater magnitude) higher than those that interact

moderately.
4.4.6  Sensitivity and repeatability analysis

We analyze the sensitivity of Réd to reduced measurement precision by introducing
increasing levels of random noise to the data set of Jonikas et al. (2009) and, for each
noise level, re-running inference by Réd with a fixed initialization of matrix factors.
For every measurement of a single and double mutant in the data set we sample the
noise component from a Gaussian distribution with zero mean and standard deviation
s, and add this value to the original measurement. For each run, using a specific value
for s, we compare all estimates in P to its original, noise-free estimates. Fig. 4.9 shows
the correlation between the original estimates and estimates inferred from the noisy
data set. The results suggest that good probability estimates of network relationships
between genes are possible even in settings with increased noise. Thus, Réd could also
infer accurate networks from data that includes more noise than otherwise present in

the data set by Jonikas et al. (2009).

For twenty runs of Réd learning with different initializations of matrix factors U and
V, we estimate P for the edges potentially connecting each pair of genes. For every
run we compare all probability estimates in P to the corresponding estimates from

every other run. The maximum difference for any two runs and for any pair of genes is
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Figure 4.9

Sensitivity of P to mea-
surement noise. We vary
the level of Gaussian noise
introduced into phenotypic
measurements of single
and double mutants for
the Jonikas et al. data and
compute the correlation
between P as estimated
from the original or noise
induced data.
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less than 1x 1078, demonstrating that Réd estimates are highly repeatable and that the

performance of Réd does not substantially vary with initialization of the latent factors.

Similarly, we run Réd several times for different values of the latent dimension k (k €
{40, 60, 80, 100, 120}). We compare the corresponding probability estimates in P
from every two runs. The mean difference for any two runs and for any edge is less
than 1 x 1073 . Thus, Réd is robust
and performs well on the data by Jonikas et al. (2009) for a broad range of sensible

values for the latent dimension.
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4.5 Conclusion

Réd is a conceptually new approach for inference of gene networks from quantitative
genetic interaction data. It implements a probabilistic epistasis analysis and assem-
bles pairwise relationships into gene networks. In our experiments, Réd was able to
reconstruct several known and partially known pathways with accuracy above that of
the state-of-the-art approaches. Réd outperforms APN, the state-of-the-art method
by Battle et al. (2010), both in accuracy and speed, with CPU runtime of only a few
minutes compared to APN’s 30 minutes for an inference of a single full network in

an ensemble of 500 networks. We also show that Réd’s power of generalization comes
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from its two key components, a factorized model with latent representation of gene

interactions and a gene-dependent logistic map of interaction scores.

Our evaluation in this chapter was computational and thus limited to data sets for
which several gene pathways or at least partial gene orderings were available (Jonikas
etal,, 2009; Battle et al., 2010). Réd can efficiently handle similar data sets as well as
much larger ones, such as that from the recent yeast experiments by Costanzo et al.
(2010). These are also the data sets for which we foresee future applications of Réd and

which will require subsequent verification of inferred networks in the wet lab.
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Markov networks are undirected graphical models that are widely used to infer relations
between genes from experimental data. Their state-of-the-art inference procedures as-
sume the data arise from a Gaussian distribution. High-throughput omics data, such
as that from next generation sequencing, often violates this assumption. Furthermore,
when collected data arise from multiple related but otherwise nonidentical distributions,
their underlying networks are likely to have common features. New principled statis-
tical approaches are needed that can deal with different data distributions and jointly

consider collections of data sets.

In this chapter we describe FuseNET, a Markov network formulation that infers net-
works from a collection of nonidentically distributed data sets. Our approach is com-
putationally efficient and general: given any number of distributions from an exponen-
tial family, FUSENET represents model parameters through shared latent factors that
define neighborhoods of network nodes. In a simulation study we demonstrate good
predictive performance of FUuseNET in comparison to several popular graphical mod-
els. We show its effectiveness in an application to breast cancer RNA-sequencing and
somatic mutation data, a novel application of graphical models. Fusion of data sets
offers substantial gains relative to inference of separate networks for each data set. Our
results demonstrate that network inference methods for non-Gaussian data can help in

accurate modeling of the data generated by emergent high-throughput technologies.
5.1 Background

Undirected graphical models or Markov networks are a popular class of statistical tools
for probabilistic description of complex associations in high-dimensional data (cf. Rue
and Held, 2005). Biological processes in a cell involve complex interactions between
genes and it is important to understand, which genes conditionally depend on each
other. These dependencies can be inferred from the experimental data and represented
in a gene network. As a popular approach to network modeling, Markov networks
are particularly appealing because they focus on finding such conditional dependence
relationships. Intuitively, the existence of a link between genes A and B in a Markov
network indicates that the behavior of gene A is still predictive of gene B given all avail-
able measurements about gene A and its immediate neighbors in a network. Hence,

Markov networks can help us to find a rich set of direct dependencies between genes
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that are stronger than gene correlations (Allen and Liu, 2013).

Markov networks have been well studied in bioinformatics and numerous applications
are concerned with inferring the network structure primarily from microarray and next
generation sequencing gene expression data (Segal et al., 2003; Kotera et al., 20125
Gallopin et al., 2013). They are complementary but not superior to other gene net-
work inference approaches (Marbach et al., 2012). However, the increasing variety of
data generating technologies and heterogeneity of resulting data draw attention to two
challenges in the context of Markov network inference: inference from non-Gaussian

distributed data, and simultaneous inference from many data sets.

In bioinformatics, many data sets are high dimensional, contain a limited number of
samples with a large number of zeros, and come from skewed distributions. Most ex-
isting methods assume that data follow a Gaussian distribution. While this assumption
holds for typical log ratio expression values from microarray data, it is violated for mea-
surements obtained from sequencing technologies. For example, gene expression levels
from RNA-sequencing count how many times a transcript maps to a specific genomic
location (Wang et al., 2009) and as such these data are not Gaussian (Allen and Liu,
2013). The Gaussian assumption is also violated for categorical data sets, such as data
on mutation types and copy number variation data (Hudson et al., 2010). While it
would be possible to design a network inference for each specific data type, we could
benefit from a procedure that can treat a wide class of distributions and can jointly

consider all available data during network inference (Zitnik and Zupan, 201 5a).

We have developed a novel approach, called FuseNET, for inference of undirected
networks from a number of high-dimensional data sets (Fig. 5.1). Our approach builds
upon recent theoretical results about Markov networks (Yang et al., 2012, 2013) and,
unlike the previous works in Markov modeling, can be applied to settings where data
arise from multiple related but otherwise nonidentical distributions. To achieve this level
of modeling flexibility, we represent model parameters with latent factors. FuseNET
implements data fusion through sharing of latent factors that are common to all data
sets and distributions, and handles data diversity through inference of factors specific

to a particular data set.

In simulation studies FUSENET recovers the true networks underlying the observed

data more accurately than several alternative approaches. The improved performance
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Figure 5.1

An overview of FUSENET
in a toy application to net-
work inference. FUSENET’s
input is a collection of data
sets that can follow dif-
ferent exponential family
distributions. The example
from the figure uses two
data sets: (a) gene expres-
sions from next-generation
sequencing follow the
Poisson distribution, and
(b) somatic mutation

data follow the multi-
nomial distribution. (c)
FuseNET infers a network
by collectively modeling
dependencies between any
two genes conditioned on
the rest of the genes. The
absence of an edge between
57 and s3 (dotted line in
grey) implies that 57 acts
independently of s3 given
sy and s4, the neighbors of
s5. The L symbol stands
for conditional indepen-
dence. Genes s and s,
are linked because data
profiles of s, in (a-b) are
still predictive of the profile
values of 51 given s4, the
neighbor of s5. (d) Shown
are FuseNET-inferred co-
efficients that relate s, to
all other genes. Non-zero
values indicate gene de-
pendency. In the resulting
network, gene s, has two
neighbors, 51 and s4.
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demonstrates that FUSENET can find conditional dependencies between genes that
could not be reconstructed with Gaussian-based approaches. In a case study with breast
cancer RNA-sequencing expression values and somatic mutation data, we demonstrate
the benefits of joint network inference from multiple related data sets. The networks
inferred collectively from both types of data show greater functional enrichment than

networks learned from any data type alone.
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5.2 Related work on gene network inference

The most straightforward approach to network inference is a similarity-based approach,
which assumes that functionally related genes are likely to share high similarity with
respect to a given data set. A well known network obtained with this approach is
the S. cerevisiae genetic interaction network by Costanzo et al. (2010). Whenever the
similarity value between two genes is above a threshold they are linked by an edge,
which is referred to as a direct network inference approach (Kotera et al., 2012). In
contrast to direct network inference, model-based network inference via graphical models
focuses on local dependencies between genes, where each gene is directly affected by a
relatively small number of genes. Edges estimated by a graphical model can be related

to causal inference (Pearl and Verma, 1991).

The problem of learning a network structure associated with an undirected graphical
model has seen a wide range of applications ranging from social networks and im-
age and speech processing (Metzler and Croft, 2005; Wang et al., 2013) to genomics.
Applications in bioinformatics include estimation of molecular pathways from pro-
tein interaction and gene expression data (Segal et al., 2003; Stingo and Vannucdi,
2011), reconstruction of gene regulatory networks from microarray data (Marbach
etal., 2012), inference of a cancer signaling network from proteomic data (Mukherjee
and Speed, 2008) and reconstruction of genetic interaction networks from integrated
experimental data (Isci et al., 2014). Methods applied to these problems and many
other recent gene network inference algorithms (Schifer and Strimmer, 2005; Mein-
shausen and Bithlmann, 2006; Friedman et al., 2008; Anjum et al., 2009; Ravikumar
etal., 2010) estimate Gaussian or binary Markov networks, i.¢., they assume that data

follow an approximately Gaussian distribution.

Although non-Gaussian data are becoming increasingly common in biology, until
now, very few network inference algorithms have been proposed for their treatment.
When dealing with non-Gaussian data, some authors simply use methods that are
based on a Gaussian assumption (Cai et al., 2012). We show in experiments that this
decision may result in poor predictive performance. Recently, various extensions of
Gaussian Markov networks have been proposed that first Gaussianize the data, using
for example a copula transform (Liu et al., 2009, 20125 Murray et al., 2013) or a log

transform, and then apply algorithms that rely on an assumption of normality. While
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these approaches perform better than naive application of Gaussian-based methods to
untransformed data, they are ill-suited to data generated by next generation sequenc-
ing technologies (Allen and Liu, 2013). A handful of recent algorithms (Allen and
Liu, 2013; Gallopin et al., 2013) have considered Markov networks for non-Gaussian
data, using for example the Poisson distribution for RNA-sequencing read counts. In
contrast to our FUSENET, these methods can not integrate data sets across different

data types, thereby limiting their ability to fuse information from many data sets.

5.3 Gene network inference by fusing data
[from diverse distributions

FuseNET takes as its input a collection of data sets where each data set consists of a set
of gene profiles (Fig. 5.1). Gene profiles can be heterogeneous and belong to different
data types, e.g., data can be continuous, discrete or categorical. For example, measure-
ments from RNA-sequencing represent the numbers of fragments that were mapped
to a specific genomic location (Wang et al., 2009). The RNA-sequencing expression
values are then non-negative and integer valued and, hence, are not approximately
Gaussian, but rather follow the Poisson or negative binomial distribution. This is in
contrast to copy number variation data and mutation data, i.e., single base substitu-
tions, short indels, or multiple base substitutions, that might be modeled better with
multinomial or categorical distributions. On the other end of spectrum are microarray

gene expression data, which are approximately Gaussian distributed.

The crucial feature of FUSENET is the representation of model parameters via latent factors.
This feature, together with the sharing of latent factors between data sets, allows us to
infer a network by simultaneously considering many data sets that each can arise from

a different exponential family distribution (Sec. 5.3.7).

We exemplify FuseNET by deriving Markov network models for two distributions
from an exponential family, the Poisson distribution (Sec. 5.3.3) and the multinomial
distribution (Sec. 5.3.5). Since the exponential family includes not only Gaussian but
also binomial, multinomial, Poisson, gamma distributions and others, FUseNET can
achieve great flexibility in estimating gene networks from diverse data (Sec. 5.3.6) and

also comes with an efficient algorithm for network structure estimation (Sec. 5.4).
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Our work provides two novel contributions over current approaches to gene network

inference discussed in Related work:

= FUusENET simultaneously infers networks from data sets that may be generated

by nonidentical distributions, and

= FUSeENET estimates large-scale genomic networks from increasingly common

non-Gaussian distributed data.
5.3.1 DPreliminaries
Markov networks

A Markov network specifies conditional dependence relationships between genes. In

particular, if there is no edge between genes s and ¢ then this implies that the behavior

of s is independent of t given the set of immediate neighbors of 5. From this local
property (Murphy, 2012), one can easily see that two genes (nodes) are condition-
ally independent given the rest of the genes iff there is no direct edge between them.
The conditional independence (Markov) properties permit a rich set of dependencies
among the nodes and hence, the connectivity of a Markov network can reveal complex

relationships between its nodes (Jalali et al., 20115 Allen and Liu, 2013).
Exponential family

The probability distributions that we study in this chapter are specific examples of
a broad class of distributions called the exponential family (Duda and Hart, 1973).
Members of the exponential family have many important properties in common. Given
parameters 6, the exponential family of distributions over X is defined to be the set of

distributions of the form:
P(X) = exp(0 B(X) + C(X) — D(9)), (5.1)

where B(X) are sufficient statistics, C(X) is a base measure and D(0) is a log-normalization
constant (Murphy, 2012). The exponential family includes many widely used distri-
butions, such as Bernoulli, binomial, Poisson, gamma, multinomial and Gaussian dis-

tributions.
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Parameterization of Markov networks

Let X = (X;, Xy, ..., X,) be a random vector with X; being a random variable.
Suppose G = (V, E) is an undirected graph with p nodes representing p variables
in X, |[V| = p. Then the corresponding undirected graphical model is any distri-
bution defined on X that satisfies Markov independence assumptions with respect to
graph G (Murphy, 2012). By the Hammersley-Clifford theorem (Murphy, 2012),
any such distribution of X decomposes according to graph G in the following way.
Let € be a set of maximal cliques (fully-connected subgraphs) in graph G and let
{¢.(X,),c € €} be “clique potential” functions. By the Hammersley-Clifford the-
orem, any distribution of X within the graphical model family defined by G can be
represented as an exponential of a weighted sum of potential functions over the maxi-

mal cliques €:

P(X) x exp( ) 0. ¢.(X,)), (5.2)

[4534

where {0,,c € G} are the weights of potential functions.

An important question is how one would select potential functions {¢,,c € €} to
obtain various multivariate extensions of univariate distributions. Recently, Yang et al.
(2012) showed that if a node-conditional univariate distribution, i.e., distribution of
a random variable conditioned on all other variables, belongs to an exponential family,

it necessarily follows that the joint distribution of X has the form:

P(X) xexp( ). 0,B(X)+ D Y 0,BX)B(X,)+ (5.3)

seV seV teN (s)

k
2 O BOOT] B, )+ Y cexy).
j=2

SEV ty,.. 1 €N (s) seV

where the cliques are of size at most k, /' (s) are neighbors of node s, B represent suffi-
cient statistics and C is the base measure of the a given exponential family distribution
(cf. Proposition 1 and Proposition 2 in Yang et al. (2012)). These results tell us that the
joint distribution specified in Eq. (5.3) has the most general form under the assumption
of exponential family node-conditional distributions. Hence, learning a graphical model
te }of

from the data can be reduced to learning weights {6} U {0} U ... U {0,

distribution-specific sufficient statistics.
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5.3.2  Problem definition

Suppose we are given a collection & of n observations, & = {xD, x® . xM
where x) is a p-dimensional vector drawn i.i.d. from a specific distribution of the
form in Eq. (5.3). This distribution has parameters {6, ¢ € €} and is associated with
agraph G = (V, E*) on p nodes. Graph G encodes Markov independence properties
between the respective variables. The goal of learning the structure of G is to infer an
edge set E* that corresponds to distribution, which generated observations in &. We

can express E* as a function of parameters {0, ¢ € €} and write it as:
E*={(s,t)eV XV :3cliquec € : {s,t} Cc Al #0}.

Hence, learning the network structure reduces to the problem of estimating weights
{0.,c € €} that should be as close as possible to the true but otherwise unknown

parameters {6, c € €}.

In this chapter, we focus largely on a special case of pairwise Markov networks, where

the joint distribution has cliques of size at most two:

PX) xexp(Y 0 B(X)+ Y, O5BX)BX)+ Y C(X)  (5.4)
seV (s,HEV XV seV
set of nodes : set of edges :

with entries 07, # 0ift € A (s) and 0}, = 0if t ¢ N (s). Following the work of
Ravikumar et al. (2010), Jalali et al. (2011) and Allen and Liu (2013) we approach the
problem of Markov network structure learning via neighborhood estimation, where
we obtain the global network estimate E by stitching together the estimated neighbor-

hoods of the nodes. The overall network structure is then:

E= U (s, D)}, (5.5)

SEV,IEJI//\(S)

where (s, 1) denotes an edge between s and ¢ and .//V\(s) ={reV\{s}: 93, # 0} is
the estimated neighborhood of node s.

In the remainder of this section we formulate two pairwise Markov networks, which
assume either Poisson or multinomial data distribution. These two exponential family
models are taken as an example through which we specify a general scheme for network

inference from multiple potentially non-identical data distributions.

10§
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5.3.3  DPoisson model specification

Following the work of Yang et al. (2012) and Allen and Liu (2013) we define a Poisson
Markov network model by specifying a distribution where all node-conditional distri-
butions follow a univariate Poisson distribution. Our Poisson Markov network model
is then a series of locally defined models, one for every variable (node). A local model

for s is given by a distribution of X conditioned on all other variables:

P(X,|Xy\,) ~ Poisson(exp{u, + Y ul W Wu,X,}), (5.6)
teV\{s}

where Xy\s = {X;|t € V'\ {s}} denotes the rest of the variables, and u; € R" and
W € R™" are model parameters. An r-dimensional vector u; is a latent factor for node
s that consists of r latent components. For now, we assume that the number of latent
components r is given; we will later discuss how to automatically determine r. Notice
that the latent factor of node s, u, represents the strength of membership of node
s to r latent components and W models the interactions between all combinations
of r latent components. The formulation of the Poisson conditional distribution in
Eq. (5.6) ensures that node pair-wise weights are symmetric, which is an appealing
property when studying undirected graphical models. In particular, the contribution of

X, towards P(X| X\ ) is the same as is the contribution of X towards P(X,| Xy ).

We refer to our model as a model parameterized via latent factorization, since model
parameters U, 4, and W form a factorization of the edge weight 8, which is specified
by a Markov network model in Eq. (5.4). The importance of latent factor parameteri-
zation will be obvious later in Sec. 5.3.7 when we discuss collective network inference

from many data sets.

Recall the univariate Poisson distribution is given by the mass function P(X = x) =
A¥exp(—A)/x!, where A is the shape parameter. Our model extends the univariate
Poisson in a natural and strict sense to the multivariate graphical model setting. The
latter can be obtained from the univariate Poisson by setting the shape parameter to

A =exp(u; + ZtEV\s ul WTWu,X,). We then write the expression in Eq. (5.6) as:

P(X,|Xy\,) = exp{u, X, —log(X,) + Y @ W WuXX,
teV\{s}

—exp(u, + uZWTWu,X,))} (5.7)
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Intuitively, variable X in Eq. (5.7) can be viewed as the response variable in a latent
factor Poisson regression in which the other variables Xy, play the role of the pre-
dictors. Variables with strong relationships with gene s will have non-zero regression

coefficients, and these will be connected to node s in the inferred graph.

5.3.4  Optimization of the Poisson model

‘The node-conditional distributions specified in Eq. (5.7) define a global distribution
that factors according to the cliques of the underlying graph G that we would like
to estimate. We obtain edge set E by stitching node neighborhoods as prescribed
by Eq. (5.5), where we define the neighborhood of node s as .//V\(s) ={teV\
{s}: uz wT Wu, # 0}. This means that edge (s, #) is included in the network if the

estimated product of respective latent factors of variables X and X, is non-zero.

To estimate edge set E we have to determine the node neighborhoods of all nodes in V.
To achieve this goal, we solve a sparsity constrained conditional maximum likelihood

estimation problem:

min 3 £,(U. WD) + a(Reg(U) + Reg(W)). (5.8)
seV
Here, U is a matrix with node latent factors placed in the columns, U = [u, u,, ..., u,].

Eq. (5.8) consists of two parts, which we discuss next. Terms involving Reg repre-
sent the elastic net penalties (Zou and Hastie, 2005). The penalty is defined for U as
Reg(U) = (1 - /1)%”U”§,1 + AUl 1, where A > 0 is a regularization parameter
controlling the amount of sparsity in the node neighborhood. The definition of the
penalty term for W' is analogous. Notice that the L, ; norm is the sum of 2-norms of
the columns, ||U||,; = Zf::l [lug |I%, and the L; ; norm is the sum of 1-norms of the
columns, ||U||,; = 2{;[ |lugll;. Since latent factors are affected by the strength of
regularization, the choice of parameter A is important. Procedure for selection of A is

described in Sec. 5.4.

The crucial part of Eq. (5.8) is, however, the sum of the node-wise Poisson likelihood

functions. Given node s and » realizations of the associated random variable X, the
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Poisson likelihood function # follows directly from Eq. (5.7) and can be written as:

‘U, W;9) = _%IOgHP(Xs _ xgi)|XV\s _ X{ls))
i=1
= Z< VXU W, (5.9
- exp(x“)UT WTwW)),

where xgl) is the i-th realization of X in data 9, X{? denotes the i-th realization
of the rest of the variables X y\s» and U and W are matrix unknowns. Notice that

node-wise terms are ignored here for simplicity.

5.3.5  Multinomial model specification and optimization

We now develop a multinomial Markov network model that relies on latent factor pa-
rameterization of the model parameters and follows the same paradigm as our Poisson
model described in the previous section. The multinomial model presented here is a

natural extension of the multinomial graphical model described by Jalali et al. (2011).

We start with the neighborhood recovery of one fixed node s and then combine the
neighborhood sets across nodes to estimate the network. The multinomial model as-
sumes that each variable X; from a random vector X follows a multinomial distribu-
tion with potentially different parameters. This means that X; can take any value from
a small discrete set {1,2, ..., m} of cardinality m. Probabilities of different values are
not independent so that, given any m — 1 of the probabilities, the probability of the
remaining value is fixed. It is convenient to express the distribution in terms of only

m — 1 values, thereby leaving m — 1 probability parameters that need to be estimated.
The distribution of X conditioned on other variables Xy ={X, 1 1€V \ {s}}is
given by:
_ exp(&sj + ZIEV\{s} Zk esr;jkjk(Xt))

1+ 3, exp(O + iy 5) 2ilsran-Tk (X))

forall j € {1,2,...m — 1}. Here, 6;

S,

P(X,=j|Xn,) (5.10)

represents a node-wise term that models the

probability of variable X taking value j. The other model parameter is 8, ;, which
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models dependency between variable X and variable X, when they take values j and k,
respectively. We can view Eq. (5.10) as a multiclass logistic (softmax) regression, where

X is the response variable and indicator functions associated with other variables:
{F(X),teV\{s}ke{l,2,....,m—1}},
where 7 (X,) = 1 if X, = k else 0, are the predictors.

We now proceed by writing model parameters 6_; and 6.,.;, in the form of a product
y g sj stijk

of latent factors. We gather node-wise terms 6, ; into a matrix Q € RPXm=D \yre

factorize O jk as Oy jp = uSTQSjWTWQ,ku,. Here, u; and u, are r-dimensional

latent factors and W € R™ encodes interactions between latent components in the

same way as is described in Sec. 5.3.3.

To estimate the latent factors and node-wise terms from the data we solve the following

convex optimization program:

Uném Z £,(U,Q,W;2D)+ a(Reg(U) + Reg(Q) + Reg(W)), (5.11)

QW SEV
where definitions of U, W and Reg are the same is in the previous section. Here, the
node-wise multinomial likelihood function £ for node s follows from Eq. (5.10) and

can be written as:

n
1
£(U.QW:D) =~ logHP(X =xV X = x">) =

- Z(Q o + Z Z“ Q, <‘>W WQ,u, 7 (x\")-

teV\{s} k

log(l+Zexp(Q3,+z S ulQWTWQ,u,. 7 (")), (5.12)

teV\{s}tk

where x(l) € {1,2,...,m — 1} is the i-th realization of X in data 9, X{IS) denotes
the i-th realization of the rest of the variables X Vs> and U, Q and W are matrix
unknowns. Given latent factor estimates U and W, and the estimate of node-wise
terms Q, we determine the neighborhood for node s as .//V\(s) ={teV\({s}:
2k Us QSJ WTW Q,.u, # 0}. This means that edge (s, #) is included in the network
if product u; QS /W W Q,u; does not vanish over at least one choice of categories j
and k.

109




I10

5 Collective network inference M Zitnik

5.3.6  Other exponential family distributions

So far, we described in Sec. 5.3.3—5.3.5 the Poisson model and the multinomial model
that are suitable for separately inferring the edge set of a Poisson or a multinomial
Markov network. In this section we would like to allude to the fact that a procedure
with derivations very similar to those in the above sections can be applied to any ex-

ponential family distribution.

From Eq. (5.1) we see that the unnormalized probability of an exponential family
distribution can be expressed as an exponential of a weighted linear combination of
sufficient statistics. These sufficient statistics correspond to clique potential functions
(see Sec. 5.3.1). Under the assumption of joint distribution having cliques of size at

most two, node-conditional distributions take the form:

P(X5|XV\5) x exp(d,B(X,) + 2 0,B(X,)B(X,) + C(Xy))
teN(s)

where {6;,s € V'} and {0
data.

s> 5,1 € V'} are parameters that shall be estimated from the

FuseNET yields a general framework for including data from any exponential family
distribution, such as Gaussian, binomial, Poisson or multinomial distributions, in its
predictive model by simply expressing weights {6,,5 € V'} and {0,,,s,t € V'} of a
given distribution as products of appropriately selected latent factors. Here, factoriza-
tion of the weights is appropriate if it allows fusion of data from diverse distributions,
such that factorization consists of both latent factors that are shared between differ-
ent distributions and factors that are specific to a particular distribution (Zitnik and

Zupan, 2015a), a property that we describe in the following section.
5.3.7  Collective inference of a gene network

We proceed by formulating a collective network inference model, wherein a network

is jointly estimated from multiple nonidentical data distributions.

Let 9, = {xD x@ . x")) be a set of n,. observations of a random vector X,

where each p-dimensional vector x'” is drawn from a distribution P, of the form of
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Eq. (5.4) and let 9, = {yD, ¥y, ..., y™)} be a set of n,, observations where each p-
dimensional vector y® is drawn from distribution P, of the form of Eq. (5.4). Impor-
tantly, distributions P, and P, are not necessarily identical in terms of their parameters
or distribution type. For example, P, might denote the Poisson distribution and P,
might be the multinomial distribution or they could both describe multinomial dis-
tributions that have different parameters. For simplicity of notation we provide here
the formulation for the case with only two data sets, 9, and 9y, but notice that our

analysis generalizes to any number of data sets.

In collective network inference we solve for:

i Z.p (U, Q.. WD
U,rQril,Iby, S;/( s,Px( Qx X x)

x>y

+ fs;Py(U, 0,,W,;9))) + reg. param., (5.13)

where regularization parameters depend on the form of data distributions. In a spe-
cific scenario in which P, and Py are the Poisson and the multinomial distributions,
respectively, we set Q, = I. We specify the regularization according to the Poisson

model in Eq. (5.8) and the multinomial model in Eq. (5.11) as:
A(Reg(U) + Reg(W,) + Reg(Q ) + Reg(W))),

where Reg is the elastic net penalty defined in Sec. 5.3.3. The estimated neighbor-
hood of node s, which corresponds to a random variable X; € X, are then nodes
whose behavior depends on behavior of s according to any of considered data dis-
tributions, N = {t € V\ {s} : 95,;19V # 0V 95,;}) # 0}. In our specific
scenario, parameters ésl;PX and és,;Py would be given by 0.p = u'WTWu, and
ést;Py = Zj,k uZQSjWTWQIkuI'

It is important to notice the coupling of the parameters in FuseNET through which
data fusion is achieved (Zitnik and Zupan, 2015a). As is evident from Eq. (5.13),
the latent factor of node s, uy, participates both in terms associated with P, and terms
related to P,. Hence, a good estimate of u should simultaneously minimize both £, P,
and £, P, but should do so in a way that statistics internal to both data distributions
are considered. To account for the fact that data sets may disagree and differ in how

accurately they capture biological signals, FUSENET has parameters that are specific to
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every distribution. In particular, we allow that interactions between latent components
in 9, are different from those in EZy and hence, the model has one latent matrix
W for each distribution. An additional parameter Q captures the characteristics of a
particular exponential family distribution, e.g., the bias associated with m categories in

the multinomial distribution.
5.4 Learning the models in practice

Now that we defined the FUSENET model, we explain how to solve related optimiza-
tion problems. Notice that exact optimization problem one needs to solve depends on
a particular data setting, i.c., the particular combination of exponential family distri-

butions that generated a collection of data sets.

There has been a strong line of work on developing fast algorithms to solve sparse
regression problems that are similar to Eq. (8) and Eq. (11) including the work by
Krishnapuram et al. (2005), Meier et al. (2008), Jalali et al. (2011) and Allen and
Liu (2013). Existing algorithms for undirected graphical model selection assume that
model parameters are independent of each other. This, however, is not true in FUseNET
due to reasons discussed in Sec. 5.3.7, which ensure data fusion. Consequently, this

also means that we cannot use off-the-shelf optimization solvers.

5.4.1  Node neighborhood selection

We propose to fit our FusENET by computing cyclical coordinate descent along the
path of regularization parameter A. Taking derivatives of Eq. (13) and with optimiza-
tion techniques by Friedman et al. (2007a); Yuan (2008); Friedman et al. (2010) we
can obtain solutions over a range of values for regularization parameter with approx-
imately the same speed as fitting a model at a single value of A. The technique uses

current parameter estimates as warm restarts.

FuseNET employs elastic net penalties (Zou and Hastie, 2005) in their models. Elastic
net is a compromise between the ridge penalty (4 = 0) and the lasso penalty (4 = 1)
and is useful in situations where p > n or when many variables are correlated. As A
increases from o to 1, for a given « the sparsity of the solution (i.e. the number of latent

components equal to zero) increases monotonically from o to the sparsity of the lasso
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solution. In each iteration of the coordinate descent we apply soft thresholding to the
current FUSENET estimates to care of the lasso contribution to the penalty, and then
apply a proportional shrinkage for the ridge penalty (Meinshausen and Bithlmann,

2006; Friedman et al., 2007a; Simon et al., 2013).

5.4.2  Selecting regularization parameters

The choice of A is critical since different A’s can lead to different network sparsity
patterns, Ze. the number and position of edges in the inferred network. We estimate
A in data-dependent way via stability selection (Meinshausen and Bithlmann, 2010),
a technique which was shown to lead to better results for the network inference than
other parameter selection methods including cross validation, Akaike’s information

criterion and Bayesian information criterion (Liu et al., 20105 Yu et al., 2012).

For now, we assume that the number of latent components r is given. Here, we choose
A so as to use the least amount of regularization that simultaneously makes the network
sparse and stable, i.e., replicable under random sampling. FuseNET employs recently
proposed stability selection technique called StARS (Liu et al., 2010). Briefly, StARS
repeatedly sub-samples data & to obtain many data samples &,. Here, 9, denotes
s-th data sample. It then estimates a separate network E (4, r) for each P and each
A from a vector of regularization parameters A; the latter being possible due to coor-
dinate descent computed along a regularization path. Selected value for regularization
controls the average variance over the edges of the networks inferred from sub-sampled

data:
r) _ . . T _ A p
Agye = arg ,f“m{orsnfgp(jgk 24,4 (1 = A, (4, r))/<2>) <p

where Ajk(/l, r) = % f:l J((j, k) € ES(A, r)). We set f and the size of data samples

D, to the values recommended in Allen and Liu (2013). We note that we obtain
(r)
opt
select r, which in effect determines the exact value of regularization.

different optimal values of Ay, for different choices of 7. Next, we describe how we
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5.4.3  Selecting the number of latent components

Our FuseNET has another parameter, the number of latent components r, which oth-
erwise does not appear in current Markov models. The latent dimensionality is selected
from a set of predefined candidate values {0.051,0.1n ...,0.51}, where n is the mean
number of observations across all considered data sets. We seek to use the fewest num-

ber of latent components that produce stable and sparse network:

_ )
Fope = argmin Agp.
T

(ropo)
= /Iopt
entire set of computations including path-wise coordinate descent and selection of

As a consequence, the optimal regularization value is 10p[ . Notice that the
regularization via stability selection can be performed in parallel for each candidate

value of r.

Source code of FUSENET is available at http://github.com/marinkaz/fusenet.
5.5 Evaluating the quality of network inference

We compare the performance of FUSENET to several state-of-the-art Markov network
models in estimating the true underlying network structure. The success of network
recovery is evaluated by comparison to the gold standard networks, when they are

available, and by functional enrichment of the inferred networks.

Assessing the accuracy of network recovery

Simulated data come with complete and unambiguous true underlying networks, hence
we can assess the performance of the algorithms as follows. We report receiver opera-
tor curves (ROC) computed by varying the regularization parameter A, precision-recall
(PR) curves, and true and false positive rates for fixed 4 as estimated via stability selec-
tion. The true positive rate is estimated as proportion of the edges found by a network
inference algorithm that are also in the true network. The false positive rate represents
proportion of the edges in the inferred network that are not present in the true net-

work. An algorithm with a perfect performance achieves an area under the ROC curve
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of 1, precision of 1 and recall of 1, a true positive rate of 1 and a false positive rate of

0.

Quantifying the functional content of inferred networks

We employ two approaches to evaluate “functional correctness” of the networks in-

ferred from cancer data.

First, we use SANTA (Cornish and Markowetz, 2014) to quantify the strength of asso-
ciation between sets of functionally related genes and the inferred network. The input
to SANTA are a gene network and a gene set and the output is a score representing
statistical significance of their association. We obtain gene sets from the Gene Ontol-
ogy (GO) (Ashburner et al., 2000) and test only GO terms associated with between 20
and 100 network genes to ensure that the functional sets are not too thinly or thickly

spread.

Second, we overlay the inferred network with gene information from the GO and for
every GO term assess how community-like a subnetwork of genes that belong to a
particular GO term is. Four different structural notions of network communities exist
in networks and we report the values of their representative scoring functions (Yang and
Leskovec, 2012). Given is the inferred network G(V, E), where p=|V|.LeaeTCV
be genes that belong to a specific GO term and let py be their number, pr = |T|. We
also need my, which is the number of edges in G whose both endpoints are annotated
with a given GO term, my = |{(s,1) € E:seT,teT}| and ¢r, which counts
how many edges are on the boundary of set T, ¢ = [{(s,1) € E:seTut¢
T'}|. We denote degree of gene s with d(s). Scoring functions build on the intuition
that communities are sets of genes with many connections between the members and
few connections to the rest of the network. We consider the following four scoring

functions:

= triangle participation ratio (TPR) is the fraction of genes in T that belong to a
wiad, [{s : s € T,{(t,u) : t,u € T,(s,t) € E,(s,u) € E,(t,u) € E} #
aH/pr;

= cut ratio is the fraction of all possible edges in T' that connect T to the remainder

of the network, —<L;
pr(p—pT)

IIS
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= conductance is the fraction of total edge volume that points outside the GO term
T, —T__.
> 2mp+ep’
u flake-over-median-degree (flake-ODF) is the fraction of genes in T with fewer
edges linking inside than outside of T, [{s : s € T, |{(s,1) € E:te T} <

d(s)2}|/py.

The functions take values from [0, 1] interval. To make the higher the better, we report
(1 — Conductance), (1 — Cut ratio) and (1 — flake-ODF) for conductance, cut ratio
and flake-ODE, respectively.

Considered gene network inference algorithms

We experiment with the Poisson FUSENET (Sec. 5.3.3), the multinomial FuseNET
(Sec. 5.3.5) and FuseNET with fusion of Poisson and multinomial data distributions
(Sec. 5.3.7). We compare our models to the Graphical Lasso (GLASSO) (Friedman
et al.,, 2007b), which is a widely used Markov network model based on a Gaussian as-
sumption. To see how FUseENET relates to techniques that perform data preprocessing
we consider the GLASSO after applying a log transform to the data plus one (Gallopin
etal, 2013) and the GLASSO with the nonparanormal Gaussian copula transforma-
tion (NPN-Copula) (Liu et al., 2009). We also compare FuseNET with two Markov
network models that are designed for non-Gaussian distributed data: the Local Poisson
Graphical Model (LPGM) (Allen and Liu, 2013), and the Multinomial Markov Net-
work Model (Mult-GM) (Jalali et al., 2011). The crucial parameter of these methods
is degree of regularization, which controls sparsity of the networks. We select the value

for regularization via stability selection (see Sec. 5.4).
5.6 Simulated multivariate and real genomic data

Network inference algorithms are evaluated based on simulated data and large-scale

cancer genomic data sets.
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Multivariate data simulation

Four network structures are simulated: (1) the Erd8s Rényi random network, where
an edge between each pair of nodes is set with equal probability and independently
of other edges; (2) a hub network, where each node is connected to one of three hub
nodes; (3) a scale-free network, in which node degree distribution follows a power-law;
and (4) a small-world network, in which most nodes are not neighbors of each other

but most nodes can be reached from every other by a small number of hops.

In simulations involving the Poisson model we closely follow the approach described
by Karlis (2003) and Allen and Liu (2013). We generate n independent observations
with p nodes, @ = {x(l),x(z), v, x1 where x is a p-dimensional count data
vector, x? € {0, 1, ..., 00}?. A matrix of observations X = [xD, x@ . xMT i
obtained from the model X = YB + E. Here, Y isa n X (p+ p(p — 1)/2) matrix with
). Let
A* denote the adjacency matrix of a given true network structure E*. The adjacency
matrix is encoded by matrix B as B = [I,; P © (lptri(A*)T)]T. Here, P isa p X

(p(p — 1)/2) permutation matrix, @ represents the entry-wise product and tri(A*) is

iid . - iid . .
cach entry ¥;; ~ Poisson(4,.) and E is a n X p matrix with E ~ Poisson(4,,is

the (p(p — 1)/2) X 1 vectorized upper triangular part of A*. As done by Allen and Liu
(2013) we simulate data at two signal-to-noise ratio (SNR) levels. We set A, = 1

with A = 0.5 for the high SNR level and 4

true

= 5 for the low SNR level.

noise noise

In simulations involving the multinomial model we fix the alphabet size to m = 3.
For a given true network structure E*, we pick the parameter set 8y, ;1 € {0y -
s,t € Vi(s,t) € E*;j,k € {1,2}} as follows. If (s,#) € E* then each nonzero
entry 8. for j, k € {1,2} is set to O ;. € [-0.5,0.5] uniformly at random; there
are 4 = (3 — 1)? such entries. We then generate 1 observations to construct a data set
according to the probability distribution corresponding to ;. ;. We solve the problem

in Eq. (12) and compare the inferred network E with the true network E*.

Cancer genomic data

We apply network inference algorithms to two examples of non-Gaussian high-through-
put genomic data to learn (1) an mRNA expression network, (2) a somatic mutation

network and (3) a collectively inferred gene network from both data types.
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We download breast cancer (BRCA-US) gene expression data measured by next gen-
eration sequencing and breast cancer (BRCA-US) simple somatic mutation data from
the International Cancer Genome Consortium (ICGC) (Hudson et al., 2010) portal
(release 17). We follow the steps in Allen and Liu (2013) and process the data to be ap-
proximately Poisson as is shown in Fig. 5.2. Genes with little variation across samples,
the bottom 50%, are filtered out, and the data is adjusted for possible overdispersion
by transforming them via a power @ € (0, 1] where a is chosen to yield approximately
Poisson data as assessed via Kolmogorov-Smirnov tests (Li et al., 2011). The power
transformation has another advantage. When neighboring genes have extremely large
counts, the exponential in Eq. (6) causes the conditional Poisson mean to become large.
The transformation limits the extreme counts and subsequently improves the fit of the
=1,012)

= 657). These genes form the nodes of our Poisson breast

model. Data preprocessing results in a matrix with rows as the subjects (.,

and columns as genes (P,

cancer mRNA network.

Breast cancer simple somatic mutation data from the ICGC portal include single base
substitutions, multiple base substitutions and short indels. Mutation data are con-

verted into a matrix with rows as subjects (1, = 954) and columns as genes con-

mut
taining mutations or variations (25,834 genes). Each matrix entry is categorized into
one of three groups based on the type of mutation: no mutation, single base substitu-
tion, insertion/deletion of < 200 base pairs. Differentially mutated genes, i.e. genes
containing mutations relative to the corresponding normal sample data, are ordered by
their percentage of mutations across all samples and the top p = 500 genes were used
in our analysis. These genes form the nodes of our multinomial breast cancer somatic

mutation network.

For the collectively inferred network, we consider both gene expression profiles and
somatic mutation data provided by the ICGC assuming the Poisson model for the
RNA-seq data and the multinomial model for the mutation data. The genes that form
the nodes of this network are taken as the union of sets of genes from the respective
gene expression and somatic mutation matrices (p = |Vy, U V). Mutational and
expression profiles from both matrices are matched by the subjects.
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5.7 A case study: simulated and cancer genomic networks

Next, we evaluate the ability of FUSENET to recover networks from simulated data fol-
lowing various exponential family distributions. We also compare FuseNET to several
gene network inference methods on cancer genomic data.

5.7.1  Network recovery with simulated data

In every simulation, we generated a data set of observations based on a simulated net-

work and then applied different network inference algorithms to determine whether

the algorithms successfully recovered complex relationships between data variables.

We simulated four network types, which are known to resemble the structure of real
biological networks (Costanzo et al., 2010; Allen and Liu, 2013). We report receiver
operator curves computed by varying the regularization parameter 4 in Fig. 5.4, box-
plots of true and false positive rates for fixed A as determined by stability selection in

Fig. 5.4 and Fig. 5.3.

Experimental evidence indicates that FUSENET outperforms Gaussian-based competi-
tors (GLASSO, Log-GLASSO and NPN-Copula) as well as existing methods that are
designed specifically for the Poisson and the multinomial data (LPGM in Fig. 5.3 and
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Figure 5.2

A histogram of the overall
breast cancer RNA-seq
data from the ICGC (Hud-
son et al., 2010) (left) and
a comparison of these data
to the quantiles of the
Poisson distribution via a
q-q plot (right). A q-q plot
shows that breast cancer
RNA-seq data approxi-
mately follow the Poisson
distribution. The multi-
variate count data arising
from the measurements of
gene expression with the
next generation sequenc-
ing technology is only an
example of recent high-
throughput technologies
that produce non-Gaussian
distributed data.
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Figure 5.3

Application of gene net-
work inference algorithms
to multinomial-distributed
simulated data. Simu-
lation studies on three
network types were per-
formed: hub, scale-free
and small-world. For each
graph type, we generated
n = 300 observations at a
high signal-to-noise ratio
(SNR) with p = 50 vari-
ables (nodes) taking values
from an alphabet of size

m = 3. Boxplots are shown
for multinomial FuseNET
(proposed here) and the
multinomial graphical
model (Mult-GM) (Jalali

etal., 2011).
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Mult-GM in Fig. 5.4). The overall good performance of FUsENET is consistent across
the four types of network structure and the two data distributions that we considered

in experiments.

The improved statistical power of FuseNET and LPGM over methods that during net-
work inference rely heavily on the assumption of normality is particularly impressive.
Results in Fig. 5.4 suggest that in situations where this assumption is not satisfied,
we can expect reduced prediction performance if we naively apply Gaussian-based
methods, (GLASSO) or if we perform insufficient data preprocessing (Log-GLASSO).
However, we note that sophisticated techniques that replace Gaussian distributed data
by the transformed data obtained, for example, through a semiparametric Gaussian
copula (NPN-Copula; Liu et al. (2009)), can give substantial gains in accuracy over
the naive analysis. These observations are not surprising as disregarding information
about data distribution can adversely affect performance of prediction models. Our re-
sults demonstrate that employing the “correct” statistical model, in this case FuseNEeT

or LPGM, can lead to more accurate network inference.

Next, we try to understand which algorithmic component of FuseNET contributes
most to its good performance relative to existing algorithms for network structure
learning. The primary difference between FuseNET and non-Gaussian-based meth-

ods considered here, LPGM and Mult-GM, is representation of model parameters
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with products of latent factors. In LPGM and similarly in Mult-GM, a prediction
model is fitted locally by an algorithm, which performs a series of independent penal-
ized regressions. This is in contrast with FuseNET, where different model parameters
are not entirely independent of each other but rather rely on borrowing strength from
each other via factorization. Our results on simulated data suggest that representation
of model parameters through the use of latent factors is beneficial. Furthermore, la-
tent parameterization can improve performance of network recovery beyond what is
possible with models that do not use latent factors. On the downside, we note that
due to coupling of model parameters, FUSENET is not trivially parallelizable, which is
otherwise true for LPGM and Mult-GM.

Results shown in Fig. 5.3 and Fig. 5.4 are reported for data sets with a few hundred
observations (n) and a few tens of variables (p; see figure captions). We note that
reported results are consistent with experiments done in various high-dimensional sce-
narios even when the number of variables is greater than the number of observations
(p > n). Results therein reveal the same trend, namely, the overall strong performance

of FuseNET in recovering true networks from non-Gaussian data.

5.7.2  Functional content of genomic networks

An important challenge in cancer systems biology is to uncover complex dependen-
cies between genes implicated in cancer. Since our knowledge about genome-scale
gene networks is incomplete and only a few functional modules are known for higher
organisms (Rolland et al., 2014), our aim is to quantify associations between the in-
ferred gene networks and known cellular functions and phenotypes, and to assess the

significance of these associations.

Comparison of FUSENET variants with existing methods

To characterize how functionally informative the inferred networks are we employ four
structural definitions of network communities (Figs. 5.5—5.7). Inferred networks were
overlaid with GO terms and subnetworks induced by each GO term were assessed for
how well they corresponded to network communities. Four different scoring func-

tions are used to quantify the presence of different structural notions of communities
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(Sec. 5.5) that appear in biological networks. These represent four possible notions of
association between a given GO term and the inferred network (Yang and Leskovec,
2012). The triangle participation ratio quantifies how well genes that are members of a
given GO term are linked to each other in the inferred network. The cut ratio captures
the abundance of external connectivity, 7.e., edges between genes of a GO term and the
rest of the network, whereas conductance and flake-ODF consider both internal and
external network connectivity. Through these four measures we are able to estimate
the overall concordance of inferred gene networks and known functional annotation
of genes. For these reasons, networks that score higher on many measures should be

considered more informative across a wider spectrum of cellular functions.

Fig. 5.5 shows that gene network inferred by FuseNET through fusion of breast cancer
RNA-sequencing data and somatic mutation data is more concordant with functional
annotation data in the GO than are networks inferred by FuseNET from either RNA-
sequencing or somatic mutation data alone. We note that we used Poisson FuseNET
to infer network from RNA-sequencing data, multinomial FUSENET to infer network
from somatic mutation data and collective FuseNET for joint network inference from
RNA-sequencing and mutation data. These results demonstrate that combining data
through the use of latent factors can perform better than independent modeling of

each data set alone.

For each of the four community scoring measures in Fig. 5.5, we compared score dis-
tributions of GO terms across three networks inferred by FuseNET using Kolmogorov-
Smirnov tests. We concluded that the network inferred by FuseNET through fusion
of RNA-sequencing and mutation data associates with GO significantly more strongly
than the other two networks (p-value < 1 X 107> on all four measures from Fig. 5.5).
‘This experiment shows how cancer genomic data provide different levels of informa-
tion about cellular machinery, highlighting that it is possible to infer a network that
better explains the mechanisms of cancer by combining multiple data sets in a princi-

pled statistical way.

We further compared FUSENET to existing network inference methods on cancer data.
The comparison was made only with LPGM, as this was the best performing method in
our study on simulated data (Sec. 5.7.1) and in the cancer-data study of Allen and Liu

(2013). Fig. 5.6 shows the functional content of the networks inferred from RNA-
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Figure 5.5

The strength of associ-
ation berween gene sets
from the Gene Ontol-
ogy (GO) and networks
inferred with FuseNET.
Considering breast cancer
RNA-sequencing (RNA-
seq) and somatic mutation
data (Mut), these box-
plots show the gains that
fusion of data from differ-
ent distributions (Mut &
RNA-seq) can offer over
network inference from
any data set alone, either
RNA-seq or Mut. Poisson
FuseNET was used with
RNA-sequencing data,
multinomial FuseNEeT
with somatic mutation
data and fully-specified
FuseNET for joint consid-
eration of RNA-sequencing
and mutation data. Flake-
ODF, flake-over-median-
degree; TPR, triangle
participation ratio.

Figure 5.6

The strength of associ-
ation between gene sets
from the Gene Ontol-
ogy (GO) and networks
inferred with Poisson
FuseNET (proposed here)
and LPGM (Allen and
Liu, 2013). Results are
shown for breast cancer
RNA-sequencing data be-
cause LPGM method was
designed for Poisson dis-
tributed data. Flake-ODEF,
flake-over-median-degree;
TPR, triangle participation
ratio.
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sequencing data by either Poisson FUSENET or LPGM. On a related note, Fig. 5.7
shows enrichment of the networks inferred from somatic mutation data by either
multinomial FuseNET or Mult-GM. Notice that LPGM and Mult-GM were designed
for data that are approximately Poisson distributed, such as measurements from RNA-
sequencing, and multinomially distributed, such as various types of gene variations,
respectively. These results demonstrate that networks inferred by FUuseNET can better
capture known GO annotations than networks obtained by methods such as LPGM
and Mult-GM, whose prediction models do not have factorized representation. These
observations are consistent across four complementary structural definitions of GO
terms, where every GO term is viewed as a network community defined by its mem-

ber genes.

Networks via breast cancer data

We employ SANTA (Cornish and Markowetz, 2014) to quantify the functional con-
tent of gene networks. SANTA extends the concept of gene set enrichment analy-
sis to networks. We observed that GO terms indeed cluster more strongly on Pois-
son FUseNET’s networks than on networks inferred by GLASSO and Log-GLASSO
(p-value < 1X 1079, RNA-seq network), NPN-Copula (p-value < 1% 1073, RNA-seq
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Figure 5.7

The strength of association
between gene sets from
the Gene Ontology (GO)
and networks inferred with
multinomial FuseNET
(proposed here) and
multinomial graphical
model (Mule-GM) (Jalali
etal., 2011). Results

are shown for breast
cancer somatic mutation
data because Mult-GM
method was designed for
multinomial distributed
data. Flake-ODE, flake-
over-median-degree; TPR,
triangle participation ratio.
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network) and LPGM (p-value < 1 X 107*, RNA-seq network). These results suggest
that network edges inferred by FusENET might represent more accurate indication of
shared cellular functions than edges inferred by other considered methods. This effect
was independent of the GO term size and was strongest for specific cellular functions
such as “centrosome cycle” (p-value < 1 x 107°), “cellular response to DNA dam-
age stimulus” (p-value < 1 x 10™%), “apoptotic process” (p-value < 1 x 107) and
“regulation of cytokinesis” (p-value < 1x 107%). We observed similar results when in-
ferring networks from somatic mutation data. Gene network inferred by multinomial
FuseNET was functionally richer than network inferred by Mult-GM. Here, the func-
tional content of a network was quantified with SANTA as proportion of evaluated

GO terms whose association strength with the network had p-value < 1 x 1075,

Interactions that are captured by fusing both cancer related data sets recovered many
gene-gene associations that have been previously linked to increased breast cancer pre-
disposition and metastasis. For example, FuseENET revealed a hypothesized transcrip-
tional regulatory GATA3 module (Wang et al., 2014) consisting of fully connected
GATA3, PTCH1, NFIB and PPARA. GATA3 is an important transcriptional regulator
in breast cancer (Theodorou et al., 2013), and low expression levels of GATA3 are as-
sociated with a poor prognosis (Albergaria et al., 2009). It has been shown by Wang
etal. (2014) that PTCH1, PPARA and NFIB exhibit epistatic interactions with GATA3,
have negatively correlated expression levels with GATA3 and that GATA3 binds to gene
regions near NFIB, PTCHT and PPARA in breast epithelial tumor cell line.

Other interactions identified in our network include AT7M and BRCA1, ATM and
BRCA2, and CHEK2 and BRCAz, which are known gene-gene interactions whose mu-

tations affect breast cancer susceptibility (Turnbull et al., 2012).

Another transcriptional module that was found by FuseNET consists of FLI1, JAK2
and CCND:z. This module has been only recently associated with breast cancer pa-
tient outcome (Wang et al., 2014). Interestingly, FLIT module has been captured by
FuseNET when fusing RNA-sequencing and mutation data but has been missed when
using FUSENET with any of the two cancer data sets in isolation, as well as by any other
inference algorithm considered in this study. One possible explanation for the latter
result might be observations made by Wang et al. (2014). Wang et al. examined The

Cancer Genome Atlas breast cancer patient survival data and found that low expression
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or mutation in one or more members of the FL/r module is associated with reduced
overall survival time in all patients. The illustrative example of FL/r module highlights
an advantage of FUSENET over methods considering a single data set during network

inference.

5.8 Conclusion

FuseNET is an approach for automatic inference of gene networks from data arising
from potentially many nonidentical distributions. It is based on the theory of Markov
networks, where the inferred network edges denote a type of direct dependence that is
stronger than merely correlated measurements. An appealing property of FUSENET is
its ability to estimate network edges by fusing potentially many data sets. In the case stud-
ies FusENET’s models outperform several state-of-the-art undirected graphical models.
We show that FuseNET’s high performance is attributed to the ability to model non-
Gaussian distributions and fusion of data through sharing of latent representations.
Our work here has broadened the class of off-the-shelf network inference algorithms
for simultaneously considering a wide range of parametric distributions and has com-

bined Markov network inference with data fusion.
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For most problems in science and engineering we can obtain data sets that describe
the observed system from various perspectives and record the behavior of its individual
components. Data fusion can focus on a specific target relation and exploit directly

associated data together with contextual data and data about system’s constraints.

In the chapter we describe a data fusion approach with collective penalized matrix
tri-factorization (DFMF) that simultaneously factorizes data matrices to reveal hidden
associations. The approach can directly consider any data that can be expressed in
a matrix, including those from feature-based representations, ontologies, associations

and networks.

In the following chapters we demonstrate the utility of DEMF for gene function pre-
diction task with eleven different data sources and for prediction of pharmacologic
actions by fusing six data sources. Our data fusion algorithm compares favorably to
alternative data integration approaches and achieves higher accuracy than can be ob-

tained from any single data source alone.
6.1 Background

Data abound in all areas of human endeavor. We may gather various data sets that are
directly related to the problem, or data sets that are loosely related to our study but
could be useful when combined with other data sets. Consider, for example, the expo-
some (Rappaport and Smith, 2010) that encompasses the totality of human endeavor
in the study of disease. Let us say that we examine susceptibility to a particular disease
and have access to the patients’ clinical data together with data on their demographics,
habits, living environments, friends, relatives, movie-watching habits, and movie genre
ontology. Mining such a diverse data collection may reveal interesting patterns that
would remain hidden if we would analyze only directly related, clinical data. What if
the disease was less common in living areas with more open spaces or in environments
where people need to walk instead of drive to the nearest grocery? Is the disease less

common among those that watch comedies and ignore politics and news?

Methods for data fusion collectively treat data sets and combine diverse data sources
even when they differ in their conceptual, contextual and typographical representa-

tion (Aerts et al., 2006; Bostrom et al., 2007). Individual data sets may be incomplete,
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yet because of their diversity and complementarity, fusion can improve the robustness
and predictive performance of the resulting models (Greene and Cunningham, 2009;

Lanckriet et al., 2004c).

According to Pavlidis et al. (2002), data fusion approaches can be classified into three
main categories depending on the modeling stage at which fusion takes place. Early (or
full) integration transforms all data sources into a single feature-based table and treats
this as a single data set that can be explored by any of the well-established feature-based
machine learning algorithms. The inferred models can in principle include any type
of relationships between the features from within and between the data sources. Early
integration relies on procedures for feature construction. For our exposome example,
patient-specific data would need to include both clinical data and information from
the movie genre ontologies. The former may be trivial as this data is already related to
each specific patient, while the latter requires more complex feature engineering. Early

integration also neglects the modular structure of the data.

In late (decision) integration, each data source gives rise to a separate model. Predictions
of these models are fused by model weighting. Again, prior to model inference, it is
necessary to transform each data set to encode relations to the target concept. For our
example, information on the movie preferences of friends and relatives would need to
be mapped to disease associations. Such transformations may not be trivial and would

need to be crafted independently for every data source.

The youngest branch of data fusion algorithms is intermediate (partial) integration.
Algorithms in this category explicitly address the multiplicity of data and fuse them
through inference of a single joint model. Intermediate integration does not merge
the input data, nor does it develop separate models for each data source. It instead
retains the structure of the data sources by incorporating it within the structure of
predictive model. This particular approach is often preferred because of its superior
predictive accuracy (Pavlidis et al., 2002; Lanckriet et al., 2004¢; Gevaert et al., 20065
Tang et al., 2009; van Vliet et al., 2012), but for a given model type, it requires the

development of a new inference algorithm.

We here report on the development of a new method for intermediate data fusion
based on constrained matrix factorization. Our aim was to construct an algorithm that

requires no or only minimal transformation of input data and can fuse feature-based
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representations, ontologies, associations and networks. We focus on the challenge of
dealing with collections of heterogeneous data sources, and while showing that our
method can be used on sizable problems from current research, scaling is not the focus
of the present chapter. We first present our data fusion algorithm, henceforth DFMF
(Sec. 6.2), and then place it within the related work of relational learning approaches
(Sec. 6.3). We also refer to related data integration approaches, specifically to methods
of kernel-based data fusion (Sec. 6.3). We then examine the utility of DFMF and
experimentally compare it with intermediate integration by multiple kernel learning,
early integration with random forests, and tri-SPMF (Wang et al., 2008), previously

proposed matrix tri-factorization approach (Sec. 3.4).
6.2 Data fusion by collective matrix factorization

The DFMF considers r object types &, ..., &, and a collection of data sources, each
relating a pair of object types (&;, &;). In our introductory example of the exposome,
object types could be a patient, a disease or a living environment, among others. If there
. i . . .
are n; objects of type &; (0}, is p-th object of type &;) and n; objects of type &, we
represent the observations from the data source that relates (&}, &;) fori # j in asparse
matrix R;; € R"*"/. An example of such a matrix would relate patients and drugs
by reporting on patient’s current drug prescriptions. Notice that matrices R;; and R ;
are in general asymmetric. A data source that provides relations between objects of the
same type &; is represented by a constraint matrix @; € R"*". Examples of such

constraints are social networks and drug interactions.

In real-world scenarios we might not have access to relations between all pairs of object
types. Our data fusion algorithm still integrates all available data if the underlying
graph of relations between object types is connected. In that case, low-dimensional
representations of objects of certain type borrow information from related objects of
the different type. Fig. 6.1 shows an example of an underlying graph of relations and

a block configuration of the fusion system with four object types.

To retain the block structure of our fusion system and hence model distinct relations
between object types, we propose the simultaneous factorization of all relation matrices

R;; constrained by ©;. The resulting system contains factors that are specific to each
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data source and factors that are specific to each object type. Through factor sharing we

fuse the data but also identify source-specific patterns.

We have developed a variant of three-factor penalized matrix factorization that simulta-
neously decomposes all available relation matrices R;; into G; € R" *ki G  ER"Y xkj
and § € R¥*¥;, and regularizes their approximation through constraint matrices ;
and O; such that R;; ~ G;S;G] .
R;;(p, q) is approximated by an inner product of the p-th row of matrix G; and a linear

Approximation can be rewritten such that entry

combination of the columns of matrix S D weighted by the g-th column of G i The
matrix S;, which has relatively few vectors compared to R;; (k; < n;, k; < ny), is
used to represent many data vectors, and a good approximation can only be achieved

in the presence of the latent structure in the original data.
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Figure 6.1

Conceptual fusion con-
figuration for four object
types, &1, &,, &3 and &y,
equivalently represented
by the graph of relations
between object types (top)
and the block-based matrix
structure (bottom). Every
data source relates a pair of
object types and is denoted
by an arc in the graph (top)
and given in a matrix with
shades of gray (bottom).
For example, data matrix
Ry relates object types

&, and &3. Some relations
are entirely missing. For
instance, there is no data
source relating objects from
&3 and &, as there is no
arc linking nodes &3 and
&) in (top) or equivalently,
a matrix R3 is missing in
(bottom). Relations can

be asymmetric, such that
Ry3 # R§24 Constraints
denoted by loops in (top)
or matrices with blue en-
tries in (bottom) relate
objects of the same type. In
our example configuration,
COnS[rain[S are Prﬁvided
for object types &, (one
constraint matrix) and &4
(three constraint matrices).




136

6 Factorial multi-relation and multi-object type model M Zitnik

The proposed fusion approach is different from treating an entire system (e.g., from
Fig. 6.1) as a large single matrix. Factorization of such a matrix would yield factors
that are not object type-specific and would thus disregard the structure of the system.
We also show (Sec. 7.8) that such an approach is inferior in terms of predictive perfor-

mance.

In comparison with existing multi-type relational data factorization approaches (see

Sec. 6.3) the following characterizes our DEMF data fusion method:

i DEMF can model multiple relations between multiple object types.

ii Relations between some object types can be completely missing (see Fig. 6.1).
iii Every object type can be associated with multiple constraint matrices.

iv The algorithm makes no assumptions about structural properties of relations (e.g.

symmetry of relations).

In order to be applicable to general real-world fusion problems, data fusion algorithm
would need to jointly address all of these characteristics. Besides DFMF proposed
in this manuscript, we are not aware of any other approach that would do so. Most
real-world data integration problems would usually consider a larger number of object
types, but with growing number of object types, it is likely that data relating a pair of
object types is either not available nor meaningful. On the other side, there may be
various data sources available on interactions between objects of the same type that also
require appropriate treatment. For example of this type of data, consider abundance

of data bases on drug or disease interactions.

In the case study presented in this chapter we apply data fusion to infer relations be-
tween two target object types, &; and &; (Sec. 6.2.6 and Sec. 6.2.7). This relation,
encoded in a target matrix R; I will be observed in the context of all other data sources
(Sec. 6.2.1). We assume that our target R;; is a [0, 1]-matrix that is only partially ob-
served. Its entries indicate a degree of relation, O denoting no relation and 1 denoting
the strongest relation. We aim to predict unobserved entries in R;; by reconstructing
them through matrix factorization. Such treatment in general applies to multi-class
or multi-label classification tasks, which are conveniently addressed by multiple kernel

fusion (Yu et al., 2010), with which we compare our performance in this chapter.
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In the following, we present the factorization model, objective function, derive the
updating rules for optimization, and describe the procedure for prediction of relations
from matrix factors. In the optimization part, we closely follow (Wang et al., 2008) in

notation, mathematical derivation and proof technique.

6.2.1  Multi-relation and multi-object type factorial model

An input to DFMF is a relation block matrix R that conceptually represents all relation

matrices:
* Ry Ry,
R * R
rR=|® o). (6.1)
er Rr2 *

w0

Here, an asterisk (“*”) denotes the relation between the same type of objects that
DMEM does not model. Notice that our method does not require the presence of
all relation matrices in Eq. (6.1). Depending on a particular data setup, any subset of
relation matrices might be missing and thus, not considered in the analysis. A block
in the i-th row and j-th column (R;;) of matrix R represents the relationship between
object type &; and &;. The p-th object of type &, (i.e. 0}) and g-th object of type
&; (e 0}) are related by R;;(p. ). An important aspect of Eq. (6.1) for data fusion
and what distinguishes DMFM from other conceptually related matrix factorization
models such as S-NMTF (Wang et al., 20112) or even tri-SPMF (Wang et al., 2008)
is that it is designed for multi-object type and multi-relational data where the relations
can be asymmetric, R;; # Rij;, and some can be completely missing (unknown R;;)

(Sec. 6.2.3).

We additionally consider constraints relating objects of the same type. Several data
sources of this kind may be available for each object type. For instance, personal re-
lations may be observed from a social network or a family tree. Assume there are
t; > 0 data sources for object type &; represented by a set of constraint matrices @50
fort € {1,2,...,t;}. Constraints are collectively encoded in a set of constraint block

diagonal matrices 09 forr e {1,2,..., max; t; }:

0" = Diag@®", 0, ....0") (6.2)
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The i-th block along the main diagonal of @ is zero if > t;. Entries in constraint
matrices are positive for objects that are not similar and negative for objects that are
similar. The former are known as cannoz-link constraints because they impose penalties
on the current approximation of the matrix factors, and the latter are must-link con-
straints, which are rewards that reduce the value of the cost function during optimiza-
tion. Must-link constraint expresses the notion that a pair of objects of the same type
should be close in their latent component space. An example of must-link constraints
are, for instance, drug-drug interactions, and example of cannot-link constraints the
matrix of adversaries. Typically, data sources with must-link constraints are more abun-

dant.

The block matrix R is tri-factorized into block matrix factors G and S":

. n Xk ny Xk n,.xk,
G=Dtag(G11 I,Gz2 2 LG,
kyXxky kixk,
k*><k S S}f xk
S 270K % S 278
S = 21‘ . 2r' . (6.3)
Sk,xkl Sk,xkz "
rl r2

Matrix S in Eq. (6.3) has the same block structure as R in Eq. (6.1). It is in general
asymmetric (ie. S;; # Sic ) and if a relation matrix is missing in R then also its
corresponding matrix factor in S will be missing. These two properties of S stem from
our decision to model relation matrices without assuming their structural properties

or their availability for every possible combination of object types.

A factorization rank k; is assigned to &; during inference of the factorized system.
Factor S;; defines the latent relation between object types &; and &, while factor G;
is specific to objects of type &; and is used in the reconstruction of every relation with
this object type. In this way, each relation matrix R;; obtains its own factorization
G;S;; GjT with factor G; (G;) that is shared across all relations which involve object
types &; (&). This can also be observed from the block structure of the reconstructed
system GSGT :

* G,S,Gl - GS,G
G,S, GT * GRS, GT
e T €
G.S,GI G.S,G - *
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Here, the p-th row in factor G; holds the latent component representation of object
i
%
of 0, depends on G as well as on the existence of relation R;;. Consequently, all

By holding G; and S); fixed, it is clear that latent component representation

direct and indirect relations have a determining influence on the calculation of 05,-
th latent representation. Just as the objects of type &; are represented by G, each
relation is represented by factor S > which models how the latent components interact
in the respective relation. The asymmetry of .S; 5 takes into account whether a latent

component occurs as a subject or an object of corresponding relation R;;.

6.2.2  Objective function

The objective function minimized by DEMF aims at good approximation of the input

data and adherence to must-link and cannot-link constraints:

: . — T2
min J(G:S) = > IR, - GS,GTII* +
= R, ER
max, 1;
+ ) w(GTOVG), (6.5)
=1
Here, || - || and tr(:) denote the Frobenius norm and trace, respectively, and & is the

set of all relations included in our model. Our objective function explicitly allows that

relations between some object types are entirely missing.

Notice that in Eq. (6.5) we do not approximate input data by ||R — GSGT ||? as was
proposed in related approaches of S-NMTF (Wang et al., 20112) and tri-SPMF (Wang
etal., 2008). To model the data system such as that from Fig. 6.1, one could be tempted
to replace the missing relation matrices with zero matrices. This would enable the
optimization to further reduce the value of objective function, but would also introduce
relations in factorized system that were intentionally not present in the input data.

Their inclusion in the model would distort inferred relations between other object

types (see Sec. 7.4).
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6.2.3  Computing the factorization

The DFMF algorithm for solving the minimization problem specified in Eq. (6.5) is
shown in Algorithm 3. The algorithm first initializes matrix factors (Sec. 6.2.8) and
then iteratively refines them by alternating between fixing G and updating S, and
then fixing § and updating G, until convergence. Successive updates of G; and S;;

converge to a local minimum of the problem given in Eq. (6.5).

We derive multiplicative updating rules for regularized decomposition of relation ma-
trices by fixing one matrix factor (e.g., G) and considering the roots of the partial
derivative with respect to the other matrix factor (e.g., S, and vice-versa) of the La-

grangian function. The latter is constructed from the objective function (Eq. 6.5):

J(GS) = ) wR[R;-2GTR[G.S,+
R, ER
T T T
+ G/ G,S,;GIG;S]) +

max;t; r

+ Y Y uGTe)G). (6.6)
t=1 i=1

Regarding the correctness and convergence of the algorithm in Algorithm 3 we have

the following two theorems.

Theorem 1: (Correctness of DFMF algorithm). If the update rules for matrix factors
G and S from Algorithm 3 converge, then the final solution satisfies the Karuch-
Kuhn-Tucker (KKT) conditions (Kuhn and Tucker, 1951) of optimality.

Proof 1: We introduce the Lagrangian multipliers 4, 45, ..., 4, and construct the

Lagrange function:

,
L=J(G;S) = ) tu(il, s, G)). 6.7)

i=1
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Then for i, j, such that R;; € &%:

oL
0S;;

i

- T T T
= -2G'R;G,+2G7G;S,;G'G,

and fori =1,2,...,r:

JoL T T T
G = Y (-2R;G;S] +2G,S,GTG,S) +
! JiR;ER
T T T
+ Y (-2R%G;S;+2G,51GTG;S;)+
JiR;ER
max; t;
+ Y 200G, — 41, . (6.9)
t=1

Fixing G, G5, ..., G, and letting %ej =0foralli,j=1,2,...,r, we obtain:
S =(GTG) 'GTRGGTG)!.

We then fix S and let % =0fori =1,2,...,r. We get an expression for the
KKT multiplier 4; from Eq. (6.8). Then the KKT complementary condition for

the nonnegativity of G; is:

0 = 'liln,-xk,-"Gi:
= Y (-2R;G;S] +2G,S,GTG,S)+

JiR;ER

+ ) (-2R1G;S;+2G,STGTG,S;)+

JiR;ER

max; ;

+ ) 2@5”0,] -G, (6.9)
t=1

Here, o denotes the Hadamard product. Let us here introduce variables I} to denote

I; = 4; » G;. Eq. (6.9) is a fixed point equation and the solution must satisfy it at

41
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convergence. We let:

0" = O -e""
R,G;S = R;G;S)" - (R;G;S])
S,;G]G; S = (5,;G] G, ST - (5,67 G;ST)”
RIG;S;, = (RG;S;)" —(R},G;S;)
S1G]G;S; = (S,G]G;S;)" —(S,G]G;S;)”

where all matrices on right-hand sides are nonnegative. Then, given an initial guess
of G}, the successive updates of G; using Eq. (6.13)—(6.15) converge to a local min-
imum of the problem in Eq. (6.5). It can be easily seen that using such a rule, at
convergence, G; satisfies I; o G; = 0, which is equivalent to I; = 0 (Eq. (6.9)) due
to nonnegativity of G;. O

Theorem 2: (Convergence of DEMF algorithm). The objective function J(G;.S)
given by Eq. (6.5) is nonincreasing under the updating rules for matrix factors G

and §' in Algorithm 3.

Proof’2: Our proof follows the concept of auxiliary functions often used in conver-
gence proofs of approximate matrix factorization algorithms (Lee and Seung, 2000).
The proof is performed by introducing an appropriate function F(G, G"), which is

an auxiliary function of the objective J(G'; S) that satisfies:

F(G',G") = J(G";S),
F(G,G') > J(G;S).

If such an auxiliary function F can be found and if G is updated in (m + 1)-th

iteration as the minimizer of the auxiliary function F, i.e.:

Gt — arg mgn F(G,G™), (6.10)
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then the following holds:

JG™D;s) < F(G"M,6™) <
< F(G™,6"™)=
= J(G™;S). (6.11)

That is, if F is an auxiliary function of J(G; S), then J(G3;.S) is nonincreasing
under the update Eq. (6.10). In the proof we show that the update step for G
in Eq. (6.15) is exactly the update in Eq. (6.10) with a proper auxiliary function.
For that we make use of an auxiliary function specified by Wang et al. (2008)
(cf. Appendix II in Wang et al. (2008)). Wang et al. (2008) constructed a func-
tion meg(A, A’; B, C, D) and showed that it satisfied the conditions of auxiliary
functions for functions of the form J(A; B,C, D) = Zr(—ZATB + ADAT) +
tr(AT CA), where C and D are symmetric, and A is nonnegative. To prove the
convergence of our algorithm, we show that the objective function from Eq. (6.5)
is a special case of J(A; B, C, D).

First, we view J(G'; S) in Eq. (6.6) as a function of G| and construct the auxiliary
function Fwang(A, A’; B,C, D) such that:

A = Gl’
B = ) R,GS[+ Y R[GS,,
JiR;ER i:R ER
max; t;
c =) ey (6.12)

t=1
D = ) S5,6/Gs[+ Y SIGGs).
JiRjER iR ER

With these values for A, B, C and D, the auxiliary function Fyy,,, is convex in
G, . Notice that each of the two summation terms in the right-hand side expression
for D represents the sum of the symmetric matrices of the form (G ;S ;r] Y(G S ;r])
and (GiSil)T(G,«S“), respectively. Thus, D is symmetric. The global minimum
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(Eq. (6.10)) OfFWang(A’ A'; B, C, D) is exactly the update rule for G| in Eq. (6.13)—
(6.15).

We repeat this process by constructing the remaining r — 1 auxiliary functions by
separately considering J(G5.S) as a function of matrix factors G, ..., G,. From
the theory of auxiliary functions it then follows that J is nonincreasing under the
update rules for each of G, G, ... , G,. Letting J (G, G5, ..., G,, S) = J(G; S),

we have:

J(G).GY,....GY.S) > J(G|.GY....G.S)>
>
> J(G|,G),....GLS).

Since J(G’; S) is certainly bounded from below by zero, we proved the theorem. O

6.2.4 Stopping criterion

Recall that the optimization task from Eq. (6.5) is nonconvex and it thus has multiple
local minima, each with different depths, for which the optimum is called the global
minimum. The global minimum of our multi-relational system remains elusive and is
impossible to determine in practice, where large dimensional data are common. How-
ever, we were still able to prove in the previous section that DFMF algorithm given in

Algorithm 3 converges to a local minimum of Eq. (6.5).

Next, we would like to apply data fusion to infer relations between two target ob-

ject types, &; and &;. We hence define the stopping criterion that observes conver-

gence in approximation of only the target matrix R;;. Our convergence criterion is

[IR;;—G.S;; GjT [ < €, where € is a user-defined parameter, possibly refined through

observing log entries of the target matrix approximation error for several runs of the

factorization algorithm. In our experiments € was set to 107, To reduce the compu-
8 P p

tational load, the convergence criterion was assessed only every fifth iteration.



Data fusion 145

Algorithm 3

DFME data fusion by collective matrix factorization. Source code of DFMF and of its extensions to collective matrix
completion and treatment of multiple relations over an object type pair is available at http: //github.com/marinkaz/
scikit-fusion.

Input:
= A set R of relation matrices R; i
= constraint matrices @ fort € {1,2, ..., max; ;}
= factorization ranks ky, k,, ..., k, (i, j € [r]).
Output:
= Matrix factors .S and G.

1. Inidalize G; fori =1,2,...,r.

2. Repeat until convergence (Sec. 6.2.4) or a time limit is reached:
a. Construct R and G using their definitions in Eq. (6.1) and Eq. (6.3).
b. Update S using:

S —(GTG)'GTRGGTG).

c. Set G\ < 0fori=1,2,...,r.
d Set GV < 0fori=1,2,...,r.
e. For R;; € #:
(e) T T T\—
GY += (R;G; S +G(S,;GTG;ST)
G += (R,G;S])” +G(S,;GTG S
GY += (R1G,S,))" +GSIGIG,S,)
G += (R1G.S,;)) +G,S[GIG,S)" (6.13)

1
f. Fort=1,2,...,max;t;:

GY += [01°G, fori=1,2,...,r
G += 017G, fori=1.2, ...r (6.14)

g. Construct G as:

MR
G < G o Diag( '\l =@ (d)), (6.15)
G, G, G,

where o denotes the Hadamard product. The 1/ and - are entry-wise oper-

ations.



http://github.com/marinkaz/scikit-fusion
http://github.com/marinkaz/scikit-fusion
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6.2.5  Parameter estimation

Parameters to DFMF algorithm are factorization ranks, ki, ky, ..., k. These are cho-
sen from a predefined interval of possible rank values such that their choice maximizes
the estimated quality of the model. To reduce the number of required factorization
runs we mimic the bisection method by first testing rank values at the midpoint and
borders of specified ranges and then for each rank value selecting the subinterval for
which the resulting model was of higher quality. We evaluate the models through
the explained variance, the residual sum of squares (RSS) and a measure based on the
cophenetic correlation coefficient p (Brunet et al., 2004). We compute these measures

for the target relation matrix. The RSS is computed over observed associations (02, oé)
2

in R;; as RSS(R;;) = D [(Rij - G,—SijGJT)(p, q)] . Similarly, explained variance is

R*(R;;) =1 —RSS(R;))/ X[R,;(p. 9T

We assess the three quality scores through internal cross-validation and observe how
RZ(R,» 1)» RSS(R;;) and p(R;;) vary with changes of factorization ranks. We select
ranks k1, k5, ..., k, where the cophenetic coeflicient begins to fall, the explained vari-

ance is high and the RSS curve shows an inflection point (Hutchins et al., 2008).

6.2.6 Prediction from matrix factors

The approximate relation matrix ﬁi ; for the target pair of object types &; and & is
reconstructed as ﬁi ;= GSy; GJ.T. When the model is requested to propose relations
for a new object OLI_ 41 of type & that was not included in the training data, we need
to estimate its factorized representation and use the resulting factors for prediction.
We formulate a non-negative linear least-squares and solve it with an efficient interior
point Newton-like method (Van Benthem and Keenan, 2004) for min, 54 [1(G}.S; +
G, Si{)x, - 0;"_14_1 | |%, where Oi;,-l+l € R™ is the original description of object 0;i+l (if
available) and x; € R* is its factorized representation (for I = 1,2,...,rand | # i).
A solution vector given by Y, x;kT is added to G; and a new I/iij e RO g

computed.

We would like to identify object pairs (0;, oé) for which the predicted degree of relation
I’ii (P, q) is unusually high. We are interested in candidate pairs (o;, 0y) for which the
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estimated association score R;;(p, q) is greater than the mean estimated score of all
known relations of 0),:

~ 1 ~
Ri(p.q) > ——— R;;(p,m), (6.16)
! | (0}, &) ) !

oned(0h&;)

where of (0;,, &) is the set of all objects of &; related to 0},. Notice that this rule is
row-centric, that is, given an object of type &}, it searches for objects of the other type
(%j) that it could be related to. We can modify the rule to become column-centric, or

even combine the two rules.

For example, let us consider that we are studying disease predispositions for a set of pa-
tients. Let the patients be objects of type &; and diseases objects of type &;. A patient-
centric rule would consider a patient and his medical history and through Eq. (6.16)
propose a set of new disease associations. A disease-centric rule would instead consider
all patients already associated with a specific disease and identify other patients with a

sufficiently high association score.

We can combine row-centric and column-centric approaches. For example, we can
first apply a row-centric approach to identify candidates of type &; and then estimate
the strength of association to a specific object oé by reporting an inverse percentile of
association score in the distribution of scores for all true associations of oé, that is, by
considering the scores in the g-ed column of R, ;- In our gene function prediction
study, we use row-centric approach for candidate identification and column-centric
approach for association scoring, and in the experiment from cheminformatics we ap-

ply row-centric approach to both tasks.

6.2.7  An ensemble approach ro prediction

Different initializations of G; may in practice give rise to different factorizations of
the fusion system. To leverage this effect we construct an ensemble of factorization
models. The resulting matrix factors in each model may also be different due to small
random perturbations of selected factorization ranks. We use each factorization system
for inference of associations (Sec. 6.2.6) and then select the candidate pair through a

majority vote. That is, the rule from Eq. (6.16) must apply in more than one half of
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factorized systems of the ensemble. Ensembles improved the predictive accuracy and
stability of the factorized system and the robustness of the results. In our experiments

the ensembles combined 15 factorization models.

6.2.8 Matrix factor initialization

The inference of the factorized system in Sec. 6.2.1 is sensitive to the initialization of
factor G. Proper initialization sidesteps the issue of local convergence and reduces the
number of iterations needed to obtain matrix factors of equal quality. We initialize
G by separately initializing each G, using algorithms for single-matrix factorization.

Factors S are computed from G (Algorithm 3) and do not require initialization.

Wang et al. (2008) and several other authors (Lee and Seung, 2000) use simple random
initialization. Other more informed initialization algorithms include random C (Al-
bright et al., 2006), random Acol (Albright et al., 2006), non-negative double SVD
and its variants (Boutsidis and Gallopoulos, 2008), and k-means clustering or relaxed
SVD-centroid initialization (Albright et al., 2006). We show that the latter approaches
are indeed better over a random initialization (Sec. 7.7). We use random Acol in our
case study. Random Acol computes each column of G as an element-wise average of

a random subset of columns in R;;.
6.3 Related work on data integration and latent factor models

Approximate matrix factorization estimates a data matrix R as a product of low-rank
matrix factors that are found by solving an optimization problem. In two-factor de-
R™™ is decomposed to a product W H, where W € Rk,

H e R¥" and k <« min(n, m). A large class of matrix factorization algorithms min-

composition, R €

imize discrepancy between the observed matrix and its low-rank approximation, such
that R & W H. For instance, SVD, non-negative matrix factorization and exponen-

tial family PCA all minimize Bregman divergence (Singh and Gordon, 2008b).

Although often used in data analysis for dimensionality reduction, clustering or low-
rank approximation, there have been only a few applications of matrix factorization
in data fusion. Lange and Buhmann (2005) proposed an integration by non-negative

matrix factorization of a target matrix, which was a convex combination of similarity
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matrices obtained from multiple information sources. Their work is similar to that
of Wang et al. (2012), who applied non-negative matrix tri-factorization with input
matrix completion. Note that both approaches implement early integration and can
model only multiple dyadic relations. Their approaches cannot be used to model re-
lations between more than two object types, which is a major distinction with the

algorithm proposed in this chapter.

Zhang et al. (2012) proposed a joint matrix factorization to decompose a number of
data matrices R; into a common basis matrix W and different coefficient matrices H;,
such that R; # W H; by minimizing ), ||R; — W H;| |12:r0. This is an intermediate
integration approach with different data sources but it can describe only relations whose
objects (i.e. rows in R;) are fixed across relation matrices. Similar approaches but
with various regularization types were also proposed, such as network- or relation-
regularized constraints (Li and Yeung, 2007; Zhang et al., 2011b) and hierarchical
priors (Singh and Gordon, 2008a, 2010). Our work generalizes these approaches by
simultaneously dealing with objects of different types, where we can vary object types

along both dimensions of relation matrices, R;;) and can constrain objects of every

type.

There is an abundance of work on matrix factorization models that consider a sin-
gle dyadic relation matrix or multiple relation matrices between the same two types
of objects (Wang et al., 2008; Sutskever, 2009; Li et al., 2009a; Singh and Gordon,
2010; Zhang et al., 2011b; Wang et al., 2012) that are subsumed in our approach. For
instance, Nickel et al. (2011) proposed a tri-factorization model for multiple dyadic re-
lations that factorized every R; as R; ~ AS;A”. Although their model is appropriate
for certain tasks of collective learning, all R; describe relations between the same two
sets of objects, whereas our approach models multi-relational and multi-object type

data.

Rettinger et al. (2012) proposed context-aware tensor decomposition for relation pre-
diction in social networks, CARTD. They decompose a tensor into additive factorized
matrices using two-factor decomposition. They assume that input data is provided to-
gether with the contextual information that describes one specific relation, the recom-
mendation. The drawback of their and similar approaches (Kolda and Bader, 2009;

Sutskever, 2009; Rendle et al., 2011) for r-ary tensors is that in higher dimensions
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(r > 3) the tensors become increasingly sparse and the computational requirements
become infeasible. Notice that here r corresponds to number of different object types
in DFME In comparison, the approach proposed in this chapter can handle tens of

different object types.

Wang et al. (2008) and Wang et al. (20112) proposed tri-SPMF and S-NMTE, re-
spectively, a simultaneous clustering of multi-type relational data via symmetric non-
negative matrix tri-factorization. These two methods are conceptually similar to our
approach and use both inter-type and intra-type relations, but they require a full set
of symmetric relation matrices, R; ;= R;rl These assumptions of tri-SPMF and S-
NMTF are rarely met in real-world fusion scenarios (see, for example, a fusion config-
uration from Fig. 7.1, which is not a 6-clique), where we do not have access to relation
matrices between all possible pairs of object types (i.e. R;; forl <i < j<r). The
tri-SPMF and S-NMTF algorithms do not converge to a local minimum if described

relations are asymmetric (R;; # Rﬁ).

We are currently witnessing increasing interest in the joint treatment of heterogeneous
data sets and the emergence of approaches specifically designed for data fusion. Be-
sides matrix factorization-based methods as reviewed above, these approaches include
canonical correlation analysis (Chaudhuri et al., 2009), combining many interaction
networks into a composite network (Mostafavi and Morris, 2012), multiple graph
clustering with linked matrix factorization (Tang et al., 2009), a mixture of Markov
chains associated with different graphs (Zhou and Burges, 2007), dependency-seeking
clustering algorithms with variational Bayes (Klami and Kaski, 2008), latent factor
analysis (Lopes et al., 2011; Luttinen and Ilin, 2009), nonparametric Bayes ensemble
learning (Xing and Dunson, 2011), approaches based on Bayesian theory (Zhang and
Ji, 2006; Alexeyenko and Sonnhammer, 2009; Huttenhower et al., 2009), neural net-
works (Carpenter et al., 2005), and module guided random forests (Chen and Zhang,

2013).

Data integration approaches from the previous paragraph either fuse input data (early
integration) or predictions (late integration) and do not directly combine heteroge-
neous representation of objects of different types. A state-of-the-art approach that can
address such data through intermediate integration is kernel-based learning. Multi-

ple kernel learning (MKL) has been pioneered by (Lanckriet et al., 2004a) and (Bach
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etal., 2004) and is an additive extension of single kernel SVM to incorporate multiple
kernels in classification, regression and clustering. The MKL assumes that &, ..., &,
are r different representations of the same set of n objects. Extension from single to
multiple data sources is achieved by additive combination of kernel matrices, given
by Q = {2;21 0,K;|Vi : 6, >0, i 0? =1,K; > 0}, where 6, are weights of the
kernel matrices, 6 is a parameter determining the norm of constraint posed on coef-
ficients (for L,, L,-norm MKL, see (Kloft et al., 2009, 2011; Yu et al., 2010, 2012))
and K are normalized kernel matrices centered in the Hilbert space. Among other im-
provements, (Yu et al., 2010) extended the framework of the MKL in (Lanckriet et al.,
20042) by optimizing various norms in the dual problem of SVMs that allows non-
sparse optimal kernel coefficients 8}, (Gonen and Alpaydin, 2011) recently reviewed
several MKL algorithms and concluded that, in general, using multiple kernels instead
of a single one is useful. The heterogeneity of data sources in the MKL is resolved by
transforming different object types and data structures (e.g., strings, vectors, graphs)
into kernel matrices. These transformations depend on the choice of the kernels, which

in turn affects the method’s performance (Debnath and Takahashi, 2004).
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We present two case studies from bioinformatics and cheminformatics, where recent
technological advancements have allowed researchers to collect large and diverse exper-
imental data sets (Parikh and Polikar, 2007; Pandey et al., 2010; Savage et al., 20105
Xing and Dunson, 2011). From bioinformatics, we study prediction of gene func-
tion, where the target relation is given by a binary matrix representing relationships
between genes of the amoeba Dictyostelium discoideum and their associated functions
or processes (Gene Ontology (GO) terms, Ry,). In the cheminformatics study, the
binary target matrix encodes the pharmacologic actions of a subset of chemicals from
PubChem database. We apply DFMF to fuse eleven data matrices for gene function
prediction and six data matrices for the prediction of pharmacologic actions. Dur-
ing testing, we estimate the relation for a previously-unseen pair (Gene, GO Term) or

(Chemical, Pharmacologic Action).

We compare our collective matrix factorization model DFMF to an early integration
by random forests (Breiman, 2001; Boulesteix et al., 2008), intermediate integration
by multiple kernel learning (MKL) (Yu et al., 2010) and relational learning by matrix
factorization (tri-SPMF) (Wang et al., 2008). Kernel-based fusion used a multi-class
L, norm MKL with Vapnik’s SVM (Ye et al., 2008). The MKL was formulated as
a second order cone program (SOCP) and its dual problem was solved by the conic
optimization solver SeDuMi. Random forests from the Orange data mining suite were
used with default parameters. Relational learning by tri-SPMF used the matrix factor-
ization algorithm from Wang et al. (2008) and a procedure described in Sec. 6.2.6 for

predicting associations.
7.1 Gene function prediction task

Various classification schemes were developed to standardize the association of genes
to its function. Of these, Gene Ontology (GO) (Ashburner et al., 2000) is adopted
widely and is thus suitable for computational studies (Mostafavi and Morris, 2012;
Radivojac et al., 2013). In our study, given a gene, we aimed to predict a set of its

associated GO terms along with the confidence of the association.
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7.1.1  Data

We observed six object types (Fig. 7.1): genes (type 1), ontology terms (type 2), experi-
mental conditions (type 3), publications from the PubMed database (PMID) (type 4),
Medical Subject Headings (MeSH) descriptors (type 5), and KEGG pathways (Kane-
hisaetal., 2014) (type 6). The data included gene expression measured during different
time-points of a 24-hour development cycle (Parikh et al., 2010) (Ry3, 14 experimen-
tal conditions), gene annotations with experimental evidence code to 148 generic slim
terms from the GO (R ), PMIDs and their associated D. discoideum genes from dic-
tyBase (Ryy), genes participating in KEGG pathways (R ), assignments of MeSH
descriptors to publications from PubMed (Rys), references to published work on as-
sociations between a specific GO term and gene product (Ry,), and associations of

enzymes involved in KEGG pathways and related to GO terms (Ryg;,).

To balance R, our target relation matrix, we added an equal number of non-associa-
tions for which there is no evidence of any type in the GO. We constrained our system
by considering gene interaction scores from STRING v9.0 (@) and slim term sim-
ilarity scores (@,) computed as —0.2"P5  where hops was the length of the shortest
path between two terms in the GO graph. Similarly, MeSH descriptors were con-
strained with the average number of hops in the MeSH hierarchy between each pair of
descriptors (@5). Constraints between KEGG pathways corresponded to the number
of common ortholog groups (@¢). The slim subset of GO terms was used to limit the
optimization complexity of the MKL and the number of variables in the SOCP, and to
ease the computational burden of early integration by random forests, which inferred

a separate model for each of the terms.

We conducted three experiments in which we considered cither 100 or 1000 most
GO-annotated genes or the whole D. discoideum genome (~12,000 genes). We also
examined the predictions of gene associations with any of nine GO terms that are of
specific relevance to the current research in the Dictyostelium community (upon consul-
tations with Gad Shaulsky, Baylor College of Medicine, Houston, TX; see Table 7.2).
Instead of using a generic slim subset of terms, we examined the predictions in the
context of a complete set of GO terms. This resulted in a data set with ~2,000 terms,

each term having ~10 direct gene annotations.
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Figure 7.1

The fusion configuration
for gene function predic-
tion task in D. discoideum.
Some relations are en-
tirely missing, for instance
Rj3. Nodes represent
object types used in our
study. Edges correspond
to relation and constraint
matrices. The arc that
represents the target matrix
R, and its object types
are highlighted.
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7.1.2  Preprocessing for kernel-based fusion

We generated an RBF kernel for gene expression measurements from R3 with the
RBF function x(x;,x;) = exp(—||x; — xj||2/20'2), and a linear kernel for [0, 1]-
protein-interaction matrix from @;. This particular choice of kernels was motivated
by the experimental study and kernel comparison in (Lanckriet et al., 2004c). Kernels
were applied to data matrices. We used a linear kernel to generate a kernel matrix
from D. discoideum specific genes that participate in pathways (R4), and a kernel
matrix from PMIDs and their associated genes (R4). Several data sources describe
relations between object types other than genes. For kernel-based fusion we had to
transform them to explicitly relate to genes. For instance, to relate genes and MeSH
descriptors, we counted the number of publications that were associated with a specific
gene (Ry4) and were assigned a specific MeSH descriptor (Rys, see also Fig. 7.1). A
linear kernel was applied to the resulting matrix. Kernel matrices that incorporated
relations between KEGG pathways and GO terms (Rg;), and publications and GO

terms were obtained in similar fashion.
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To represent the hierarchical structure of MeSH descriptors (®s), the semantic struc-
ture of the GO graph (0,) and ortholog groups that correspond to KEGG pathways
(@), we considered the genes as nodes in three distinct large weighted graphs. In
the graph for @5, the link between two genes was weighted by the similarity of their
associated sets of MeSH descriptors using information from R4 and Ry5. We con-
sidered the MeSH hierarchy to measure these similarities. Similarly, for the graph for
®, we considered the GO semantic structure in computing similarities of sets of GO
terms associated with genes. In the graph for @, the gene edges were weighted by the
number of common KEGG ortholog groups. Kernel matrices were constructed with

a diffusion kernel (Kondor and Lafferty, 2002).

The resulting kernel matrices K € R™" were centered as K(i,j) = K(,j) —
InY, K(@,j)—1/n Zj K@, j)+1/n? Z[j K(i, j) and normalized using the formula
K"(@i,j) = Kc(i,j)/\/m. The parameters for all kernels were selected
through internal cross-validation. In cross-validation, only the training part of the ma-
trices was optimized for learning, while centering and normalization were performed
on the entire data set. The prediction task was defined through the classification matrix

of genes and their associated GO slim terms from R 5.
7.1.3  Preprocessing for early integration

‘The gene-related data matrices prepared for kernel-based fusion were also used for early
integration and were concatenated into a single data table. Each row in the table repre-
sented a gene profile obtained from all available data sources. For our case study, each
gene was characterized by a fixed 9,362-dimensional feature vector. For each GO slim
term, we then separately developed a classifier with a random forest of classification

trees and reported cross-validated results.
7.1.4  Preprocessing for tri-SPMF learning

Relation and constraint matrices prepared for DFMF were also used for tri-SPMF fac-
torization algorithm. Tri-SPMF requires a full set of relation matrices between all pairs
of object types. Thus, we used zero matrices for non-existing relations from Fig. 7.1.

For instance, Rg3 and @, were represented by zero matrices of proper dimensions. Be-
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cause tri-SPMF requires that relations are symmetric, we set Rj; = R?} for all available

relation matrices.
7.2 Pharmacologic action prediction rask

Identification of the mechanisms of action of chemical compounds is a crucial task in
drug discovery (Paolini et al., 2006; lorio et al., 2010). Here, our aim was to com-
putationally predict pharmacologic actions of chemical compounds as defined in the

PubChem database (Wang et al., 2009).

7.2.1  Data

We considered six object types (Fig. 7.2): chemicals (type 1), PubChem’s (Wang ct al.,
2009) pharmacologic actions (type 2), publications from the PubMed database (PMID)
(type 3), depositors of chemical substances (type 4) and their categorization (type 6),
and PubChem substructure fingerprints (type 5).

The data included 1,260 chemicals extracted from the complete DrugBank (Law et al.,
2014) database (accessed in Feb. 2014) that were identified with at least one pharma-
cologic action in the PubChem Compound database. In that way, every chemical
(drug) was assigned one or more MeSH headings that described its pharmacologic
actions and corresponded to D27.505 tree of the 2014 MeSH Tree Structure (tar-
get relation R,). For example, established pharmacologic actions for Aspirin include
“Anti-Inflammatory Agents, Non-Steroidal”, “Fibrinolytic Agents” and “Antipyretics.”
To increase the number of chemicals assigned to a particular pharmacologic action, the

actions of the chemical also included those from its direct parents in the D27.505 tree.

Other data considered were publications from the PubMed database (R 3), data on de-
positors who submitted substances of the chemicals present in PubChem Compound
records (Ry4), categories of data depositors (Ryg) and PubChem substructure fin-
gerprints (R;s). These fingerprints consist of a series of 881 binary indicators, each
denoting the presence or absence of a particular substructure in a molecule. Collec-
tively, these binary keys provide a “fingerprint” of a particular chemical structure form.
Chemicals are constrained by a matrix of substructure-based Tanimoto 2D similarity

(®,) obtained through PubChem Score Matrix Service.
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7.2.2  Preprocessing for alternative learning methods

For the kernel-based fusion, we generated the kernel matrices for chemicals from R 3,
R, R|5and O (Fig. 7.2) using the polynomial kernel of degree 2. We included data
on depositors (Ry) by applying a polynomial kernel to R4 Ry4. The resulting kernel
matrices were centered and normalized, and the kernel parameters were selected in in-
ternal cross-validation (see Sec. 7.1.2 for details). Preprocessing for early integration
by random forests and tri-SPMF learning followed the same procedures as described
in Sec. 7.1.3 and Sec. 7.1.4, respectively. The prediction task was defined by the asso-

ciations of chemicals to pharmacologic actions given by R, (Fig. 7.2).
7.3 Scoring

We estimated the quality of inferred models by ten-fold cross-validation. In each iter-
ation, we split the set of genes (chemicals) to a train and test set. The corresponding
data on genes (chemicals) from the test set was entirely omitted from the training data.
We developed prediction models from the training data and tested them on the genes

(chemicals) from the test set. The performance was evaluated using an F score, a har-
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Figure 7.2

"The fusion configuration
for the prediction of
pharmacologic actions

of chemicals, with object
types denoted with nodes
and relations between
them with edges. The
edge representing the
target relation and its
corresponding data matrix
R is highlighted.
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monic mean of precision and recall, and area under ROC curve (AUC). Both scores

were averaged across cross-validation runs.
7.4 Predictive performance

Table 7.1 presents the cross-validated F and AUC scores for both gene function pre-
diction (data set of slim GO terms) and prediction of pharmacologic actions. The
accuracy of DFMF is at least comparable to MKL and substantially higher than that of
early integration by random forests and relational learning by tri-SPMFE. When more
genes and hence more data were considered for the gene function prediction the per-

formance of all four fusion approaches improved.

Poorer performance of tri-SPMF was most probably due to required introduction of
relations into factorized system that were not present in the input data. Consequently,
the ability of tri-SPMF to infer relations of interest between other object types de-
teriorated considerably. Notice also that tri-SPMF could not be applied if fusion
schemes in Figs. 7.1 or 7.2 would contain asymmetric or one-way relations, such as
those from the analysis of signed networks (Leskovec et al., 2010) and computational
biology (Notebaart et al., 2009), among others. We also observed numerical instability
with tri-SPME which was exhibited as an increase in the value of objective function
between successive iterations. In contrast, DFMF exhibited numerical stability in all

experiments (results not shown).

The accuracy for nine GO terms selected by domain expert is given in Table 7.2. The
DEMEF performs consistently better than the other three approaches. Again, the early
integration by random forests is inferior to all three intermediate integration methods.
Notice that, with only a few exceptions, both F; and AUC scores of DFMF are high.
This is important, as all nine gene processes and functions observed are relevant for
current research of D. discoideum where the methods for data fusion can yield new

candidate genes for focused experimental studies.

Our fusion approach is faster than multiple kernel learning. DFMF required 18 min-
utes of runtime on a standard desktop computer compared to 77 minutes for MKL to
finish one iteration of cross-validation of the whole-genome variant of gene function

prediction task. The factorization algorithm of DFMF also took less time to execute
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Table 7.1

Cross-validated F; and AUC accuracy scores for fusion by matrix factorization (DFMF), kernel-based method (MKL), random
forests (RF) and relational learning-based matrix factorization (tri-SPMF).

Prediction task DFMF MKL RF tri-SPMF

F, AUC F, AUC F,_ AUC F, AUC

100 D. discoideum genes 0.799 0.801 0.781 0.788 0.761 0.785 0.731 0.724

1000 D. discoideum genes 0.826 0.823 0.787 0.798 0.767 0.788 0.756 0.741

D. discoideum genome 0.831 0.849 0.800 0.821 0.782 o.801 0.778 0.787

Pharmacologic actions 0.663 0.834 0.639 0.811 0.643 0.819 0.641 0.810
Table 7.2

Gene Ontology term-specific cross-validated Fy and AUC accuracy scores for fusion by matrix factorization (DFMF), kernel-
based method (MKL), random forests (RF) and relational learning-based matrix factorization (tri-SPMF). Seq.-spec. DNA
TFA, sequence-specific transcription factor activity; Activation of ACA, activation of adenylate cyclase activity.

GO term name Term identifier Size DFMF MKL RF tri-SPMF

F,  AUC F,  AUC F,  AUC F,  AUC
Activation of ACA 0007190 11 0.834 0.844 o0.770 0.781 0.758 0.601 0.729 0.731
Chemotaxis 0006935 s8 0.981 0.980 0.794 0.786 0.538 0.724 0.804 0.810

Chemotaxis to cAMP 0043327 21 0.922 0.910 0.835 0.862 0.798 0.767 0.838 0.815

Phagocytosis 0006909 33 0.956 0.932 0.892 0.901 0.789 0.619 0.836 0.810
Response to bacterium 0009617 (31 0.899 0.870 0.788 0.761 0.785 0.761 0.817 0.831
Cell-cell adhesion 0016337 14 0.883 0.861 0.867 0.856 0.728 0.725 0.799 0.834
Actin binding 0003779 43 0.676 0.781 0.664 0.658 0.642 0.737 0.671 0.682
Lysozyme activity 0003796 4 0.782 0.750 0.774 0.750 0.754 0.625 0.747 0.625

Seq.-spec. DNA TFA 0003700 79  0.956 0.948 0.894 0.901 0.732 0.759 0.892 0.852

than tri-SPMF due to redundant representation of fusion system required by tri-SPMF.
7.5 Sensitivity to inclusion of data sources

Inclusion of additional data sources improves the accuracy of prediction models. We
illustrate this for gene function prediction in Fig. 7.3, where we started with only the
target data source R, and then added either R 3 or @ or both. Similar effects were
observed when we studied other combinations of data sources (not shown here for

brevity). Notice also that due to ensembling the cross-validated variance of F; is small.
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Figure 7.3

Adding new data sources
(left) or incorporating
more object-type-specific
constraints in @ (right)
both increase the accuracy
of matrix factorization-
based models for gene
function prediction task.
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7.6 Sensitivity to inclusion of constraints

We varied the sparseness of gene constraint matrix @ by holding out a random subset
of protein-protein interactions. We set the entries of @, that corresponded to held-out
constraints to zero so that they did not affect the cost function during optimization.
Fig. 7.3 shows that including additional information on genes in the form of con-

straints improves the predictive performance of DFMF for gene function prediction.
7.7 Matrix factor initialization study

We studied the effect of matrix factor initialization on DFMF by observing the re-
construction error after one and after twenty iterations of optimization procedure, the
latter being about one fourth of the iterations required for the optimization algorithm
to converge when predicting gene functions. We estimated the error relative to the
optimal (ky, k,, ... , kg)-rank approximation given by the SVD. For iteration v and

matrix R;; the error was computed by:

IR, - G\”S(GTV|> - dp(R,;. [R;;1,)

dp(R,;, [R;;10) ’ -1

Err;;(v) =

where G,@, G;.U) and Si(;j) were matrix factors obtained after v iterations of factor-
ization algorithm. In Eq. (7.1), dp(R;;, [R;;1,) = [IR;; — UkaVkT| |2 denotes the

Frobenius distance between R;; and its k-rank approximation given by the SVD, where
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Table 7.3

Effect of initialization algorithm on reconstruction error of DFMF’s factorization model.

Method Time G©  Storage GO Errj5(1)  Err;5(20)

Rand. 0.0011 s 618K 5.1 3.61
Rand. C 0.1027s 553K 2.97 1.67
Rand. Acol  0.0654s s05K 1.59 1.30
K-means 0.4029 § 562K 2.47 2.20
NNDSVDa o.1193 s 562K 3.50 2.01

k = max(k;, k;) is the approximation rank. Err;;(v) is a pessimistic measure of quan-
titative accuracy because of the choice of k. This error measure is similar to the error

of the two-factor non-negative matrix factorization from (Albright et al., 2006).

Table 7.3 shows the results for the experiment with 1000 most GO-annotated D. dis-
coideum genes and selected factorization ranks k; < 65, i € [6]. The informed ini-
tialization algorithms surpass the random initialization. Of these, the random Acol

algorithm performs best in terms of accuracy and is also one of the simplest.
7.8  Early integration by matrix factorization

Our data fusion approach simultaneously factorizes individual blocks of data in R.
Alternatively, we could also disregard the data structure, and treat R as a single data
matrix. Such data treatment would transform our data fusion approach to that of
carly integration and lose the benefits of structured system and source-specific factor-
ization. To prove this experimentally, we considered the 1,000 most GO-annotated D.
discoideum genes. The resulting cross-validated F| score for factorization-based early
integration was 0.576, compared to 0.826 obtained with our proposed data fusion
algorithm. This result is not surprising as neglecting the structure of the system also
causes the loss of the structure in matrix factors and the loss of zero blocks in factors
S and G from Eq. (6.3). Clearly, data structure carries substantial information and

should be retained in the model.
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We have described a new matrix factorization-based data fusion algorithm called DFME
The approach is flexible and, in contrast to state-of-the-art kernel-based methods, re-
quires minimal, if any, preprocessing of input data. This latter feature, the ability to
model multi-relational and multi-object type data, and DFMF’s excellent accuracy and

time response, are the principal advantages of our new algorithm.

DFMEF can model any collection of data sets, each of which can be expressed as a
matrix. Tasks from bioinformatics and cheminformatics considered here that were
traditionally regarded as classification problems exemplify just one type of data min-
ing problems that can be addressed with our method. We anticipate the utility of
factorization-based data fusion in multi-task learning, association mining, clustering,

link prediction or structured output prediction.



Part IV

Latent chaining and profiling







Gene prioritization

169



170

9 Gene prioritization M Zitnik

In everyday life, we make decisions by considering all the available information, and
often find that inclusion of even seemingly circumstantial evidence provides an advan-
tage. Our new computational method Collage prioritizes genes from a large collection
of heterogeneous data. In a case study on social amoeba Diczyostelium, we started from
four bacterial response genes and 14 different data sets ranging from gene expression
to pathway and literature information. Collage proposed eight candidate genes that
were tested in the wet lab. Mutations in all eight candidates reduced the ability of the
amoebae to grow on Gram-negative bacteria. This is a remarkably accurate result since
only about a hundred of the 12,000 Dictyostelium genes are estimated to be responsible

for bacterial response.

Data integration procedures combine heterogeneous data sets into predictive models,
but they are limited to data explicitly related to the target object types, such as genes.
Collage is a new data fusion approach to gene prioritization. It considers data sets of
various association levels with the prediction task, utilizes collective matrix factoriza-
tion to compress the data, and chaining to relate different object types in the data.
Collage prioritizes genes based on their similarity to several seed genes. We tested
Collage by prioritizing bacterial-response genes in Dictyostelium as a novel model sys-
tem for prokaryote-eukaryote interactions. Using 4 seed genes and 14 data sets, only
one of which was directly related to bacterial responses, Collage proposed 8 candidate
genes that were readily validated as necessary for the response of Dictyostelium to Gram-
negative bacteria. These findings establish Collage as a method for inferring biological

knowledge from the integration of heterogeneous and coarsely related data sets.
9.1  Background

In the natural sciences, incorporating all the data, especially circumstantial informa-
tion, can be conceptually and computationally challenging. The difficulty stems from
the heterogeneity and abundance of data sets. Consider a typical data analysis task in
molecular biology: besides experimental data, such as levels of gene expression, there
are plenty of other data sets at our disposal, such as protein-protein binding sites, ge-
netic and metabolic pathways, functional annotations, genetic interactions, phenotype
ontologies, diseases, drugs and their side effects. Intuitively, collective mining of all

available information sources should improve accuracy of predictive modeling. How-
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ever, the challenges are to integrate seemingly unrelated concepts from heterogeneous

data sets (Ormrod, 2011) and fuse various data sets into a single predictive model.

Here we present a method called Collage that can consider a large number of poten-
dally indirectly related data sets and use them for gene prioritization. Computational
prediction of gene function is a formidable challenge. Given a small set of seed genes
that are known to be responsible for a particular function, gene prioritization (Moreau
and Tranchevent, 2012) aims to identify the most promising candidates for further
studies. Present data integration approaches for gene prioritization can be divided into
four groups: methods that consecutively filter one data set at a time (Franke et al.,
2004); methods that stitch together gene profiles from different data sources and then
treat the stitched parts equally (Sifrim et al., 2013); methods that use each data set
separately to estimate the similarity of candidates to the seed genes and then fuse sim-
ilarity scores through weighting (Lanckriet et al., 2004b; Aerts et al., 20065 De Bie
et al., 2007; Sun et al., 2009; Chen et al., 2009; Yu et al., 2010; Fontaine et al., 20113
Schlicker et al., 2010); and methods that construct gene correlation networks inde-
pendently from each data set and find genes that are similar to the seed genes in the
composite network (Sharma et al., 20105 Kéhler et al., 2008; Mostafavi et al., 2008;

Mostafavi and Morris, 2012; Wang et al., 2014).

These approaches are limited to data that explicitly refer to genes. They cannot readily
treat data that are relevant for gene prioritization but are provided in a non-gene data
space, such as disease ontologies, phenotype classifications, drug interactions and anno-
tations of small chemicals. A labor-intensive approach to consider data from non-gene
space is feature engineering, which transforms circumstantial data into gene profiles.
However, feature engineering is neither standardized nor effortless and is a bottleneck
that prevents the implementation of truly large-scale data fusion for gene prioritization.
As an alternative to gene-centric approaches, Collage represents a major advancement
in (i) the breadth of data it can incorporate, (ii) the ease of data integration without
complex feature engineering, (iii) the high prediction accuracy, (iv) the ability to retain
the relational structure both within and between data sets during model inference and

(v) the capacity to incorporate knowledge of data structure in model design.

We used Collage to solve a problem in an exciting and relatively new field of interest —

the use of Dictyostelium as a model system to explore the interaction between eukaryotes
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and prokaryotes. D. discoideum is a free-living soil amoeba that feeds on bacteria.
The amoebae eat both Gram-negative and Gram-positive bacteria, but they respond
differently to bacteria from these two groups. Early studies have shown that mutations
can impair the ability of the amoebae to grow on either Gram-positive or on Gram-
negative bacteria (Newell et al., 1977). Other studies have shown that the amoebae
can serve as a model for the interaction between eukaryotes and prokaryotes, including
pathogenesis (Bozzaro and Eichinger, 2011; Lima et al., 20115 Steinert, 2011). This
system is an important addition to the field because Dictyostelium is a very convenient
model organism that offers a variety of experimental tools, including classical genetics

and modern genomic approaches.

The interaction between D. discoideum and several Gram-positive and Gram-negative
bacteria has recently been explored with genetic and genomic methods (Nasser et al.,
2013). These studies revealed transcriptome-level responses to the two bacterial groups
and discovered a handful of genes that are essential for growth of amoebae on bacteria.
The genetic analysis suggested that one in a hundred of the 12,000 genes in the D.
discoidenm genome is required for bacterial discrimination. Identifying and character-
izing these genes is a laborious task that requires several months of work per gene. We
hypothesized that Collage could simplify this task by prioritizing genes and suggesting

which ones should be tested by direct experiments.
9.2 Gene prioritization by compressive data fusion and chaining

Next, we overview the Collage gene prioritization algorithm. The fundamental build-
ing block of Collage is matrix tri-factorization of a single relation matrix (Fig. 9.1).
To model a particular relation, tri-factorization decomposes the data matrix into three
smaller, low-dimensional latent matrices, whose product should well reconstruct the
original matrix. Two latent recipe matrices map objects A and B into the latent space,
and the remaining backbone matrix describes the relations in the latent space. In

essence, the backbone matrix is a compressed version of the original data matrix.

We proceed by providing a more detailed overview of gene prioritization algorithm.

The entire operation of Collage can be decomposed into four major parts:

Step I: Compressive data fusion — Collage collectively models many data matrices that
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share object types. We organize the matrices in a data fusion graph. Object
types are denoted as nodes (A to G in Fig. 9.2), which may correspond to genes,
ontology terms, diseases and patients, etc. Instead of separately tri-factorizing
each data matrix, Collage collectively factorizes all the matrices to a set of back-
bone matrices (edges, matrices in blue, one for each original data matrix) and
recipe matrices (nodes, one for each object type), where the recipe matrices are

shared across data sets that report on a common object type.

Step II: Chaining of latent matrices — Collage chains latent matrices of the resulting
factorized model to profile target objects, e.g., genes, in the latent space of any
other object type. For example, Fig. 9.2c shows the profiling of objects A in the
latent space C. Object profiles are constructed by chaining that starts at node
A and traverses the graph to node C through D and E. Chaining multiplies the
recipe matrix A by the backbone matrices along the traversed path. The A-to-C
path in Fig. 9.2¢ is one of nine chains through which we can profile objects A
in our exemplar data fusion graph. The nine chains of latent matrices for the

exemplar fusion graph from Fig. 9.2a are shown in Fig. 9.2d.

Step I1I: Similarity estimation — Collage uses the profile matrices obtained by chaining
in Step II to estimate similarity between target objects (object type A, genes, in
Fig. 9.2) and seed objects. The number of profile vectors for each object of
type A corresponds to the number of chains. Collage compares the profiles
of candidate genes to the profiles of the seed genes. Given a candidate gene,
Collage records its rank correlation-based similarities in a similarity score matrix
with seed genes in the columns and chained profiles in the rows (Fig. 9.2¢). The

final score estimates the similarity of a candidate to a set of seed genes and is

obtained by summarizing the similarity score matrix with a single value (green

circle) computed by a median-based L-estimator.

Step IV: Gene ranking — The similarity score of a gene is a proxy for its degree of
involvement in the phenotype characterized by the set of seed genes. Hence
the prioritization is defined by ranking the candidates according to their seed-

similarity scores (Fig. 9.2f).

In the remainder of this section we provide a more detailed overview of each of the

four components of Collage.
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Figure 9.1

Each data matrix in Col-
lage relates two object
types. We graphically rep-
resent this relation such
that nodes A and B repre-
sent object types and the
directed edge A-B connects
the two nodes with an
associated data matrix. The
matrix has objects of type
A, e.g., genes, in the rows
and objects of type B, e.g.,
experimental conditions, in
the columns as indicated
by the edge directionality.
Grey cells in the matrix
represent quantitative mea-
surements, e.g., mRNA
transcript abundance, or
binary memberships that
relate objects in rows to
objects in columns. Empty
cells denote missing values.
See Sec. 9.2 for further
explanation.
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9.2.1  Step I: Compressive dara fusion

Collage starts with a collection of data sets and can consider any kind of informa-
tion (data tables, ontologies, associations, networks) that can be encoded in a matrix
(Fig. 9.3). Each data set is viewed as a relation between two object types. For ex-
ample, gene expression data relate gene names (columns) to experimental conditions
(rows), where the entries represent transcript abundance. Literature annotation data
relate research papers and their contents to annotation terms, where the entries are
Boolean. Such data sets are abundant in the field of molecular biology and they re-
port on dyadic relations that can be encoded in matrices. Matrix data representation
is suitable for a wide range of data types, including tables, associations, ontologies and
networks. Whenever data sets share object types, we can connect them in a data fusion
graph with object types as nodes and data matrices as edges. In the simplest data fusion
graph shown in Fig. 9.1, node A may represent known genes in a certain genome and
node B may denote various experimental conditions. A gene from A could be related
to an experimental condition in B through a level of its mRNA abundance. Relation-
ships between all genes and experimental conditions are represented in a data matrix

that is placed on the edge A-B.
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We model the system of data sets (Fig. 9.2a) through data fusion by collective matrix
factorization (Zitnik and Zupan, 2015a). Matrix factorization compresses the data
matrices to a latent space and infers recipes to convert the latent representation back
to the original data domain. Each data matrix is decomposed into a product of three
low-dimensional latent matrices: a backbone matrix encodes the relations between the
latent components, and two recipe matrices transform the backbone matrix to the orig-
inal space of the object types (Fig. 9.1). Data sets that are directly related and share
a node in the fusion graph report on a common object type and hence use a com-
mon recipe matrix in their decomposition. Importantly, decomposition of any data
set in the system depends on all other data sets according to a design of the fusion
graph (Fig. 9.2b). Sharing of recipe matrices ensures data fusion and allows Collage to

incorporate knowledge about the relations between data sets.

9.2.2  Step II: Chaining of latent matrices

Collage profiles objects in the latent space of any other object type based on the con-
nectivity in the data fusion graph. In the simplest scenario, where object types are
adjacent, such as A and D in Fig. 9.2b, Collage profiles objects of type A in the latent
space of D by multiplying the recipe matrix of A by the backbone matrix A-D. The
resulting profile matrix has objects of type A in rows and the latent components of
type D in columns. The advantage of Collage over other gene prioritization tools is
its ability to profile objects whose types are not direct neighbors in the fusion graph,
such as A and C in Fig. 9.2b. To profile objects of A in the latent space of C Collage
starts with the recipe matrix of A and multiplies it by backbone matrices A-D, D-F
and F-C on the path from A to C (Fig. 9.2¢). If A represented genes, D literature, F
literature annotations and C chemical compounds, this procedure would yield profiles
of genes in the latent space of chemical compounds. We refer to this technique as
latent matrix chaining. It constructs dense profiles that include the most informative
features obtained by collectively compressing data via matrix factorization. Intuitively,
chaining is able to establish links between genes and chemical compounds even though

relationships between these object types are not available in input data in Fig. 9.2a.
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9.2.3  Steps III and IV: Gene prioritization

Collage prioritizes objects of the target object type, e.g., genes, node A in Fig. 9.2,
based on a small set of seed objects (previously characterized genes). For each target
object, it constructs a set of profile matrices by considering all possible chains of latent
matrices that start in the target node and end in any node that is reachable in data
fusion graph (Fig. 9.2d). A profile matrix corresponds to a particular latent matrix
chain and encodes the latent space of the chain’s last node. Each profile matrix is used
to estimate the similarity between any two targets (genes) by comparing their respective
profiles. Collages estimates the overall similarity between a candidate gene and the seed
genes by aggregating similarity scores of the candidate gene across all profile matrices
(Fig. 9.2¢). As a final step, Collage ranks all the genes based on their overall similarity
with the seed genes (Fig. 9.2f).

9.3 A case study: bacterial response
gene prioritization in Dictyostelium

Collage is agnostic to data types it can consider and can be applied to any collection of
data sets and any phenotype of interest. We used Collage to find genes that affect D.
discoideum growth on the Gram-negative bacteria Klebsiella pneumoniae. We started
with four seed genes that have been previously identified in a genetic screen for D. dis-
coideum mutants that fail to grow on Gram-negative bacteria (Table 9.1). We fused 14
publicly available data sets that were considered relevant to the problem. Collectively,
these data sets describe relations between 10 object types (see data fusion graph in
Fig. 9.4). Our prioritization task was particularly challenging since there is not a lot of
information about Dictyostelium in the literature and in public databases and only one
of the data sets (Fig. 9.4, Bacterial RNA-seq, node 9) was directly related to the task.
Collage ranked ~12,000 genes from the Dictyostelium genome. The prioritized gene
list was then filtered by the reported availability of D. discoidenm gene knockout strains
in the Dicty Stock Center (http://dictybase.org/StockCenter/StockCenter.html). We
selected eight genes listed in Table 9.4 from the 30 top-ranked candidates in Table 9.3

(left column) for direct testing.



Data fusion 179

Table 9.1
Seed D. discoideum genes used for Gram-negative bacterial response gene prioritization. Seed genes used for prioritization by
Collage were selected based on the experiments published in (Nasser et al., 2013).

Gene  DictyBase ID Description

nip7  DDBGo295477  Ortholog of the conserved NIP7 nucleolar protein
that is required for 60S ribosome subunit biogene-

sis; contains a PUA domain.

clkB. DDBGo278487  Similar to the cell division cycle 2-related protein
kinase 7 (CRK7) and other cell division cycle 2-
like protein kinases; belongs to the CMGC group

of protein kinases.

spe3 DDBGo290851  Ortholog of the conserved microsomal signal pep-
tidase 23 kDa subunit; the signal peptidase com-
plex is a membrane-bound endoproteinase that re-
moves signal peptides from nascent proteins as they
are translocated into the lumen of the endoplasmic

reticulum; contains a putative signal peptide.

alyL ~ DDBGo0286229  Amoeba lysozyme family protein (aly), but diver-
gent compared to alyA-D.
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Figure 9.4

A data fusion graph for
bacterial response gene pri-
oritization in Dictyostelium.
Collage considered 14
data sets (edges, rep-
resented by arrows) in

this study describing

the relations between

10 object types (nodes,
represented by circles).

The data sets included
three whole-genome D.
discoideum RNA-seq exper-
iments (R|'7, Ryg, R],9)>
protein-protein interac-
tions from the STRING
database (©1), gene men-
tions in research articles
(R 2) and their Medical
Subject Headings (MeSH)
annotations (Rj 3), path-
way memberships from
the Kyoto Encyclopedia
of Genes and Genomes
(KEGG) and Reactome
databases (R 6, Ry 5,
R6,5)’ associations ofgenes
to phenotypes from Phe-
notype Ontology (R 19),
gene functions in Gene
Onrology (R 4) and in-
terrelatedness of Reactome
and KEGG pathways and
research literature with
Gene Ontology terms
(Rg 4> Rs 4> Ry 4)-
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9.3.1  Considered data sets

M Zitnik

A total of 14 data sets and 10 object types were considered for Gram-negative bacterial

response gene prioritization. Data sets were organized in a data fusion graph (Fig. 9.4).

We used RPKM-normalized RNA-seq transcriptional profiles of 35 abc-transporter

mutant strains and wild-type AX4 strain in two biological replicates and at four differ-

ent time points during development (Miranda et al., 2013) (R g), normalized gene

expression profiles analyzed by RNA-seq and measured at 4-hour intervals during the

24-hour development of D. discoideum in two biological replicates (Parikh et al., 2010)

(R} 7), and normalized abundances of gene transcripts in two replicates and four dif-

ferent bacterial growth conditions analyzed with RNA-seq (Nasser et al., 2013) (R g).
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We also included the following publicly available data sets: Phenotype Ontology (Fey
etal., 2009) annotations (R ;o) downloaded from the DictyBase data portal in March
2014, protein-protein interactions from the STRING v.9 database (Franceschini et al.,
2013) (0), membership of D. discoideum genes in pathways from the Reactome
database (Croft et al,, 2014) (Ry 6) downloaded in August 2013, Kyoto Encyclopedia
of genes and genomes (KEGG) pathway memberships (Kanchisa et al., 2014) (R} 5),
and annotations of genes in Gene Ontology (Ashburner et al., 2000) (Ry4). Addi-
tionally, we cross-referenced Reactome and KEGG pathways (R 5), Gene Ontology
terms and Reactome pathways (R 4), and KEGG orthology groups and Gene On-
tology terms (Rs 4). Literature data included associations of genes to research articles
from PubMed (R ;) accessed in August 2013 through DictyBase, mapping of research
articles to Gene Ontology terms (R, 4) and their Medical Subject Headings (MeSH)
(R, 3). Table 9.2 summarizes the number of objects of each type and the data sets

considered in our analysis.

9.3.2  Inference of a joint latent factor model

A total of 14 data sets and 10 object types were considered for Gram-negative bacterial
response gene prioritization (Fig. 9.4). Data sets are viewed as dyadic relations and are
encoded in relation and constraint matrices. Given a collection of relation matrices &
(R, for different choices of i and j) and a collection of constraint matrices € (@51) for
different choices of i, where / enumerates constraint matrices available for object type
i), collective matrix factorization simultaneously decomposes all the relation matrices
in & while regularizing the inferred latent model with the constraints in € using the

algorithm described in Chapter 6.

The inferred low-dimensional matrix factors G;, G; and S;; decompose the associated
relation matrix such that R;; = G;.S;; GjT. We call a n; X ¢; nonnegative latent matrix
G, a recipe matrix. It contains the latent profiles of objects of type i in the rows.
Another recipe matrix is a n; X ¢; nonnegative latent matrix G; with profiles of objects
of type j in the rows. We refer to a ¢; X ¢; latent matrix S;; as a backbone matrix. The
backbone matrix .S;; models interactions between latent components in the (i, j)-th
data set. Latent profile of an object of type i is given by its corresponding row vector

in G; and encodes membership of the object to ¢; latent components.
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Table 9.2

M Zitnik

Summary of data sets considered for bacterial response gene prioritization in D. discoideum. The notation of the data sets
(“Data matrix” column) is the same as in the data fusion graph (Fig. 9.4). All relation data matrices were normalized before
data analysis such that the Frobenius norm of every row profile was equal to 1.

Data matrix Matrix size

Description

R4

Ryg

0,

12,873 x 3,083

12,873 x 282

12,873 x 3,424

12,873 x 99

12,873 x 92

12,873 x 14

12,873 x 8

12,873 x 503

3,424 x 3,083

3,424 x 2,804

99 x 3,083

92 % 3,083

92 x99

12,873 x 12,873

Gene annotations from the Gene Ontology (Ashburner
et al., 2000).

RPKM-normalized RNA-seq transcriptional profiles of 35
abc-transporter mutant strains and wild-type AX4 strain in
two replicates and at four different time points during de-
velopment (Miranda et al., 2013).

Associations of D. discoideum genes to research articles from
PubMed accessed in August 2013.

Memberships of D. discoideum genes in the KEGG path-
ways (Kanchisa et al., 2014).

D. discoideum pathways from the Reactome database (Croft
etal, 2014) in August 2013.

Normalized gene expression profiles analyzed with RNA-seq
and measured at 4-hour intervals during 24-hour D. dis-
coideum development in two replicates (Parikh et al., 2010).
Normalized abundances of gene transcripts in two replicates
and four different bacterial growth conditions analyzed with
RNA-seq (Nasser et al., 2013).

Gene annotations from the DictyBase Phenotype Ontology
in March 2014.

Cross-references of research articles from the PubMed and
Gene Ontology terms. We counted the words from the Gene
Ontology term names that occurred in the abstracts of arti-
cles from the PubMed database.

Assignments of Medical Subject Headings (MeSH) to re-
search articles from the PubMed.

Cross-references of the KEGG orthology groups and Gene
Ontology terms. We mapped KEGG pathways to KEGG
orthology groups and used the mapping between ortholog
groups and Gene Ontology terms as specified by the KEGG
pathway browser.

Cross-references of the Reactome pathways and Gene On-
tology terms available in the generic Gene Ontology Slim
subset.

Cross-references of the Reactome and KEGG pathways by
semantic similarity of KEGG pathway names and Reactome
pathways display names.

Protein-protein interaction data from the STRING wv.9
database (Franceschini et al., 2013) in April 2014. Ortholog
mapping of Dictyostelium genes onto interactions from other
organisms is performed with the Clusters of Orthologous

Group (COGs).
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Relation reconstruction error
Total reconstruction error

Fraction of original data dimensionality

The algorithm for inference of the fused latent model given in Chapter 6 is an iterative
algorithm that starts by randomly initializing latent matrices G; and then alternates
between updating matrices G; and S;; until convergence. To ensure robust prioriti-
zation, the algorithm was run 20 times with different initializations of latent matrices.
The algorithm was run for a maximum of 200 iterations or was terminated early if the

total reconstruction error between consecutive iterations changed by less than o.o1.

Parameters of the algorithm are factorization ranks, ¢;, for every object type i in the data
fusion system. Our prioritization of D. discoideum genes included 10 types of objects;
we have selected latent dimensionality of object types through a single parameter rep-
resenting the fraction of the original data dimensionality such that (¢}, ¢,, ..., ¢1g) =
(kny, kn,, ..., knyy). The value of k was obtained by observing kinks in a diagram of
total reconstruction error, ZR,-J-G% IR;; — IA(U || £ro» When varying k from 0.05 to 0.5
(Fig. 9.5). The reconstruction error was estimated by 5o repetitions of collective matrix
factorization, where each repetition was run with a different random initialization of la-
tent matrices. We selected k = 0.1 where a maximum kink was attained. This choice
.,cq0) = (1287,342,280,308,9,9,

5,28, 5,50) with a limitation on minimum factorization rank set to s.

resulted in latent data dimensionality (¢, ¢y, ..
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Figure 9.5

Reconstruction error as a
function of factorization
rank. Ranks were set using
a parameter k as kn; for
object type i with n; ob-
jects. The value of k was
selected by observing the
change of the “total re-
construction error” (black
line), when varying k be-
tween 0.05 and 0.5 (x-axis,
“fraction of original data
dimensionality”). The bars
show reconstruction errors
of individual data matrices
(“relation reconstruction
error”).
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9.3.3  Gene profiling

We profiled genes by considering latent data representation inferred by data fusion.
Each gene was characterized through a collection of profiles determined by the topol-
ogy of the data fusion graph. We obtained gene profiles by starting at a gene node and
its corresponding recipe matrix (G'), and traversing along the edges of the data fusion

graph, multiplying the edge-associated backbone latent matrices.

In the bacterial response gene prioritization study there were 15 such paths of latent
matrices (Fig. 9.4), and correspondingly 15 different profile matrices with gene profiles
for every candidate gene: G|, G187, G| S} g, G|S| 9, G| 10 G| S|, G156
GISI,S’ Gl S1,4’ Gl SI,ZS2,3’ Gl Sl,6sﬁ,5’ Gl Sl,6s6,4’ GlSl,2S2,4’ GISI,SSSA and
GS1656,5554-

9.3.4  Gene prioritization

The inputs to gene prioritization were candidate genes, seed genes and the set of profile
matrices. We aimed to find genes whose profiles are similar to the profiles of seed
genes. We estimated the similarities independently for each profile matrix, and then
aggregated the resulting scores to obtain the final prioritization. Each row in a profile
matrix corresponds to a profile of a gene. We assessed similarity between a candidate
gene and a seed gene by computing Spearman rank correlation of two respective row
vectors. This procedure yielded a 15 X [seed genes| similarity score matrix of rank
correlations for each candidate gene. Similarity score matrices were aggregated in a
two-step median value computation along score matrix dimensions to produce a single
rank value per gene. We obtained empirical P-values by randomizing seed set of genes.
Randomization of seed genes was repeated so times. Empirical P-value of a candidate
rank was estimated as the fraction of randomizations with higher aggregated score than

the score obtained from the original seed set.

As a gene profile similarity measure, Spearman rank correlation was chosen for its
correspondence to similarity of gene assignments to latent components. A promising
candidate gene should have a latent profile similar to the profile of a seed gene. Given
a profile matrix X, candidate gene g and seed gene s, gene g is considered promising if

its latent component with the largest membership is the same as that of seed gene 5. We
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formalize this intuition by measuring whether arg max; X (g, j) = argmax; X (s, j).
‘The same should hold for the latent component of the second largest, third largest, and
all remaining value-ordered gene memberships. Quantitatively, the described proce-

dure corresponds to rank correlations between candidate and seed genes.

9.3.5  Sensitivity of gene prioritization to the inclusion of data sets

To study the sensitivity of gene prioritization to the number of data sets in the data
fusion graph, we observed how the rankings of the validated candidate genes changed
when the overall prioritization was obtained by fusing different subsets of data sets
from our initial collection. Four independent gene prioritization predictive models
were inferred in addition to the original model that contained 14 data sets (Table 9.3).
The scenarios considered seven, four, three and two data sets, where each scenario
considered a different subset of the data sets (Fig. 9.6). The selection of data sets was in
part determined by the data fusion graph. In particular, for data fusion to take place,
the associated graph has to be connected such that information can be shared between

data matrices.

9.3.6  Validation of top ranked candidate genes in the wet laboratory

To validate the selected candidate genes, we assessed growth of the D. discoideum
knockout strains by making serial dilutions of the amoebae and co-culturing the cells
with K. pneumoniae bacteria on nutrient agar. We observed a significant difference in
the growth of all the mutants compared to the wild type AX4 (Fig. 9.7). In this system,
the bacteria grow faster than the amoebae so the first observation is the appearance of
a thick opaque lawn of bacteria on the surface of the agar plate within 24 hours (not
shown). Later on, as the amoebae eat the bacteria, they clear parts or all of the bac-
terial lawn, depending on their density and growth rate. When there are numerous,
fast growing amocbae, we observe a cleared lawn, e.g., Fig. 9.7, AX4, 10* cells, Day 2.
When there are very few amoebae, we observe distinct plaques that appear as darker
spots in the bacterial lawn, e.g., Fig. 9.7, AX4 Day 3, 10% cells. When the bacte-
ria are consumed, the amoebae starve, aggregate, and form developmental structures
(Fig. 9.7, AX4 Day 3, 10* cells). Growth of the Collage-predicted knockout strains

was compared to the wild type (AX4, top row in Fig. 9.7) and to the most severe mu-
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Table 9.3

The impact of modeling circumstantial data on the overall D. discoideum bacterial response gene prioritization. The table lists

the top-30 candidate genes obtained by prioritization by data fusion of 14, 7, 4, 3 and 2 data sets from the data fusion graphs in

Fig. 9.6. Genes in red are the ones selected for the experimental study.

14 data sets 7 data sets 4 data sets 3 data sets 2 data sets

ofso-1 shkA rbsk DDB_Goz271348 arpE

smlA DDB_Go02885s19 DDB_Go272614 DDB_G0268872 DDB_Go278663
acbA pten DDB_Go278163 DDB_Go0287153 DDB_Go281091
pird ofso-1 qurer yelA DDB_Go267742
7psI0 achbA DDB_Go279263  sibD pten

abpC smlA DDB_Go286079 DDB_Goz272380 DDB_Go277937
tirA DDB_G0288947  adprh DDB_Go0288s19 DDB_Goz71120
DDB_Goz272184 DDB_Goz75057 DDB_G0279939  dnajar yipfT

pikB traz DDB_Go0272382 rabT2 DDB_G0267494
vpsq6 sibC gdt6 DDB_Go292920 DDB_Goz272016
pikA rbsk ku8o sibB eif2br

swpr DDB_Go281967 arpF DDB_Go278163 empB

gatA pikA cofD-1 adprh DDB_Go291926
DDB_Go288519 DDB_Goz272614 DDB_Go2885s51  lvsG ups3l

pren DGrrr12 empB DDB_Go0285403 cenB
DDB_Go288s51  adprh gacV tpsB ku8o

traz DDB_Go2885st  DDB_Go0294629 ndm DDB_Go288161
DDB_Go0286429 DD_G0283989  swpr DDB_Go281559 DDB_G0268232
dscA-1 dscA-1 gbgA DDB_Goz75671  rbsk

cinC

udpB

sfbA

modA
DDB_Go0287399
prmts

dpoA
DDB_Go0278663
psiP

sibC
DDB_Go0291926

gdt6

piaA
DDB_Goz279145
DDB_Goz290575
abcAr
DDB_Go272380
DDB_Goz272801
lipA

cepG

lvsG

uduAr

DDB_Go0291926
DDB_Goz273031
DDB_Go0287643
DDB_G0268876
abkD
DDB_G0268206
DDB_Goz279145
DDB_Go272380
PG

cet3

cet3

DDB_G0288963
gbgA

uduAr

acrA

arpE

uduC

DGro98
DDB_Goz273451
adprt3
DDB_Go0288031
yipft

dthZ
vps46
DDB_Goz290575
DDB_Go267958
DDB_Go0287153
gacV
DDB_Goz276509
DDB_Goz279971
usp39
DDB_Go280477
DDB_Go0292098
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tant available (#i74—, bottom row in Fig. 9.7). Cells that carry an inactivating mutation
in the #7A gene (#irA™ cells) exhibit impaired growth on K. pneumoneae (Chen et al.,
2007). We used these cells as a control in our assay and indeed they exhibited no clear-
ing of the bacterial lawn when plated at the same initial density as the wild type cells
(Fig. 9.7, AX4 vs. #irA™, Day 2, 10* cells). We note that #rA™ cells can grow to some
extent on K. pneumoniae bacteria under certain conditions, indicating that the growth

phenotype is continuous even though many researchers tend to describe it as Boolean.

We tested the predictions made by Collage on eight genes—acbA, smlA, pikA, pikB,
pten, abpC, modA and cf50-1 (Table 9.4). In the case of pikA and pikB we used a double
knockout strain because of previously reported overlap in the functions of these two
genes (Zhou et al., 1995). Strikingly, when we assessed the ability of the mutant cells
to grow on bacteria, they all exhibited varying degrees of growth defects compared
to the equivalent wild type (AX4) control (Fig. 9.7). Comparing only one condition,
disruption of acbA, abpC and modA resulted in small individual plaques in the bacterial
lawn but not complete clearing as observed in AX4 (Fig. 9.7, black box, Day 2, 10*
cells). In contrast, mutations in smlA, pikA/pikB, pten, and cf5o-I caused phenotypes
as severe as the loss of #irA with no clearing on Day 2 (Fig. 9.7, black box, Day 2,
10% cells). Further distinction in the ability to grow on bacteria was revealed when the
mutant cells were observed for an additional day. For example on Day 2, pikA™ /pik B~
and pten” cells exhibited similar growth defects, but by Day 3, the loss of pzen did not
hinder growth on bacteria as much as the loss of pikA and pikB (Fig. 9.7).

Details on the experimental analysis of Dictyostelium mutants

D. discoidenm strains were obtained from the Dicty Stock Center and grown axenically
in HL-5 at 22°C (Nasser et al., 2013). K pneumoniae was maintained in SM broth
at 22°C. To assess the ability of D. discoideum to grow on bacteria, D. discoideum cells
were collected from axenic cultures during logarithmic growth and washed once with
Sorensen’s buffer (Nasser et al., 2013). D. discoideum cells were serially diluted with
bacteria (ODgg = 1.0) and spotted onto SM agar plates. The plates were incubated
in a humid chamber at 22°C, and images of plates were taken every 24 hours. Images
were taken at 2 and 3 days after plating to show the progression of amoebae growth

in time. Each experiment was performed in duplicate. Representative images of three
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#ofD.dcells  10° 10° 102 10 10 10° 102 10
Ax4 [

acbA™
SmIA™
DikA™/pikB~
pten—
abpC~
modA™

cf50-1~

tirA™

Day 2 Day 3

independent experiments are shown in Fig. 9.7.
9.4 Discussion and conclusion

The results indicate that Collage is capable of prioritizing genes in a reliable manner
and identifying genes with various effects on the tested phenotype. This allows the
analysis of a broad spectrum of genes in a given biological pathway. Application of the
method to this specific question required only a few days of computational work and
the validation step required a few more days of work. Considering the low yield of
standard genetic screens, it would have taken about a year to identify 8 new genes in

the bacterial response pathway.

Six of the eight validated bacterial growth genes—cf5o-1, abpC, smlA, pten, pikA and
pikB, are involved in actin polymerization and cell motility (Gao etal., 2007; Dormann

etal., 2004; Cox et al., 19965 Brock et al., 2002). One explanation for the enrichment
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Figure 9.7

Experimental validation

of top ranked candidate
genes. Co-cultures of D.
discoideum (D.d.) and
bacteria were generated by
serial dilutions of axenically
grown D. discoideum
amoebae with a large excess
of K. pneumoniae bacteria
such that the number of
amoebae plated in each
spot was between 10 and
10* as indicated above
each column. The relevant
genotypes of the amoebae
strains are indicated on the
left of each row. The larger
white opaque spots are
lawns of the K. pneumoniae
bacteria. Growth of the D.
discoideum amoebae results
in the formation of plaques
within the opaque spots in
cases of low amoebae cell
density or clearing of much
or all of the opaque spots
in cases of high amoebae
cell density.
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Table 9.4

M Zitnik

Top-ranked candidate D. discoideum genes tested for Gram-negative bacterial response. The name of the candidate gene,
DictyBase ID and description from DictyBase are shown, together with the rank (out of all D. discoideum gene knockout strains
available in the Dicty Stock Center) at which the candidate was prioritized by Collage using the data sets from the fusion graph

in Fig. 9.4.
Gene  DictyBase ID Description Rank position
¢fso-r  DDBGo273175  Component of the counting 1
factor complex, which includes
CF6o, CF50, CF45-1, and CtnA
(countin).
smlA DDBGo287587  Cytosolic protein present in vege- 2
tative and developing cells.
acbA DDBGo270658  Precursor of SDF-2; similar to 3
diazepam binding inhibitor; en-
riched in prespore cells.
abpC  DDBGo269100 120 kDa F-actin binding protein 6
also often called filamin; involved
in actin cytoskeleton organization,
motility, sand development; en-
riched in prestalk cells.
pikB DDBGo283081  Phosphatidylinositol kinase. 9
pikA DDBGo278727  Phosphatidylinositol kinase. 11
pren DDBGo0286557  Phosphatase and tensin homolog. 15
modA  DDBGo0269154  Protein post-translational modifi- 23

cation mutant.
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of these genes is that the availability of preexisting knockout strains may be enriched
with cell motility genes. This is because D. discoidenm has been used extensively as a
model system for chemotaxis, and many genes involved in cell motility have been dis-
rupted and made available to the community. Nonetheless, the importance of actin in
the consumption of bacteria may have been previously oversimplified, and the enrich-
ment of these genes could be due to an essential role for actin in bacterial consumption.
Proper regulation of actin is required for cell motility, phagocytosis and intracellular
trafficking of phagosomes to lysosomes (Gao et al., 2007; Dormann et al., 2004; Cox
etal., 1996; Brock et al., 2002). Each of these processes could be important in hunting,

consuming and digesting bacteria.

We identified the sugar modifying alpha-glucosidase II enzyme, ModA (Ebert DL and
JA, 1989). Complex sugar modifications are important for biogenesis and intracellular
trafficking of proteins. Others have shown that disruption of m0dA results in a lack of
anionic N-glycan, which is associated with lysosomal enzymes (Hykollari et al., 2014).
While it may not be surprising to identify genes that regulate actin and lysosomes in a

direct genetic screen, it is important to see that Collage did so too.

We also identified one gene, acbA, with a less salient relationship to bacterial con-
sumption. Gene acbA encodes an Acyl-CoA Binding protein, which is similar to the
mammalian diazepam binding inhibitor. Acyl-CoA Binding protein is secreted during
D. discoideum development and cleaved to form the SDF-2 peptide (Spore Differenti-
ation Factor-2) (Cabral et al., 2006, 2010). The role of Acyl-CoA Binding protein and
SDEF-2 in growth on bacteria is unclear. It is unlikely to be due to disruption of a gen-
eral cellular growth pathway, since acbA™ cells grow normally in axenic medium and
it is unclear whether the SDF-2 peptide is secreted during growth because the system
that produces it is developmentally-regulated. The identification of acbA suggests that

novel gene functions can be discovered with our gene prioritization method.

‘The ranking of candidate genes depends on the particular collection of data sets we con-
sider for gene prioritization. Removal of data sets from the data fusion graph (Fig. 9.6)
changes the prioritization. When fewer data sets are considered, the validated genes
from our study become ranked lower, below the top 30 (Table 9.3). This is an intuitive
dependence — less information should result in reduced accuracy, and it is also vali-

dated by simulations. Our computational studies in data fusion with collective matrix
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factorization show that exclusion of data sets gradually reduces the quality of the pre-
dictions, e.g., see Chapters 7, 10 and 11. We can attribute our success in identification
of genes that participate in Gram-negative response pathways to the proposed approach
and the appropriate choice of 14 relevant data sets. In the absence of a much larger set
of known genes for this pathway, we cannot claim that this particular selection of data

sets is optimal.

Collage builds upon our data fusion method by collective matrix factorization intro-
duced in Chapter 6, which can achieve high predictive accuracy and enables effortless
integration of a range of very diverse data sets. Collective learning hence provides
means for Collage to constitute a useful complement to large-scale ranking of genes in
various organisms and to ranking of other objects contained in the fusion graph, such

as drugs, diseases and pathways.



Disease-disease
association prediction
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The advent of genome-scale genetic and genomic studies allows new insight into disease
classification. Recently, a shift was made from linking diseases simply based on their
shared genes towards systems-level integration of molecular data. Here, we aim to find
relationships between diseases based on evidence from fusing all available molecular

interaction and ontology data.

We describe in this chapter a multi-level hierarchy of disease classes that significantly
overlaps with existing disease classification. In it, we find 14 disease-disease associations
currently not present in Disease Ontology and provide evidence for their relationships
through comorbidity data and literature curation. Interestingly, even though the num-
ber of known human genetic interactions is currently very small, we find they are the
most important predictor of a link between diseases. Finally, we show that omission of
any one of the included data sources reduces prediction quality, further highlighting

the importance in the paradigm shift towards systems-level data fusion.
10.1  Background

Disease Ontology (DO) (Schriml et al., 2012) is a well established classification and
ontology of human diseases. It integrates disease nomenclature through inclusion and
cross mapping of disease-specific terms and identifiers from Medical Subject Head-
ings (MeSH) (Nelson et al., 2004), World Health Organization (WHO) International
Classification of Diseases (ICD) (Aymé et al., 2010), Systematized Nomenclature of
Medicine Clinical Terms (SNOMED CT) (Cornet and De Keizer, 2008), National
Cancer Institute (NCI) thesaurus (Sioutos et al., 2007) and Online Mendelian Inheri-
tance in Man (OMIM) (Amberger et al., 2011). It relates and classifies human diseases
based on pathological analysis and clinical symptoms. However, the growing number
of heterogeneous genomic, proteomic, transcriptomic and metabolic data currently
does not contribute to this classification. Understanding of even the most straight-
forward monogenic classic Mendelian disorders is limited without considering inter-
actions between mutations and biochemical and physiological characteristics. Hence,
redefining human disease classification to include evidence from heterogeneous data is
expected to improve prognosis and response to therapy (Loscalzo et al., 2007). In this
chapter we examine whether inclusion of modern molecular level data can improve

disease classification.
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Several studies have reported on efforts and benefits of relating human diseases through
their molecular causes. Loscalzo et al. (2007) cataloged diseases through a network-
based analysis of associations among genes, proteins, metabolites, intermediate pheno-
type and environmental factors that influence pathophenotype. Gulbahce etal. (2012)
constructed a “viral disease network” of disease associations to decipher the interplay
between viruses and disease phenotypes. They uncover several diseases that have not
previously been associated with infection by the corresponding viruses. A similar ap-
proach was used by Lee et al. (2008) to gain insights into disease relationships through a
network derived from metabolic data instead of virological implications. They demon-
strated that known metabolic coupling between enzyme-associated diseases reveal co-
morbidity patterns between diseases in patients. Goh et al. (2007) studied the position
of disease genes within the human interactome in order to predict new cancer-related
genes. Conversely, a gene-centric approach to disease association discovery was used
by Linghu et al. (2009): they took 110 diseases for which a set of disease genes are
known, and compared gene sets and their positions within the gene network to infer
associations of related diseases. More details can be found in two recent surveys of
current network analysis methods aimed at giving insights into human disease (Jan-
ji¢ and Przulj, 2012; Emmert-Streib et al., 2013), as well as in a review of different
data sources that can provide complementary disease-relevant information (Piro and

Di Cunto, 2012).

A challenge in relating diseases and molecular data is in the multitude of information
sources. Disease profiling may include data from genetics, genomics, transcriptomics,
metabolomics or any other omics, all potentially related to susceptibility, progress and
manifestation of disease. Such data may be related on their own: for example, infor-
mation on transcription factor binding sites, gene and protein interactions, drug-target
associations, various ontologies and other less-structured knowledge bases, such as lit-
erature repositories, are all inter-dependent and it is not trivial to integrate them in
a way that will yield new information about diseases. This stresses the need for an
integrated approach of current models to exploit all these heterogeneous data simulta-

neously when inferring new associations between diseases (Emmert-Streib et al., 2013).

Data from heterogeneous sources of information can be integrated by daza fusion (Yu
et al., 2010). Common fusion approaches follow early or late integration strategies,

combining inputs (Mostafavi and Morris, 2012) or predictions (Pandey et al., 2010),
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respectively. Another and often preferred approach is an intermediate integration,
which preserves the structure of the data while inferring a single model (Lanckriet
et al., 2004b; Gevaert et al., 2006; van Vliet et al., 2012). An excellent example of in-
termediate integration is multiple kernel learning that convexly combines several kernel
matrices constructed from available data sources (De Bie et al., 2007; Yu et al., 2010).
Data fusion has been successfully applied for tasks such as gene prioritization (Aerts
etal., 2006; De Bie et al., 2007; Yu et al., 2010), or gene network reconstruction and
function prediction (Mostafavi and Morris, 2012; Chen and Zhang, 2013). To our
knowledge, we present the first application of data fusion to disease association min-

ing.

We choose the intermediate data fusion approach for its accuracy of inferring predic-
tion models (i.e. how well a model can learn to predict disease-disease associations)
and the ability to explicitly measure the contribution of each data set to the extracted
knowledge (Lanckriet et al., 2004b; Gevaert et al., 2006). Kernel-based fusion can
only use data sources expressed in the “disease space”, i.e. all data sources have to be
expressed as kernel matrices encoding relationships between diseases, which may incur
loss of information when transforming circumstantial data sources into appropriate
feature space. In our study, most of the data sources are only indirectly related to dis-
eases, hence we employ an alternative and recently proposed intermediate data fusion
algorithm by matrix factorization (Zitnik and Zupan, 2015a), which has an accuracy
comparable to kernel-based fusion approaches, but can treat all data sources directly
(i.e. no transformation of data into “disease space” is necessary). The key idea of our
data fusion approach lies in sharing of low-rank matrix factors between data sources
that describe biological data of the same type. For instance, genes are one data type
which can be linked to other data types such as Gene Ontology (GO) terms or diseases
through two distinct data sources, namely GO annotations and disease-gene mapping.
The fused factorized system contains matrix factors that are specific to every molecular
data type, as well as matrix factors that are specific to every data source. Thus, low-
rank matrix factors can simultaneously capture both source- and object type-specific

patterns.

We report on the ability of our recently developed data fusion approach to mine hu-
man disease-disease associations. Starting from Disease Ontology, we revise the links

between diseases using related systems-level data, including protein-protein and genetic
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Table 1o.1

Data sets used for our disease association study. Relation matrices R;; relate objects of two different types and their numbers
are reported separately (delimited by a forward slash).

Matrix Name Nodes Edges Density Availability

6(1]) Protein interactions 10,360 55,787 0.00104 BioGRID Rel 3.1.94 (Stark et al., 20171)
6(12) Gene co-expression 539 869 0.00600 Prieto et al. (2008)

(9(]3) Cell signaling data 1,217 7,517 0.01016 KEGG (Kanchisa et al., 2012)

®(14) Genetic interactions 542 511 0.00349 BioGRID Rel 3.1.94 (Stark et al., 2011)
®(15) Metabolic network 5,908 1,505,831 0.08630 KEGG (Kanehisa et al., 2012)

0, Drug interaction data 4,477 21,821 0.00218 DrugBank v3.0 (Knox et al., 20171)

0, GO semantic structure 11,853 43,924 0.00063 Gene Ontology (Ashburner et al., 2000)
0, DO semantic structure 1,536 1,098 0.00093 Disease Ontology (Schriml et al., 2012)
R;;  Gene annotations 17,428/11,853 100,685 0.00049 Gene Ontology (Ashburner et al., 2000)

R;;  Drug-target relations 1,978/4,477 7,977 0.00009 DrugBank v3.0 (Knox etal., 2011)
Ry,  Gene-disease relations  5,267/1,536 22,084 0.00273 Mapped GeneRIF (Osborne et al., 2009)

interactions, gene co-expressions, metabolic data, drug-target relations, and other (see
Sec. 10.2). By fusing these data we identify several disease-disease associations that
were not present in Disease Ontology and validate their existence by finding strong
support in the literature and significant comorbidity effects in associated diseases. We
also quantify the contribution of each molecular data source to the integrated disease-

disease association model.

10.2 Data sets

In this study, we integrate biological data on objects of four different types (nodes in
Fig. 10.1): genes, diseases (Disease Ontology terms), drugs, and Gene Ontology (GO)
terms. We observe them through 11 sources of information (edges in Fig. 10.1). Every
source of information is represented by a distinct data matrix that either relates objects

of two different types (such as drugs and their associated target proteins) or objects of

the same type (such as genetic interactions between genes): relations between objects
of types i and j are represented by a relation matrix, R;;, and relations between objects
of the same type i are represented by a constraint matrix, @;. Table 10.1 summarizes

all 11 data sets.
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Figure 10.1

System-level data fusion
approach to disease re-
classification. The figure
shows the relationships
between data sources:
nodes represent four types
of objects, i.e. genes, GO
terms, DO terms and
drugs; arcs denote data
sources that relate objects
of different types (relation
matrices, Rij,i # j),or
objects of the same type
(constraints, ©;).
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10.2.1 Disease data

The principal source of information on human disease associations is Disease Ontology
(DO) (Schriml et al., 2012). DO semantically combines medical and disease vocab-
ularies and addresses the complexity of disease nomenclature through extensive cross-
mapping of DO terms to standard clinical and medical terminologies of MeSH, ICD,
NCI’s thesaurus, SNOMED and OMIM. It is designed to reflect the current knowl-
edge of human diseases and their associations with phenotype, environment and genet-
ics. We extract 1,536 DO terms from the latest version of the disease ontology hosted
by the OBO Foundry (http://www.obofoundry.org) and construct a binary matrix
R/, from 22,084 associations between genes and diseases. DO leverages the seman-
tic richness through linking terms by computable relationships in the hierarchy (e.g.
mediastinum ganglioneuroblastoma is_a peripheral nervous system ganglioneuroblas-
toma, which is_a ganglioneuroblastoma and then in turn is_a neuroblastoma) first
by etiology and then by the affected body system. We use the semantic structure of
DO to reason over is_a relations. Since entries in the constraint matrices are positive

for objects that are not similar and negative for objects that are similar, the constraint
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between two DO terms in @, is set to —0.8"°P, where hops is the length of the path
between corresponding terms in DO graph. We empirically chose 0.8 from [0, 1]
range — 0 meaning that no two terms in the DO graph are related, and 1 meaning
that two DO terms are always related (regardless of the path distance between them in
the DO graph) — by performing standardized internal cross-validation using values
between 0 and 1 with a 0.1 step (i.e. 0,0.1,0.2, ..., 1). Scores of multiple parentage
(multiple is_a relationships) are summed to produce the final value of semantic asso-
ciation. Throughout the chapter, we use disease and DO term interchangeably, which
both refer to a unique DO identifier (DOID).

10.2.2  Gene Onrology data

We use relations between 11,853 distinct genes and 100,685 gene annotations that are
given by Gene Ontology (GO) (Ashburner et al., 2000) to construct a binary matrix
of direct annotations R 3. Topology of the GO graph is included by reasoning over
is_a, part_of and has_part relations between GO terms to populate @5 in the same

way as @, with the constraint between two GO terms set to —0.9"°P%,

10.2.3 Drug data

We obtain drug data from DrugCard entries in the DrugBank (http: //www.drugbank.

ca) database that contains chemical, pharmacological and pharmaceutical drug infor-
mation with comprehensive drug target details. Our model contains 4,477 distinct
drugs, each identified by a DrugBank accession number. Drugs are related to their
target proteins in R4, which is populated by 7,977 binary drug-target relationships
from DrugBank. We use reported side-effects of drug combinations form DrugBank

as 21,821 binary indicators of interactions between drugs in ©,.

10.2.4 Gene interaction data

We obtain the relationships between genes from five sources of interaction data (top
five rows in Table 10.1). Genes are identified by their NCBI gene IDs. We first map the
approved gene symbols and Uniprot IDs to Entrez gene IDs using the index files from
HGNC database (Seal et al., 2011), downloaded in November 2012. This is done to
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convert all gene annotations, drug-target, and co-expression data into NCBI IDs. To
increase coverage of gene and protein interaction data, we include all genes (or equiva-
lently, proteins) for which at least two supporting pieces of information were available
in any of the data sources listed in Table 10.1. In total, these sources include: 55,787
protein-protein interactions (PPIs) between 10,360 proteins (@(11)), 869 pairs of co-
expressed genes (9(12)), 7,517 cell signaling interactions (@(13) ), 511 human and inter-
species genetic interactions (0(14)), and 1,505,831 pairs of genes involved in metabolic

pathways (9(15)).
10.3  Inference of a joint prediction model

We infer human disease-disease associations by integrating a multitude of relevant
molecular data sources. We use a data mining approach based on matrix represen-
tation of these molecular data, which works by simultaneous matrix tri-factorization

and is presented in Chapter 6.

Data fusion for disease-disease association prediction consists of three main steps illus-

trated in Fig. 10.2 and in Algorithm 4:

= First, we construct relation and constraint matrices from all the available data
(Fig. 10.1). Recall thata relation matrix encodes relations between objects of two
different types (e.g. gene to Gene Ontology term annotation) and a constraint
matrix describes relations between objects of the same type (e.g. protein-protein
interactions). The molecular data encoded in these matrices are sparse, incom-
plete and noisy and some matrices are completely missing because associated
data sources are not available (e.g. no link between GO terms and drugs in

Fig. 10.2).

= We then simultaneously factorize all the relation matrices under given con-

straints (Algorithm 3).

= Finally we score statistically significant associations in the matrix decomposition

and identify disease classes (Algorithm 4).

The objective function minimized by matrix factorization algorithm (Algorithm 3)

enforces good approximation of the input matrices and is regularized by using available
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Figure 10.2

A graphical representa-
tion of our data fusion

by matrix factorization
approach to discovering
disease-disease associations.
(top) The block-based
matrix representation
exactly corresponds to

the data fusion graph in
Fig. 10.1. We combine 11
data sources on four dif-
ferent types of objects (see
Sec. 10.2): drugs, genes,
Disease Ontology (DO)
terms and Gene Ontology
(GO) terms. These data
are encoded in two types
of matrices: constraint
matrices, which relate
objects of the same type
(such as drugs if they have
common adverse effects)
and are placed on the main
diagonal illustrated by ma-
trices with blue entries; and
relation matrices, which
relate objects of different
types and are placed off the
main diagonal illustrated
by matrices with grey en-
tries. The molecular data
encoded in these matrices
are sparse, incomplete and
noisy (depicted by different
shades of blue and grey).
(bottom, left) The resulting
factorized system contains
matrix factors that are
specific to every type of
objects (four matrices in
left part; e.g. Gppyq), and
matrix factors that are spe-
cific to every data set (six
matrix factors in right part;
e.g- SGene, DO Term)-
(bottom, right) We use
matrix factors to recon-
struct relation matrices and
complete their unobserved
entries.
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constraint matrices presented in @, For prediction of disease associations, the input
to the data fusion algorithm consists of five constraint block matrices @(lt), 1<t<5
due to five sources of interaction data that represent relations between genes, three
constraint matrices corresponding to relationships between drugs, diseases and Gene
Ontology terms, respectively, and three relation matrices that connect different genes,
diseases, drugs and Gene Ontology terms. Recall that Algorithm 3 estimates latent

matrices G; and S; i which we utilize for the identification of disease classes.

Parameters of the fusion algorithm are factorization ranks, k;, which determine the
degree of dimension reduction for four object types in our fusion graph. These fac-
torization ranks are selected from a predefined set of possible values to optimize the
quality of the model in its ability to reconstruct the input data from gene-disease rela-
tion matrix R|,. For example, gene-disease profiles of length 21,500 in the original
space are reduced to profiles with ~70 factors in data fusion space. We find this ap-
proach to be robust and small variations in initial parameter tuning do not impede
the overall final quality of the fused system (data not shown). In our study, factor-
ization ranks of 50 to 80 yield models of similar quality. In general, we find that if
the data contain meaningful information (as opposed to randomized input), the opti-
mized factorization ranks are much smaller than input dimensions because these data
can be effectively compressed, and low-dimensional representation will provide a good
estimate of the target relation matrix. Conversely, this would not hold true if we were
to predict arbitrarily assigned labels. In that case factorization ranks would have to be

substantially larger in order to produce somewhat comparable models.

10.3.1  Disease class assignment

Each factorization run produces a set of matrix factors that reconstruct the three re-
lation matrices in our model. For disease association discovery, we are interested in
approximating Ry, = G| S lng , specifically factor G, that contains meta profiles of
DO terms and is used to identify classes of diseases. Class membership of a disease is
determined by maximum column-coeflicient in the corresponding row of G,. This is
a well-known approach in applications of non-negative matrix factorization (Brunet
et al., 2004; Kim and Tidor, 2003). A binary connectivity matrix C is then obtained

from class assignments with C;; set to 1 if disease i and disease j belong to the same



Data fusion

Algorithm 4

Disease class assignment.

Input:
= Latent matrices obtained by r repetitions of factorization given in Algorithm 3,
GV for1<i<r.
Output:
= A consensus matrix C s

m aset D of disease classes, D.

1. Repeat the following for each matrix factor G;i) forl<i<r.
a. For each disease j compute its class as arg max,, G(;) (m, j).
b. Compute connectivity matrix C%?) from class assignment such that C?(r, s)
is set to 1 if disease r and s were assigned the same class in step a.
2. Compute consensus matrix as C = % > c®,
3. Extract new disease classes, @ = {D | Vi,j € DAi# j : C(,j) =1}.

class (see Algorithm 4). Repeating factorization process 15 times with different initial
random conditions and factorization ranks gives a collection of connectivity matrices,
ch ie1,2,...,15. These are averaged to obtain the consensus matrix C that is then
used to assess reliability and robustness of disease associations. The entries in the con-
sensus matrix range from o to 1 and indicate the probability that diseases i and j cluster
together. If the assignment of diseases into classes is stable, we would expect that the
connectivity matrix does not vary among runs and that the entries in the consensus
matrix tend to be close to o (no association) or to 1 (full consensus for association). To
recover informative and relevant disease associations, we are interested in diseases with

high values in the consensus matrix. The process is outlined in Algorithm 4.
10.3.2  Disease association scoring

Disease associations are scored by permuting the entries in gene-disease relation ma-
trix Ry, and inferring the prediction model from the permuted matrix. Matrix R,
encodes relations between genes and diseases, and via genes to the rest of the fusion
model, so permuting its entries is sufficient for a complete rewiring of associations. To

compute the p-values for the disease associations observed in our inferred model, we
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generate 70 consensus matrices (each one is averaged over 1§ permutations of a disease-
gene connectivity matrix, giving 70 X 15 = 1,050 unique matrices) and express the
p-value of a particular disease association as the fraction of factorization runs in which

it was observed.

10.4 Discovering disease-disease associations
by fusing systems-level molecular data

We fuse systems-level molecular data by using our recently developed matrix factor-
ization approach to gain new insight into the current state-of-the-art human disease
classification. This large-scale data integration results in 108 highly reliable disease
classes (each corresponding to a clique in the consensus matrix, C; sce Algorithm 4).
Size distribution of the 108 disease classes is as follows: 6o disease classes contain 2
diseases; 31 disease classes contain 3 or 4 diseases; 9 disease classes contain s, 6 or 7
diseases; 5 disease classes contain 8, 9 or 10 diseases; 2 disease classes contain 11 or 17
diseases; and 1 disease class contains 146 disease. For each class we examine the as-
sociations between its member diseases to inspect how the obtained classes align with

currently accepted disease classification.

Using Disease Ontology (DO) and literature curation, we find that the 107 smaller
classes successfully capture closely-related diseases that are also placed near each other
in DO (see below for details). Also, we find that in the largest identified disease class
(i.e. the one containing 146 diseases), the most represented major disease is cancer
(31.5%), followed by nervous system discases (14.4%), inherited metabolic disorders
(9.6%) and immune system diseases (5.5%). This class primarily contains diseases
of anatomical entity (45.2%), cellular proliferation (25.4%) and metabolic diseases
(14.3%), with other major concepts of DO being rarely represented. The large size
of this class may reflect the following underlying biases in various data sources — its
constituents represent either larger majority groups in DO, or minority groups at a

lower level of ontology:

= diseases of anatomical entity, because diseases are often described based on tis-

sue/organ;

= cellular proliferation, because of the heavy enrichment of cancers and the sub-
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classification of these into many variant diseases, also possibly driven by rich

gene and pathway annotation around cell cycle and proliferation;

= metabolic diseases, because of significant representation of metabolic diseases
and significant understanding of metabolic pathways. Metabolic disease is a
primary focus for systems modeling and simulation, as much is known from

pathways and a wealth of omics data available.

Since the obtained distribution appears unbalanced due to one large class containing
146 disease, we further decompose that class by repeating data fusion analysis on its
disease members. This effectively gives us a multi-layer hierarchical breakdown of dis-
ease classes (see Fig. 10.3). The large class is broken down into 10 classes (only those
observed in all 15 inferred models are taken into account; see Sec. 10.3.2). The distri-
bution of disease class sizes is: 9 disease classes with 2 or 3 diseases, and 1 disease class
with 51 diseases. The diseases captured by the 9 smaller classes are: two classes consist
of cancer diseases, three consist of inherited metabolic disorders, one contains nervous
system diseases, two contain respiratory system diseases, and the last one has cardio-
vascular system diseases. The largest disease class (containing 51 disease members) is
further decomposed into 8 disease classes. The distribution of disease class sizes at this
level of hierarchy is: 7 disease classes with 2 or 3 diseases, and 1 disease class with 18
diseases. The diseases captured by the 7 smaller classes are: two classes with immune
system diseases, one class with cognitive disorders, one class with acquired metabolic
diseases, one with cancer, and the last three were split between cognitive disorders and
metabolic diseases. The largest class (containing 18 disease members; again, under the
most stringent agreement threshold; see Sec. 10.3.1) is finally decomposed into six
conserved diseases (the remaining 12 diseases grouped less reliably under our stringent
threshold): lung metastasis, dysgerminoma, serous cystadenoma (cellular proliferation
and cancer), abetalipoproteinemia (metabolic disorder), related factor XIII deficiency

and plasmodium falciparum malaria.
10.4.1  Significant comorbidity of diseases in captured classes
A comorbidity relationship exists between diseases whenever they affect the same indi-

vidual substantially more than expected by chance. We want to know whether diseases

assigned to the same disease class by our data fusion method exhibit higher comorbidity
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Figure 10.3

Multi-layered hierarchical
decomposition of disease
classes. Our analysis

yields 108 disease classes
using the most stringent
threshold for predicting
disease-disease associations.
Identified classes are

rather small and each

class contains at most 17
diseases with the exception
of the largest disease class
that consists of 146 diseases
(at root layer). We further
decompose the largest
class by re-running the
data fusion on the set of
its diseases to identify

its fine-grained structure
(level one). We repeat

data fusion analysis using
this top-down strategy

two more times (levels

two and three) to obtain a
hierarchical decomposition
of disease classes.
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than diseases assigned to different classes. Hidalgo etal. (Hidalgo etal., 2009) proposed
two comorbidity measures (http://barabasilab.neu.edu/projects/hudine) to
quantify the distance between two diseases: a relative risk (defined below) and Pear-
son’s correlation between prevalences of two diseases (¢). A relative risk (RR) of two
diseases is defined as the fraction between the number of patients diagnosed with both
diseases and random expectation based on disease prevalence. Expressing the strength
of comorbidity is difficult because different statistical distance measures are biased to
under- or over-estimating the relationships between rare and prevalent diseases. The
RR overestimates associations between rare diseases and underestimates associations in-
volving highly prevalent diseases, whereas ¢ has low values for diseases with extremely
different prevalence, but is good at recognizing comorbidities between disease pairs of

similar prevalence.

We find that 66 (out of 107) disease classes have a significantly higher comorbidity
than what would be expected by chance (p-value < 0.001 with Bonferroni multiple
comparison correction applied to all p-values). We assess the statistical significance
by randomly sampling disease sets of the same size as the disease class in question, and

computing the comorbidity enrichment scores of the sampled sets according to the two
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comorbidity measures, RR and ¢, as proposed by Hidalgo et al (Hidalgo et al., 2009).
The enrichment score is then computed as the mean of comorbidity values between all
disease pairs in a disease class. For subsequent layers of hierarchical decomposition of
the largest disease class (i.e. the one containing 146 diseases), we find that: 7 out of
1o first level disease classes have a significantly higher comorbidity (measured by both
RR and ¢) than what would be expected by chance; comorbidity data was available
for only 3 out of 8 second-level disease classes, and 2 of them exhibited significantly

higher comorbidity than what would be expected by chance.

10.4.2  Evaluating disease classes through Disease Ontology

To see how well our fusion approach captures disease-disease associations already present
in the semantic structure of DO, we look at the overlap between 107 disease classes
(again, we perform enrichment analysis of the largest above-described class separately,
see below) and find that 79 classes have at least 80% of disease members directly con-
nected in DO via is_a relationship; an example of one such disease class is given in
Fig. 10.4. We assess the statistical significance of such a high number of classes be-
ing enriched in known relations from DO by computing the p-value as follows. First,
we remove all DO-related information (i.e. we remove the constraint matrix @,; see
Sec. 10.2) and then we perform the data fusion again without any prior information on
relationships between diseases. We find that such a high number of classes is unlikely
to be enriched in known relations from DO by chance (p-value < 0.001).

‘This result is very interesting as it indicates that DO could, in principle, be recon-
structed from molecular data only. Our findings suggest that disease classification
derived from pathological analysis and clinical symptoms (DO) can be largely repro-
duced by considering onfy molecular data. In other words, data fusion of different
types of evidence could be used to infer a hierarchy of disease relations whose coverage

and power might be very similar to those of the manually curated DO.

The decomposition of the largest disease class yields similar results: 5 out of 9 first-
level classes have their members directly linked in DO via is_a relationships; 4 out
of 7 second-level disease classes have their members directly linked in DO via is_a
relationships; the third-level class of size six does not significantly overlap with the DO

graph, but is partially supported by literature (Holst et al., 1999).
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Figure 10.4

An example of discase
class predicted by data
fusion overlaid with a
DO graph. Members

of the disease class are
outlined. This illustrates
the ability of data fusion
to successfully capture real
disease classes: diseases
associated with crescentic
glomerulonephritis are
presented.
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10.4.3  Finding new links between diseases

In addition to examining classes of multiple diseases, we can use our fused model to
rank individual disease-disease associations based on supporting molecular evidence,
and make novel predictions linking previously seemingly unrelated diseases. Among
all the highest-ranked disease-disease associations in the fused model (i.e. disease pairs
from the most stable classes — obtained in step 3 of Algorithm 4 — with less than
6 disease members), we find 14 associations not recorded in Disease Ontology. We
perform literature curation and find evidence for @// 14 of the predicted disease associ-
ations (Table 10.2). Such high accuracy is due to our choice to take a highly stringent
approach that requests the association to be observed in all 15 of the inferred models
(see Sec. 10.3.2 for details). Comorbidity data were available for 4 out of 14 pre-
dicted disease associations and all 4 of these disease-disease associations were found to
have significantly high comorbidity: (DOID:11198, DOID:12336), (DOID:12252,
DOID:8543), (DOID:423, DOID:13166), and (DOID:11202, DOID:11335).
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Table 10.2

14 predicted disease-disease associations currently not captured by the semantic structure of Disease Ontology. Literature
support for them is listed under the column denoted by “References”. Reported p-values measure how likely it would be for a
disease association to emerge if gene-disease relation matrix was permuted, as described in Sec. 10.3.2.

Disease pair Literature evidence (quoted verbatim from the referenced source) P-value
vitamin B deficiency “Vitamin B complex deficiency causes the psychiatric symptoms of atypical en- < 0.001
(DOID:8449), endogenous dogenous depression. Dementia and depression have been association with this
depression (DOID:1595) deficiency possibly from under production of methionine.” (Keuter, 1958; Car-

ney et al., 1990)
crescentic glomerulonephritis  “Mixed cryoglobulinemia-associated membranoproliferative glomerulonephritis < 0.001
(DOID:13139), gastric disclosed gastric MALT lymphoma. Glomerulonephritis and lymphoma tend to
lymphoma (DOID:10540) co-exist in the same patients (relative risk 34.0; P < 0.0001).” (Buob and Copin,

2006; Skopouli et al., 2000; Von Vietinghoff et al., 2006)
thyroid medullary carcinoma  “Paraneoplastic cholestasis and hypercoagulability associated with medullary thy-  0.001
(DOID:3973), cholestasis roid carcinoma. Cholestasis is likely a paraneoplastic effect of thyroid medullary
(DOID:13580) carcinoma.” (Tiede et al., 1994)
crescentic glomerulonephritis  “Complex-mediated diffuse proliferative glomerulonephritis with crescentic for-  0.001
(DOID:13139), miliary mation is associated with miliary tuberculosis. Antituberculous agents successfully
tuberculosis (DOID:9861) treat miliary tuberculosis and recovered renal function.” (Kohler et al., 1994; Wen

and Chen, 2009)
thyroid adenoma “Coexistence of bilateral paraganglioma of the A. carotis, thymoma and thyroid ~ 0.001
(DOID:2891), adenoma. A common neuroectodermal origin is proposed as an explanation for
thymoma (DOID:3275) the coexistence of the carotid body tumor and multiple endocrine tumors.” (Refior

and Mees, 2000)
early myoclonic “Angelman syndromes share a range of clinical characteristics, including intellec- < 0.001
encephalopathy tual disability with or without regression and infantile encephalopathy. It presents
(DOID:308), Angelman in infancy with nonspecific features, such as psychomotor delay and seizures.
syndrome (DOID:1932) This can lead to the descriptive labels of cerebral palsy or static encephalopathy.”

(Willemsen et al., 2012; Dagli et al., 2012)
autoimmune polyendocrine “Autoimmune polyendocrine syndrome type 2 (known as Schmidt’s syndrome) < 0.001
syndrome (DOID:14040), can be associated with interstitial myositis, an inflammatory myopathy which can
myositis (DOID:633) be pathologically distinguished from idiopathic polymyositis and inclusion body

myositis.” (Heuss et al., 1995)
primary hyperparathyroidism ~ “Primary hyperparathyroidism simulates sarcoidosis. Coexisting primary hyper- < 0.001
(DOID:11202), parathyroidism and sarcoidosis cause increased Angiotensin-converting enzyme
sarcoidosis (DOID:11335) and decreased parathyroid hormone and phosphate levels.” (Lim and Clarke,

2013)
cerebrotendinous “Mutations in the sterol 27-hydroxylase gene (CYP27A) cause hepatitis of in- < 0.001
xanthomatosis (DOID:4810), fancy as well as cerebrotendinous xanthomatosis. Accumulation of cholesterol
viral hepatitis and cholestanol can lead to the xanthomata, neurodegeneration, cataracts and
(DOID:1884) atherosclerosis that are typical of cerebrotendinous xanthomatosis.” (Clayton etal.,

2002)
lepromatous leprosy “The precipitating causes of relapse in leprosy include mental depression which ~ 0.001
(DOID:10887), mental downgrades immunity. The prevalence of dementia and depression in older leprosy
depression (DOID:1596) patients is high.” (Su et al,, 2012)
male infertility “Complex chromosome rearrangements (CCR) are rare structural chromosome ~ 0.001
(DOID:12336), aberrations that can be found in patients with phenotypic abnormalities or in phe-
DiGeorge syndrome notypically normal patients presenting infertility. The malsegregation of CCR can
(DOID:11198) lead to partial rop12.3 to 10p14 deletion, associated with the DiGeorge like phe-

notype.” (Karmous-Benailly et al., 2006; Christopoulou et al., 2013)
Cushing’s syndrome “Hodgkin’s lymphoma is highly responsive to steroids and Cushing’s syndrome < 0.001
(DOID:12252), results from over exposure to corticosteroids, so it could be considered a treatment
Hodgkin’s lymphoma side effect. However, the co-existence in one patient of Cushing’s disease (caused
(DOID:8543) by a tumour in the pituitary) that suppressed the Hodgkin’s lymphoma has been

reported.” (Howell et al., 2004)
crescentic glomerulonephritis ~ “There can be two potential causes for the association: 1) that the drugs and treat- < 0.001
(DOID:13139), ment regimen that cancer patients are on causes the glomerulonephritis, or 2) that
prostate cancer (DOID:10283) features of the cancer may cause the glomerulonephritis with ANCA being associ-

ated in both cases.” (Von Vietinghoff et al., 2006)
allergic bronchopulmonary “Allergic Bronchopulmonary aspergillosis is caused by a fungal disease. Fungal < 0.001

aspergillosis (DOID:13166),
myopathy (DOID:423)

diseases are often treated with triazoles. Drug-induced myopathies are well recog-
nized with triazole class of drugs. The association between these two may therefore
be based on the treatment and risk it carries, rather than a common mechanism.”
(Valiyil and Christopher-Stine, 2010)
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10.4.4 Contribution of each data set to the fused model

We have seen that data fusion can successfully retrieve existing and uncover new asso-
ciations between diseases. Now we examine the contribution of each individual data
set to the final disease-disease association model. We estimate the relative importance
of each of the fused data sources in predicting disease associations by comparing the
quality of the inferred model that includes the data source, to the quality of the model
that excludes it. The measured quality is represented by a tuple of residual sum of
squares (RSS; lower values are better) and explained variance (Evar; higher values are
better; see Zitnik and Zupan (2015a) for details) of gene-disease relationship matrix
R, (see Sec. 10.2). So an increase in RSS and a decrease in Evar hinder the quality of
the inferred model, and conversely, a decrease in RSS and an increase in Evar improve
the quality of the inferred model. We find that omission of each of the five data sources
that specify interactions between genes (@)(1]), e 0(15)) reduces the overall quality of
the model. Surprisingly, the largest model degradation is observed in the absence of
genetic interactions when Evar drops by 9.5% and RSS increases by 13.3%. This result
is unexpected, because the number of available genetic interactions is small (511). This
may confirm the proposed importance of genetic interactions and functional buffering
as being critical for understanding disease evolution and for design of new therapeutic
approaches (Ashworth et al,, 2011). Although the dataset of genetic interactions is
currently small, the observed interactions are more likely to be causative as opposed
to correlative and may therefore have less noise associated, hence they appear to be
more informative and have a larger importance on relationships between diseases than
other data sources. Exclusion of other sources results in a smaller decrease in quality
(Table 10.3), but nevertheless, these results confirm that all of the fused data sources

contribute to the quality of the model.
10.5  Discussion and conclusion

We integrate a wide range of modern systems-level molecular interaction and ontology
data using our recently proposed data-fusion approach, and apply it to finding relation-
ships between diseases previously unrecorded in DO. We validate our findings through
comorbidity data and literature curation to demonstrate that such a systems-level inte-

gration can recover known and successfully identify currently unrecorded relationships
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Table 10.3

Relative contribution of each data set to the fused model. Starting from the configuration given in Fig. 10.1, we remove indi-
vidual data sources, re-run the data fusion algorithm, and compute residual sum of squares (RSS) and explained variance (Evar)
changes for the resulting model. For example, if we remove protein-protein interaction data (column labeled “©4”), the qual-
ity of the resulting fused model drops by 2.2% (i.e. RSS increases by 2.2% and Evar decreases by 1.3%). The column labeled
“@4 + Ry4” corresponds to the configuration in which we remove all drug-related information from the system, while the one
labeled “©,” indicates that only drug side-effects information was removed.

Data set | e? o? e o o e, ©,+R, ©; ©;+Ry;

RSS increase (1) [13.3% 6.3% 2.0% 2.0% 2.0% 2.2% 3.8% 10% 19%
Evar decrease (1) | 9.5% 4.5% 2.5% 2.0% 2.0% 1.3% 4.6% 1.8% 3.2%

between diseases.

When searching for disease-disease associations not present in DO, we considered only
those associations that are present in all of the inferred models. This conservative ap-
proach gave us 14 disease-disease association predictions which we validated through
literature and comorbidity data. Relaxing the threshold of association to be predicted,
i.e. requiring a disease-disease association to be present in 95%, 90%, 85% or fewer of
inferred models yields a higher number of predicted disease associations. For instance,
we found 89 associations unrecorded by DO when requiring them to be present in at
least 80% of the models. Exploring the effects of lowering this threshold remains a
subject of future research, as we were able to demonstrate our goal to find potentially
useful associations using the most stringent threshold. Specifically, two of the four-
teen predicted disease-disease associations — between gastric lymphoma and crescen-
tic glomerulonephritis, and between Cushing’s syndrome and Hodgkin’s lymphoma
— demonstrate the ability of the approach to find interesting novel links, but also
highlight the fact that it is not possible to determine causal from correlative relation-
ships (which, indeed, in many cases may not be known), given our current scientific

understanding.

Perhaps even more interesting is the fact that the newly identified relations between
diseases could, in principle, be used to systematically update and extend DO, or even
develop a parallel data-driven hierarchy of disease relations. Utilizing data fusion for
disease re-classification, as well as linking these results with genome-wide association

studies (GWAS) is a subject open to future research.

We show that all available molecular data — regardless of their sparseness — are im-
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portant for effective integration. Surprisingly, we find that genetic interaction data
are the most predictive underlying factor of disease-disease associations despite their
current small size. The flexibility of our data fusion approach allows us to extend the
model with new data sources or omit some sources of information to study their ef-
fects on predictive performance. We only require that the underlying graph of data
fusion graph (Fig. 10.1) be connected. This gives our data fusion algorithm the power
to share latent representations of object types between different data sources. For in-
stance, we cannot omit data on drug targets (R4 in Fig. 10.1 without also removing
data on adverse side-effects of drug combinations (@,). Thus, we report in Results on
the quality of all models that exclude any reasonable first-order combination of data

sources and use these data to estimate contributions of data sources to the quality of

the fused model.

Since our data fusion approach is a semi-supervised learning method, it is less prone
to over-fitting than supervised methods, i.e. ones that make distinctions between ob-
jects on the basis of predefined class label information. Additionally, in order to avoid
over-fitting, we selected data fusion parameters through internal cross-validation and
used constraint matrices — which express the notion that a pair of similar objects of
the same type, such as a pair of drugs or a pair of diseases, should be close in their
latent component space — to impose penalties on matrix factors. Thus, the observed
reduction in model quality when any one of the included data sets is omitted is caused
by the exclusion of complementary information provided by the data set rather than

by the lack of robustness of the model.

We have seen the role of data fusion in successful retrieval of existing and uncovering
of novel links between diseases. Future improvements of such a comprehensive inte-
gration of molecular data would allow better understanding of underlying mechanisms

that drive diseases and would, in turn, improve choice of medical therapy.
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Traditional studies of liver toxicity involve screening compounds through in vivo and
in vitro tests. They need to distinguish between compounds that represent little or
no health concern and those with the greatest likelihood to cause adverse effects in
humans. High-throughput and toxicogenomic screening methods coupled with a
plethora of circumstantial evidence provide a challenge for improved toxicity predic-
tion and require appropriate computational methods that integrate various biological,

chemical and toxicological data.

We report in this chapter on a data fusion approach for prediction of drug-induced
liver injury potential in humans using microarray data from the Japanese Toxicoge-
nomics Project (TGP) as provided for the contest by Critical Assessment of Massive
Data Analysis (CAMDA) 2013 Conference. Our aim was to investigate if the data
from different TGP studies could be fused together to boost prediction accuracy. We
were also interested if in vitro studies provided sufficient information to refrain from
studies in animals. We show that our recently proposed matrix factorization-based data
fusion provides an elegant computational framework for integration of the TGP and
related data sets, twenty-nine data sets in total. Fusion yields a high cross-validated ac-
curacy (AUC of 0.819 for in vivo assays), which is above the accuracy of the established
machine learning procedure of stacked classification with feature selection. Our data
analysis shows that animal studies may be replaced with in vitro assays (AUC = 0.799)
and that liver injury in humans can be predicted from animal data (AUC = 0.811).
Our principal contribution is a demonstration that analysis of toxicogenomic data can
substantially benefit from data fusion with directly and circumstantially related data

sets.
11.1  Background

Drug-induced liver injury (DILI) is the most frequent reason for drug withdrawal
during early development and clinical trials as well as after drugs are approved for the
marketplace (Lee, 2003). Some drugs are more likely to cause hepatic adverse events
than others, and some may even lead to severe liver injuries. Development of tools for
early detection of adverse effects and identification of a drug’s toxic potential is a major
challenge within the pharmaceutical industry and clinical medicine (Chen et al., 2011;

Juand Reilly, 2012; Kaplowitz, 2013). The toxicology and drug safety evaluation com-



Data fusion

munities have made great efforts in developing methodologies to assess drug toxicity
risks (Dix et al., 2007; Yang et al., 2008; Shukla et al., 2010). These large-scale efforts
also intend to elucidate whether animal studies can be replaced with in vitro assays and
if liver injuries in humans can be predicted using toxicogenomic data from animals.
Critical Assessment of Massive Data Analysis (CAMDA) (Tilstone, 2003) created a
challenge in 2013 to assess the performance of different analytic methods to predict
the human hepatotoxic potential of drugs using the Japanese Toxicogenomics Project
(TGP) (Uehara et al., 2010) data set. The challenge aimed to foster the development
of computational approaches and to promote these within the scope of tools for drug

toxicity estimation.

Molecular biology abounds with data from sequencing, expression studies, function
annotations, and studies of interactions between genes, proteins and drugs. These
data sets are related, and analysis of one data set could benefit from the inclusion of
information from others. We proposed in Chapter 6 a data fusion approach that can
elegantly integrate heterogeneous data sets, representing each data set in a matrix and
fusing the data sets by simultaneous matrix factorization. We focus in this chapter on
the fusion of 29 data sets from the TGP and related data repositories to predict DILI
risk. We assess the value of combining conventional toxicogenomic data sets with
circumstantial evidence for more informed prediction of adverse drug reactions and
hepatotoxicity. We compare the accuracy of data fusion to that of a standard multi-
classifier approach where we stack four state-of-the-art classification algorithms. We
additionally investigate feature subset selection by CUR matrix decomposition applied

before combining classifiers with stacking.
11.2 A data collection of 29 data sets

We performed two computational experiments, one with a multi-classifier and the
other with a data fusion approach. The multi-classifier approach considered gene ex-
pression data sets provided by the Japanese Toxicogenomics Project (TGP), which con-
sisted of two in vivo studies (performed on rats) and two in vitro studies (one performed
on rat and one on human cell lines). In addition to gene expression data, the data
fusion approach also included data on drugs available from DrugBank (http: //www.

drugbank.ca), gene annotations from Gene Ontology (http://www.geneontology.
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org), protein-protein interactions from STRING (http://string-db.org), and he-
matological and clinical chemistry data for each animal and sample metadata informa-

tion.

Data fusion considered 14 types of objects (nodes in Fig. 11.1, e.g. genes, GO terms,
or drugs) and a collection of 29 data sets, each relating a pair of object types (arcs in
Fig. 11.1, e.g. gene annotations that relate genes and GO terms). We represent the
observations from a data source that relates two distinct object types i and j in a sparse
relation matrix R;;. For example, the matrix R, |3 encodes the annotations of genes
from the rat in vivo single dose study. A data source that provides relations between
objects of the same type i is represented by a constraint matrix ©;; (e.g., ¢ ¢ for

DrugBank’s drug interactions).

Fused data sets in Fig. 11.1 include gene annotations that are encoded in {0, 1}-
matrices Ry 13, Ry 13, R3 13 and Ry j3; expression profiles (R; 5, Ry 6, R37, Ryg);
hematology, body weight and clinical chemistry data for each rat (Rs 15, Rg 125 Ryp 5 =
R5T,12’ Ry = Rg,lz); array metadata information such as dose level, dosage time
and sacrifice time (Rs 9, Re o, R70, Ry, Ros = Riy, Rog = Riy, Ro7 = R,
Ryg = Réjg); drug targets (Ry 10, Ry 19> R3 10> Ry,10); indication of medical drugs
tested with samples (Rs 19, Rg 19> R7.10, Rg 1) and structure and categorization of
drugs (Ryg,11> Ry 10 = RITO, 11)- Constraint matrices encode protein-protein interac-
tions (@ ;, @, 5, @53, O, 4), drug interactions (@ ;) and the semantic structure
of the Gene Ontology graph (@3 ;3).

11.2.1  Gene expression data and sample metadata

The TGP (Uchara et al., 2010) created a gene expression database using the Affymetrix
GeneChip array to measure the effects of 131 chemicals, mainly medical drugs, on the
liver. Approximately 20,000 samples (tissue/drug combinations) were studied both in
vivo and in vitro. The in vivo study used the rat as the species of analysis and considered
two experimental designs: a single dose study, consisting of multiple time points with
multiple dose levels and a repeated dose study, consisting of multiple dose periods with
multiple dose levels. The probe level intensity ratios were quantile normalized, cor-
rected for chemical batch effects and summarized using FARMS technique (Hochre-

iter et al., 2006) to obtain expression values per genes (Clevert et al., 2012). Replicate
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measurements were collapsed to one measurement per gene, which resulted in 12,088
rat genes and 18,988 human genes. We removed samples whose corresponding chem-
icals were not annotated with human DILI potential and retained 4,824 samples from
the rat in vivo single dose study (R 5), 4,827 samples from the rat in vivo repeated
dose study (R;¢), 2,424 samples from the rat in vitro study (Rj3 7) and 1,116 samples
from the human in vitro study (R, g). For each sample we considered seven meta-
data features (Rs g, Rg g, R7 9, Ry ), including animal sacrifice period, dose and dose

level, animal age in weeks and sex type.

11.2.2  Histological and clinical chemistry data

Data obtained from each animal in single dose and repeated dose TGP studies included
histopathology, animal weight, food consumption, hematology and blood chemistry.
For each animal sample we included 41 attributes (Rs 15, Rg ;) describing hematol-
ogy, such as the levels of monocytes and lymphocytes, biochemistry, such as the con-
centration of albumin (RALB), direct bilirubin (DBIL) and total bilirubin (TBIL), and
body and liver weight.

11.2.3  Drug data

We obtained drug information from the DrugBank (Knox et al., 2011) database. We
related drugs to their gene targets (binary matrices Ry 19, Ry 19> R3 10 Ry 10) and
assigned structural groups (binary matrix Ry j;). We considered joint adverse effects
of drug pairs and DILI risk class co-membership of drugs and included them in the
training set (@¢ 19). A constraint between a pair of drugs was set to (=1)°k/1073,
where k was the number of joint adverse effects of a drug pair and ¢ indicated if the
two drugs belonged to the same class of DILI risk. The DILI severity in humans was
determined for 101 out of 131 drugs based on FDA-approved drug labeling (Chen
etal, 2011). Each drug was assigned to one of three categories resulting in 41 drugs
of severe DILI concern, 51 drugs of moderate DILI concern and 8 drugs of mild or no

DILI concern.
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11.2.4 DProtein-protein interaction data

We included protein-protein interactions from the STRING (Franceschini etal., 2013)
database as constraints between corresponding genes. Degrees of interaction were rep-
resented with STRING confidence scores and used to populate constraint matrices,

0,,,0,,,0;5,0,,.

11.2.5  Gene Ontology data

We considered gene annotations from Gene Ontology (GO) (Ashburner et al., 2000).
We extracted 7,056 GO terms to populate binary relation matrices R j3, R; 13 and
Rj; |3 with 169,816 rat gene annotations and 288,764 human gene annotations to
construct matrix Ry ;3. The hierarchical structure of GO (03 13) was included by
reasoning over has_part, part_of and is_a relations in the GO graph. A constraint
between a pair of GO terms was set to —0.2"P5 | where hops was the length of the

shortest path between the two GO terms.
11.3 A factorial data fusion approach

We applied data fusion to infer relations between drugs and DILI potential. This
relation, encoded in target matrix Ry 14, was observed in the context of all other data

R131><3

sets. Matrix Ry 14 € was a [0, 1]-matrix that was only partially observed. Its

entries indicated the degree of membership of drugs to the three DILI severity classes.
Our approach involves three main steps:

1. First, data are encoded in constraint and relations matrices as specified by the

data fusion graph in Fig. 11.1.

2. In the second step, relation matrices R;; are simultaneously factorized under

ij
constraints given by @;. Recall that every relation matrix is decomposed into
a product of three low-rank matrix factors, such that a relation matrix R;; is
approximated as I/i,- ;=G;S;; GJT using the collective matrix factorization pre-
sented in Chapter 6. Constraint matrices serve to regularize the low-rank ap-

proximations of relation matrices. The key idea of the data fusion approach is
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sharing low-rank matrix factors between relation matrices that describe objects
of common type. For instance, the latent matrix factor of drugs, G, is shared
between decompositions of all relation matrices in Fig. 11.1 whose arcs point
to the drug node but the matrix factor §; 1o is used only in reconstruction of
the corresponding relation matrix between in vitro samples performed on rat
cell lines and drugs. The resulting fused system contains latent matrices S;; that
are specific to every relation matrix (data source) and latent matrices G; that are

specific to every object type.

3. Finally, we use matrix factors to complete unobserved entries in relation matrices
and to transform new objects to the fused latent space. In this study, we aim
to predict the unobserved entries in Ry 14. The DILI severity of d-th drug is
determined as arg max; IA{10!14(d, i). Predictions for d-th drug in the binary
classification problem of severe DILI risk against moderate or mild DILI risks
are estimated by Ry 14(d, 2)/R g 14(d, ©).

11.4 A multi-classifier approach and CUR matrix decomposition

We employed CUR matrix decomposition (Mahoney and Drineas, 2009) to identify
a small set of information carrying genes. CUR matrix decomposition approximates
target matrix A in an unsupervised manner as A & CU R, where C and R are low-
dimensional matrix factors that contain a subset of columns and rows from A, re-
spectively. The advantage of CUR decomposition over some well known low-rank
matrix decompositions such as principal component analysis (PCA) or singular value
decomposition (SVD) is its explicit representation in terms of a small number of ac-
tual columns and rows of target data matrix. The CUR decomposition-selected features
corresponded to original gene expression profiles instead of their linear combinations
as with PCA and SVD. We then applied several state-of-the-art classifiers to predict
the DILI concern in humans from the matrix factor C obtained for each toxicoge-
nomic study separately. We used gradient tree boosting (Friedman, 2002), random
forests (Breiman, 2001) and a support vector machine with polynomial kernel to pre-
dict drug-induced toxicity. Output class probabilities generated by the classifiers were
combined through stacking to compensate for classifier biases (Wolpert, 1992). Stack-

ing took as input predicted class probabilities and generalized over them with logistic
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regression, which increased the accuracy of the best of the individual classifiers, reduced
the variance and prevented overfitting. It was shown that relatively simple combiners
that can avoid overfitting on highly correlated input models often produce most accu-

rate results (DZeroski and Zenko, 2004; Reid and Grudic, 2009).
11.5  Experimental setup

The performance of above described modeling techniques and fusion scenarios was
assessed through 10-fold cross-validation and evaluated with the area under the receiver
operating characteristic curve (AUC). The AUC score represents the probability that,
given a pair of randomly drawn drugs from the positive and negative classes, a predictor
predicts higher probability for the positive drug than for the negative drug. The AUC

is robust to class imbalance and is not biased against minority class (Guo et al., 2008).

In the multi-classifier approach, we considered the problem of predicting drug-induced
toxicity as a binary classification of severe DILI concern against moderate or mild DILI
potential. In order to compare the performance of data fusion to multi-classifier ap-
proach we casted predictions made by fusion into a binary problem as was done for the
multi-classifier experiments. Feature subset selection for the multi-classifier approach
was performed within cross-validation on a training data set. Parameters of the classi-
fication algorithms, such as the number of iterations and the sizes of the constituent
trees in gradient boosting trees, the penalty parameter in support vector machine and
the regularization term in logistic regression, were estimated through internal cross-

validation on the training data.

The matrix decomposition algorithm used in data fusion required a 14-tuple of factor-
ization ranks, one value per object type, which were selected from a predefined set of
values by estimating the quality of low-rank fit of target matrix R 10,14 using explained
variance (Evar) and residual sum of squares (RSS). Initial values of matrix factors were
set uniformly at random. The algorithm terminated when the improvement in con-
vergence of target matrix approximation between consecutive iterations measured as

the Frobenius distance was below 1x107>.
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Table 11.1

Predictive performance of the multi-classifier approach for DILI potential prediction with and without CUR dimensionality

reduction. Ten-fold cross-validated AUC scores are reported. Acronyms: RF - random forests (Breiman, 2001), GBT - gradient

boosting trees (Friedman, 2002), LR - logistic regression, SVM - support vector machine (polynomial third degree kernel).
Stacking using LR human  rat rat rat

Base predictors  Projection | in vitro in vitro in vivo single in vivo repeated

RE GBT, LR, SVM  PCA 0.741  0.765 0.748 0.761
RE GBT, LR, SVM  CUR 0.758  0.755 0.764 0.778

11.6  Drug-induced liver injury prediction

Next, we evaluate the predictive performance of the factorial data fusion approach
against an established multi-classifier approach based on stacked generalization. We
then examine different low-dimensional data projections, which serve to reduce the
data dimensionality and to select informative gene profiles. We conclude by investi-

gating the effects of individual data sets on the overall predictive power.

11.6.1  Comparison to a multi-classifier approach with feature selection

Our first experiment focused on a multi-classifier approach to predict DILI risk from
the preprocessed TGP microarray data. In particular, we used stacked generalization
(Wolpert, 1992) to combine predictions of random forests (Breiman, 2001), gradient
boosting trees (Friedman, 2002), logistic regression and support vector machines (Cortes

and Vapnik, 1995) (Table 11.1).

We applied gene filtering to perform feature selection and to identify genes with high
statistical leverage. We applied the CUR matrix decomposition (Mahoney and Drineas,
2009) of the TGP microarray data sets for gene subset selection. CUR decomposition
computes leverage scores for matrix columns (i.e. genes) and uses them for weighted
column sampling, preferring those columns with a larger score and assembling a lower-
dimensionality matrix. Statistical leverage scores capture the influence of genes on the
best low-rank fit of gene expression matrix. Table 11.2 shows the top ten genes with
highest normalized statistical leverage as computed separately from animal in vitro and

in vivo data.
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Table 11.2

Genes with the most influence on the fit of low-rank CUR decomposition of rat in vitro and rat in vivo expression data. Higher
values indicate the higher statistical leverage of a gene.

Rat in vitro Rat in vivo, single dose
Gene symbol ~ Leverage score | Gene symbol — Leverage score
Cyprar 0.671 Famiria 0.972
Angptly 0.121 RGDr1309362 0.953
Cyp4a3 0.119 Aldhray 0.919
Gdfts 0.086 Ephxz2 0.906
Chacr 0.086 Ubd 0.873
Crgf 0.084 13 0.735
Actar 0.080 Ifier 0.714
Hmges2 0.079 Hamp 0.664
Gos2 0.075 Akrrcrz 0.565
Celzo 0.074 RT1-Bb 0.492

11.6.2 A data fusion-based approach

We used data fusion by matrix factorization (Sec. 11.3) to integrate various data sets.
Data sets are represented as matrices, each relating objects of two types. We consid-
ered objects such as genes, gene ontology (GO) terms, drugs, and tissue samples. For
instance, genes and tissue samples from rat in vivo single study are related through cor-
responding gene expression data. Genes and drugs are related through a matrix of drug
targets. All together, we consider 29 data sets that provide relations between 14 object
types (Fig. 11.1). Data fusion simultaneously considers all data sets (relations) in the

factorization schema and factorizes them into substantially smaller relation matrices.

Odur target relation in this system was a drugs DILI potential, which describes var-
ious degrees of drug toxicity. Toxicity was provided for 101 drugs and expressed as
severe, moderate or mild. In a cross-validation study, a subset of considered drugs
was excluded to serve for testing of predictions of the data fusion model developed
from remaining drugs and all other data sets in the factorization schema. In partic-

ular, given latent matrix factors inferred from the training data and a new drug, we
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Table 11.3

Predictive performance of fusing various subsets of assays for DILI potential prediction. Ten-fold cross-validated AUC scores
are reported.

Fused studies AUC
In vivo studies 0.819
In vitro studies 0.790
Human in vitro study 0.793
Animal in vitro study 0.799
Animal studies 0.811
Human studies 0.792
All studies 0.810

estimated drug’s latent profile by transforming available relations about it to inferred
latent space and then used the estimated profile to predict the target relation, namely
drug’s DILI potential. In that way, we avoided the unwanted information flow be-
tween the training and test sets. Table 11.3 shows the 10-fold cross-validated accuracy
for seven data fusion scenarios that considered various data sets of the complete fusion
model from Fig. 11.1. The model inferred from all four TGP studies used all available
data sets. Other models considered only selected toxicogenomic studies and associated
non-expression data. For instance, fusion of in vivo assays omitted all data sets from

in vitro studies (object types 3, 4, 7, and 8).

11.6.3  Effect of circumstantial data on latent model quality

We estimated the effect of circumstantial data (gene annotations, drug structural in-
formation, hematology data, sample metadata) on the quality of the fused factorized
model. We observed the reconstruction quality of the target data set, which related
drugs to DILI risk, through explained variance (Evar) and residual sum of squares
(RSS). Better models have high Evar and low RSS. The influence of the data set was
determined by observing the change in reconstruction quality when this data set was
excluded from training. Reconstruction of DILI potential when considering the en-

tire collection of data sets achieved Evar of 0.911 and RSS of 8.779 in 10-fold cross-
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validated study when the entire collection of data sets was considered. The reconstruc-
tion quality decreased by 1.0% in Evar and 11.7% in RSS when omitting the data on
hematology, biochemistry and liver weight (type 12; Fig. 11.1) from the entire col-
lection of data sets. In contrast, we observed a 9.6% decrease in Evar and a 12.8%
increase in RSS when excluding array metadata (type 9; Fig. 11.1) from the collection,
and a 0.7% decrease in Evar and 9.4% increase in RSS without considering related drug
data (type 11; Fig. 11.1). Exclusion of gene annotations (type 13; Fig. 11.1) slightly
worsened the model with respect to Evar (a decrease of 0.2%) but improved RSS by

0.3%.
11.7  Discussion

From a computational perspective, our contributions are two-fold. First, we evaluated
the performance of unsupervised matrix decomposition to select genes that exhibit high
statistical leverage and employed a reduced data set using well-established classification
ensemble methods. Second, we pursued a novel data fusion approach based on matrix
factorization to assess the hepatotoxic risk associated with individual drugs by fusing

gene expression profiles with a plethora of related and heterogeneous data sets.

In our first experiment we considered the DILI prediction problem for each study sepa-
rately and pursued a multi-classifier approach (Table 11.1). The training data consisted
of microarray profiles (independent variables) and associated drug with a given DILI
potential (dependent variable). Feature subset selection by CUR matrix decomposi-
tion substantially reduced the number of input features. For instance, and as averaged
across iterations of cross-validation, a subset of only about 300 genes were used for
training the prediction models in the human in vitro study instead of the original
18,988 genes included by FARMS summarization. The solid performance of multi-
classifier approach was not surprising (DZeroski and Zenko, 2004; Pandey et al., 2010)
as several previous studies (Pessiot et al., 2013; Bowles and Shigeta, 2013) on this data
have already reported good results with single classification algorithms such as support
vector machines or gradient boosting. In our case the performance was boosted by
both feature selection and classifier ensembling. Also of note is the comparable perfor-
mance of data preprocessing by CUR factorization and principal component analysis

(PCA). As CUR performs feature selection rather than feature transformation, it could
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be a preferable procedure to identify gene biomarkers (Table 11.2).

Results in Table 11.1 show that using repeated dose studies (rat, in vivo repeated)
when forecasting the toxic potency of compounds in humans yielded better results than
employing single dose animal studies (rat, in vivo single). According to Greim et al.
(2006) and Blaauboer and Andersen (2007) repeated dose studies in animals represent
critical data for hazard identification and risk assessment in humans. They claimed that
the 28-day toxicity study, which was also used by the TGP, is the minimum requirement
to evaluate the organ specific effects of compounds. Our results of the multi-classifier
approach show that in the absence of such information, the assessment of continuous

human exposure to hazardous compounds is incomplete.

For an integrative approach that simultaneously considers all available experimental
and circumstantial data, we use data fusion by matrix factorization (Algorithm 3), an
intermediate data integration approach that is able to fuse heterogeneous data sets.
Intermediate integration is often the preferred integration strategy (van Vliet et al.,
20125 Gevaert et al., 2006; Lanckriet et al., 2004b) as it embeds the structure of the
data into a predictive model and thus often achieves higher accuracy. Data fusion
surpassed the accuracy of the multi-classifier approach for predicting DILI potential in
humans (Table 11.3). The most accurate model was inferred by fusing in vivo assays,
which scored an AUC of 0.819. It is surprising that in vivo assays, which relied on an
animal model, performed better than human assays, given the aim was to predict DILI
potential in humans. However, Pessiot et al. (2013) similarly observed that using in
vivo animal data was more informative than using in vitro data from humans. Their
AUC scores obtained by a linear support vector machine classifier and inferred from
separate toxicogenomic studies were surpassed by those reported by our fusion-based

approach.

The fusion-based model inferred from animal assays (two in vivo studies and one in
vitro study) outperformed the model obtained by fusing human assays only (one hu-
man in vitro study), with the first achieving an AUC of 0.811 and the latter an AUC
0f 0.792. One might expect that the administration of drugs to animal models would
fail to identify the risk of liver injury for drugs prescribed to humans due to differences
in metabolic pathways and the current lack of suitable animal models that reproduce

human risk factors (Kaplowitz, 2013). Our results do not confirm this hypothesis;
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however, differences in performance are small and further investigations seem worth-

while.

The study of influence of data sets on the reconstruction quality of target relation
between drugs and DILI risk (see Sec. 11.6.3) showed that, though some data sets
were small in their size, they substantially affected reconstruction of target relation.
For example, sample metadata included only seven features, such as information about
animal sacrifice period and dose level, yet its exclusion from data fusion resulted in a
near 10% decrease in reconstruction quality of target relation. In contrast, we observed
only a slight reduction in model quality when gene annotation data were omitted from
the fused model despite annotation data recording associations to more than 7,000 GO

terms.

11.8  Conclusion

Although gene expression profiling is an accepted approach for identifying drugs with
potential safety problems (Uchara et al., 2010), our results suggest that integrating
expression profiles with circumstantial data on drugs, arrays and genes can further
improve predictive performance of analytic approaches and pinpoint the mechanisms
that underlie drug toxicity. Our data fusion approach should be applicable to other
toxicity endpoints, such as neurotoxicity, or mechanisms of action, such as regenerative
hyperplasia. We anticipate that efforts in data analysis hold the promise to replace
animal studies with in vitro assays and predict the outcome of liver injuries in humans

using in vitro animal toxicogenomic data.
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Any knowledge discovery could in principal benefit from the fusion of directly or even
indirectly related data sources. In this chapter we explore whether data fusion by si-
multaneous matrix factorization could be adapted for survival regression. We propose
a new method that jointly infers latent data factors from a number of heterogeneous
data sets and estimates regression coefficients of a survival model. We have applied
the method to CAMDA 2014 large-scale Cancer Genomes Challenge and modeled
survival time as a function of gene, protein and miRNA expression data, and data on
methylated and mutated regions. We find that both joint inference of data factors and
regression coeflicients and the data fusion procedure are crucial for performance. Our
approach is substantially more accurate than the baseline Aalen’s additive model. La-
tent factors inferred by our approach could be mined further; for CAMDA challenge,

we found that the most informative factors are related to known cancer processes.

In Chapter 6 we described a data fusion approach called DFMF (“data fusion by ma-
trix factorization”) that jointly factorizes possibly many data matrices into products of
low-dimensional matrix factors in a way that latent matrices are shared between factor-
izations of related data matrices. So far, we reported the utility of DFMF in functional
genomics (Chapter 7), gene prioritization (Chapter 9), inference of new diseases asso-
ciations (Chapter 10), and drug-induced liver injury prediction (Chapter 11). Next,

we extend DFMF in a supervised manner to perform survival regression.
12.1  Background

Identification of driving events and their hazard rates for cancer progression remains a
major challenge in cancer studies (Garraway and Lander, 2013). Recently, initiatives
such as The Cancer Genome Atlas (TCGA) (Collins et al., 2007) and International
Cancer Genome Consortium (ICGC) (Hudson et al., 2010) were launched to coor-
dinate large-scale cancer genome studies across different cancer types and subtypes of
clinical importance. They collect data that span patients, cancer types and diverse bi-
ological data types to address the richness of genomic and molecular mechanisms that
play critical roles during cancer development. Importantly, these include data from
matched tumor and non-tumor tissues (Pleasance et al., 2009). Rich, diverse, large
and complex data sets generated within cancer genome projects now require compu-

tational methods that can collectively address them, provide interpretations on the
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genome-scale, and further integrate them with other genomic, clinical and functional

information.

One of the fundamental goals of bioinformatics approaches in cancer studies is cancer
subtype classification (Yuan et al., 20115 Network et al., 20115 Hofree et al., 2013; Pal
etal., 2014), whereby a heterogeneous population of tumor samples is partitioned into
biologically and clinically meaningful subtypes. Stratification of tumors is typically de-
termined by the similarity of molecular profiles and correlated with clinical phenotypes
including patient survival time and response to chemotherapy. Most current attempts
to stratify tumors have used a single source of biological information and have de-
rived molecular profiles from mRNA expression data (Reis-Filho and Pusztai, 2011;
Pal et al., 2014), somatic mutations (Greenman et al., 2007; Alexandrov et al., 2013)
or methylation data (Gifford et al., 2004). They have discovered informative subtypes
in diseases such as breast cancer and glioblastoma but have also reported a lack of
correlation between derived profiles and clinical phenotypes in certain cancer types,
including colorectal and lung tumors (Network et al., 2011, 2012). These shortcom-
ings might be due to data incompleteness, noise inherent to biological measurements

and limitations of data analysis methods.

Although individual data sets have long been used to stratify patients, stratification
based on multiple types of data, such as expression, methylation and somatic muta-
tion profiles, has been more challenging. These data sets are fundamentally different
from each other, both in type and in structure. Somatic mutation profiles are extremely
sparse and dispersed since typically only a small fraction of genes are mutated and pa-
tients diagnosed with the same cancer type share few, if any, mutations (Lawrence
et al., 2013). On the other hand, methylation, miRNA expression and gene expres-
sion measurements assign quantitative values to nearly all markers, miRNAs and genes,
respectively, in every patient. These data also naturally come at different levels of gran-
ularity and describe distinct biological data types, such as genes, proteins, miRNAs and
methylation markers, among others. Heterogeneity of data generated by an increasing
number of cancer studies hence limits the usage of naive computational approaches
that either cannot be applied to such data or have to discard potentially beneficial bi-

ological information.

Here we report that the problems that stem from data diversity can be largely sur-
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mounted by data fusion, which can collectively consider a plethora of data sets coming
from both directly and indirectly related data domains and can provide gains in accu-
racy through data integration. We focus on the prediction of patient survival time and
the identification of crucial clinical and molecular features. We propose a new machine
learning approach that can consider a potentially large number of heterogeneous data
sets to infer latent factors for a survival regression model. Its principal innovation is
simultaneous inference of patient profiles and estimation of the influence of latent fac-
tors on patient survival time. Below we describe the key concepts behind the proposed

approach and demonstrate its high predictive accuracy in three ICGC cancer studies.
12.2  Overview of survival regression by data fusion

We introduce in this chapter a method called DEMF-SR (“data fusion by matrix fac-
torization for survival regression”) that couples Aalen’s additive model for survival re-
gression and matrix factorization-based data fusion into a joint inference procedure.
The principal novelty of the approach is the establishment of interdependence be-
tween Aalen’s time-varying regression coefficients and fused latent matrix factors dur-
ing model inference. Intuitively, in each iteration of the algorithm, current estimates
of patients’ survival time influence the optimization of latent matrix factors and vice-

versa.

Fig. 12.1 shows an exemplar data fusion graph of eight data sets together with patient
survival data and their corresponding latent matrix factors as inferred by DFMF-SR.
‘We summarize relationships present in every data set (R;;) with a mapping from ob-
jects, i.e. the units of analysis, to sets of objects called latent factors (columns in G; and
G j) and pairwise relations between latent factors themselves (.S; j)- The inference pro-
cess aims at identifying objects that are similar to each other in terms of their affiliation
with latent factors. Similar objects are mapped to the same latent factor. Individual

objects are allowed to instantiate similarity patterns with multiple latent factors.

Overall, the goal of analysis with DFME-SR is to identify the mapping of objects to a
fixed number of latent factors, the pairwise relations among the factors, and regression
coefficients of the survival model. The latter are optimized against good prediction of
hazard rates using the mapping of individuals to latent factors. It should be noted that

latent factors are inferred simultaneously for all objects and every object type in the sys-
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Figure 12.1

Example illustrating sur-

S [« vival regression by data
fusion (DFMF-SR). The
top panel shows the data
fusion graph. Nodes in
the fusion graph corre-
spond to different types of

objects considered by the
system. Edges represent
data matrices that describe
relationships between ob-
jects of different types. For
example, rows of matrix
(“A”, “E”) correspond to
objects “A” and columns

agree with objects of type
“E”. A designated node
“S” in the square box

serves for the times of the
events. Matrix (“A”, “S”)
contains patient survival
data. It is a binary matrix
indicating the times when
the respective objects of
type “A” experienced the
event. Type “A” most often
corresponds to patients
or tumor samples and
hence (“A”, “S”) encodes
the amount of time that
has passed from primary
Inference of a latent model diagnosis until patient’s
via data fusion dearh. DFMF-SR natu-
rally interleaves collective
matrix factorization with
estimation of survival re-
gression coefficients. The
~ X g X bottom panel shows a la-
tent data model inferred by
DFME-SR. Let us assume
data matrix (“A”, “E”) was

selected as a data set whose
S l¢ ﬂ _g A latent factors are used in
the survival model. In each
iteration of DFMF-SR, the
current tri-factorization
u of (“A”, “E”) is updated
towards both better re-
B construction of the matrix

(“A”, “E”) and improved
accuracy of the survival
model. Parameterization
of the survival model is
given by vectors with red

and orange entries. The
. number of vectors corre-
aD sponds to the number of

time points in the survival
C data. Each vector holds
information about the
importance of all latent
[mmmm] factors on survival up to
the respective time point.
‘The dimensionality of each
vector corresponds to the
number of latent factors in
F G (“A”, “E”), i.e. the number
of columns in the matrix
with blue entries, plus one.
An additional entry in
cach vector is reserved for
the time-varying baseline
hazard for survival.
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tem as shown in Fig. 12.1. DFMF-SR couples latent factors with survival coefficients,
which are estimated by regressing latent factors against patient survival data. Selection
of a data set whose latent factors are used in survival model estimation is done prior
to model inference. However, DFME-SR is flexible in the sense that it allows one to
consider for survival analysis the latent representation of any data set included in the

system.

Next, we briefly describe the Aalen’s additive model for survival analysis and a recent
approach to collective matrix factorization, which form the foundation of our work in
this chapter. We then present our survival regression model that uses data fusion and

latent factor parametrization.
12.3 DPreliminaries

Survival analysis studies the relationship between risk factors and a patient’s time to
the event, e.g., death, cancer relapse. The patient is referred to as right-censored if the
event has not yet occurred by the end of the study. Traditional statistical techniques
usually cannot be applied because of the skewness of the distribution of patient life-
time data, time-dependent features and data censoring. The survival probability until
at least some time point is most often estimated with Kaplan-Meier statistics. When
additional patient data are available, such as clinical covariates or information about so-
matic mutations that are present in the tumor, we can model time to the event through

survival regression.

12.3.1  Aalens additive model of survival regression

Aalen’s additive model is an alternative to Cox’s proportional hazards model (Aalen,
1989, 1993; Abadi et al,, 2011). It has time-varying regression coefficients, poses
no assumptions about their parametric form and can provide information about the
changing effects of data features on survival. Let A(f) denote a vector of hazard rates
for n individuals where A;(f) denotes the hazard rate of individual i. The additive
model is given by A(t) = X (1)p(t), where vector f(t) € R™*1 holds the baseline
hazard and m regression coefficients that measure the influence of the respective fea-
tures in X(1) € R™*D The matrix X(¢) is constructed as follows. If the i-th
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individual is at risk at time # (the event has not yet occurred), then the corresponding
row of X (¢) contains the individual’s feature profile, otherwise it is replaced with an
all-zeros row. Aalen’s model estimates cumulative regression coefficients defined by
B,(1) = [y Bi(s)ds, i € [m+ 1]. This is done by finding B*(1) = X, _, V(1)1
where t; are ordered times of events and I} is a binary vector indicating an individual
who experiences the event at time #;. The matrix V' (¢) is computed by the least squares
formula from X (¢).

12.4 Factorized data fusion model for survival regression

Let i and j denote two types of objects, such as genes and Gene Ontology terms, and
let there be n; objects of type i and similarly n; objects of type j. DFMF-SR con-
siders a collection Z of relation matrices R;; € R"™"/, where R;; encodes relations
between objects of types i and j, and a collection € of constraint matrices G)El) for
I € [I;], where @El) is [-th constraint matrix for objects of type i. Similarly to DFME
DFME-SR organizes data sets in a data fusion graph, an example of which is shown
in Fig. 12.2. DFMF-SR infers latent matrix factors G; (G; > 0) and S;; for all i
and j, and cumulative regression coefficients B(f) for all time points of the events,

t, <t, < - < t,, by minimizing the following objective function:

i
1
S IR;~GS,;GTI2+ Y Y w(GT O G+ I11,~G, S, (t)pI2,. (12.1)
R, ER 0,€% I=1 1<ty

Here, p and r are object types and specify data set whose fused latent representation
we use to regress against survival data. The example in Fig. 12.1 uses data set (“A”,
“E”) to regress against survival data (“A”, “S”), hence in that example p corresponds
to “A” and r to “E” (see also Fig. 12.1). The times #;, in Eq. (12.1) are ordered times
of the events and I;, € R" is a binary vector consisting of zeros except for a one in
the position corresponding to an individual who experiences the event at time 7. In
our analysis, p refers to samples and r to features, e.g., protein expression profiles or

mutated chromosomal regions.

We expand the objective function in Eq. (12.1) using a trace operator similar to our
work in Chapter 6 and derive the iterative multiplicative update rules for the unknowns

from the associated Lagrangian L. Derivatives of L with respect to G fori # p remain
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the same as in Chapter 6 and thus, their update rules are unchanged. The multiplica-
tive update of latent matrix factor G, (not shown here) follows from the following

expression after some algebraic manipulation:

oL T T T
e = 2 Y, (-R,G;S; +G,S,GG,;S;)+
P JiR,ER
IP
2 (-R1G;S;,+G,STGIG,S,)+2) 0))G, + (12.2)
JiRj,ER =1
2 Y (CLBE)Sy, + Gyt)S, B BE)S,) = Coly e -

1 <t,

Similarly, update rules of latent matrix factors .S; J for i, j # p, r are the same as those
reported in Chapter 6. The rule for \S),, is obtained from the associated partial deriva-

tive of the Lagrangian L given by:

oL
5 = -2GR,,G, +2G}G,S, Gl G, -2 Z G, (1) I p() +
pr 1<t
23 G (1) G (1), Bt Bty). (12.3)
1.<t,

To properly formulate the multiplicative update rule of \S),,., one would need to solve
a generalized linear matrix equation (Horn and Johnson, 1991; Bhatia and Rosenthal,
19975 Horn and Johnson, 2012). Such equations are difficult to analyze in their full
generality, and necessary and sufficient conditions for the existence of their solutions
are not known (Simoncini, 2014). Also, current numerical techniques for solving gen-
eralized linear matrix equations are lacking or are not robust in large-scale settings (Si-
moncini, 2014). We tackle this problem by randomly selecting a particular #; in each
iteration of the DFME-SR algorithm and its associated term from the last component
of the right side of Eq. (12.3). Based on this reduction we update S, by solving a
Sylvester equation, a well-characterized type of linear matrix equation in which the

coefficient matrices occur on both sides of the unknown matrix .S,

Finally, Aalen’s time-varying coefficients are computed in each iteration of DFMF-SR
by regressing current estimates of G,S,,,(#;) for all #; against lifetimes ordered by the

times of the events with regularized least squares formulation. The parameter selection
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and stopping criteria of the DFMF-SR algorithm are similar to those of the base DFMF
algorithm (Chapter 6).

12.5  Determining assignment of objects to latent factors

DFMF-SR regresses against latent factors in G,S,,. Latent factor in Gy, i.e. a col-
umn in G}, corresponds to a group of objects of type i. Since a latent factor does not
directly represent any individual object, it is not readily interpretable in a biologically
meaningful manner. To decipher the meaning of any latent factor, we wish to iden-
tify objects that are associated with it. By definition, the elements in G; can only take
nonnegative values and represent object membership strengths to latent factors. Mem-
bership strengths are real-valued due to the relaxation of orthogonality constraints on
G; in DFME Therefore, from the values in G; for a given latent factor ¢ we can deter-
mine, which objects are most important and have the greatest membership to factor c.

Specifically, object x of type i belongs to a factor ¢ if ¢ = arg max; G;(x, ¢).
12.6  Data and experimental setup

We consider large-scale cancer studies of three cancer types selected for the CAMDA
2014 Challenge in the 15.1 release of the International Cancer Genome Consortium
(ICGG; http://dcc.icgc.org) (Hudson et al., 2010). These are head and neck
squamous cell carcinoma (HNSC; 368 donors), kidney renal clear cell carcinoma (KIRC;
505 donors) and lung adenocarcinoma (LUAD; 461 donors). The ICGC provides data
from matched tumor and non-tumor tissues. For each cancer type, data include pro-
tein, miRNA and normalized gene expression values, genome-wide information on the
state of methylated fragments, somatic mutations and clinical annotation. We consider
these data sets alongside Gene Ontology annotations, amounting to a total of ten data
sources (Fig. 12.2) for each cancer study. The base object type (p) is given by tumor
samples that are associated with survival data based on the donor’s last known vital sta-
tus (“donor’s vital status”) and the interval from primary diagnosis to the last follow-up

date in months (“donor’s interval of last follow-up”).

We evaluate the performance of survival models by leave-one-out cross-validation of

tumor samples and score the models based on predicted survival times. We report
p. p P
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Figure 12.2

Data sources and their re-
lations. Nodes in the graph
correspond to different
types of objects and edges
denote data matrices R;;
or constraint matrices ©;.
For example, matrix Ry3
contains protein expres-
sion values, Ry5 relates
tissue samples to mu-
tated genes in the tumor,
and DNA methylation
matrix Ry7 reports on
gene-based methylation
Beta values of interrogated
sites. Gene annotations
from Gene Ontology are
given in matrices Ry,

x € {3,4,5,7). Con-
straint matrix @ encodes
the semantic similarity of
Gene Ontology terms as
defined by the directed
acyclic graph of the ontol-
ogy.
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transformed absolute error loss of survival time defined by I(y, ¥) = | log(y)—log(¥,,),
where ¥, is the predicted median of survival time y. The median is the optimal pre-
dictor of the absolute error loss and is less affected by the long tails of survival distri-
butions than the squared error loss. Log transformation addresses the concern that the
absolute difference between predicted and actual survival time at a distant time point
should result in smaller error than the same absolute difference achieved at a nearer

time point (Lawless and Yuan, 2010).
12.7  Prediction of patient survival time

Table 12.1 reports the errors of predicting survival time for lung, kidney and head/neck
cancer studies. We use protein expression and somatic mutation (p = sample, r =
protein or r = copy number somatic mutation; see Sec. 12.4) data to regress against
survival data. Our DEMF-SR approach (last row in the Table) outperforms an alter-
native approach that does sequential survival regression by first transforming data into

the latent space and then inferring a survival model independently of data transforma-
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Table 12.1

Cross-validated error of predicted survival time. Latent data representations of protein expression values or somatic mutation
data are regressed against patient survival data for three different cancer studies. We compare our approach (DFMEF-SR) to a
procedure which first infers predictive factors by data fusion (DFMF in Step I) or principal component analysis (PCA in Step I)
and then learns a regression model (Aalen in Step II). Aalen’s regression modeling could be in principal applied to raw data (first
row without feature construction in Step I), but fails due to high dimensionality of data sets.

Approach Protein expression Somatic mutation
Step I Step 11 HNSC KIRC LUAD | HNSC KIRC LUAD
n. a. Aalen 0.83 0.89 o.80 0.95 0.91 0.99
PCA Aalen 0.73 0.70 0.69 0.71 0.73 0.72
DFMF Aalen 0.67 0.65 0.66 0.61 0.68  0.61

DFME-SR 0.56 0.62  0.59 0.54 0.58  0.53

tion (second and third row in the Table). Similar gains in accuracy of DFMF-SR are

observed for other choices of r but are omitted here for brevity.

Models inferred by DFMF-SR are also substantially better than Aalen’s regression from
the raw data (first line in Table 12.1). The less well-studied cancer data sets in CAMDA
2014 are challenging to analyze due to noisy measurements, missing data and high
right censorship (given the available data). For example, 30% of tumor samples from
the HNSC study do not have information about donors’ last known vital status or
time intervals since their primary diagnoses. Of the remaining samples, 86% belong
to censored individuals. We observed that model performance crucially depends on
the ability to infer latent space and reduce data dimensionality, and survival regression
analysis fails to detect predictive signals if applied to high-dimensional untransformed

data sets in the original data domain.

The additive regression model benefits from incorporating time into estimation of re-
gression coefficients and can give information about effects of data features on pa-
tient survival time by plotting components of cumulative regression coefficients B*(#;,)
against time. Fig. 12.3 shows cumulative regression functions for two somatic muta-
tion latent factors and the baseline regression coefficient in the HNSC cancer study.
The baseline coeflicient starts off small in the first ten months after primary diagnosis
and then increases (Fig. 12.3, right panel). Notice the different dynamics of regression

coefficients for the two latent factors (Fig. 12.3, left panel). Gene sets belonging to
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Figure 12.3

Cumulative hazard plots
produced by DFMF-SR
showing the cumulative
hazards of selected somatic
mutation latent factors
(left; i.e. Bi* (t).) of latent
factor i for the times of
the events ) and the
baseline hazard (right) in
the HNSC cancer study.
Notice that regression coef-
ficients are the derivatives
of the cumulative hazards
and so it is the slopes of the
plots that are informative.
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these latent factors are enriched in biological processes known to play a role in the de-
velopment of cancer (Garraway and Lander, 2013), such as regulation of nitric-oxide
synthase activity, monooxygenase and oxidoreductase activity, nitric oxide processes,
and cyclase activity (FDR < 4 x 10™%). This finding points to a possible utility of the
proposed approach for uncovering critical factors and their changing influence across

different stages of cancer progression.
12.8  Conclusion

We here introduced data fusion for survival regression, a method for predicting patient
survival time from a collection of heterogeneous data sets. Our approach builds upon
recently proposed collective matrix factorization and a well-known Aalen’s additive
model for survival regression. Unlike existing methods for survival time prediction, we
formulated a joint inference procedure that allows us to simultaneously infer model pa-
rameters of collective matrix factorization and regression coefficients of Aalen’s model.
We demonstrated improved performance of our method over several baselines in case
studies involving three cancer types from the International Cancer Genome Consor-
tium and diverse data sets, such as gene and miRNA expression profiles, somatic mu-
tation data, methylation and gene annotations from the Gene Ontology. We showed
that both latent data representation and joint inference, the two features of our ap-
proach, contribute substantially to accurate prediction of survival time. The work here
alludes to the potential benefits of data fusion for inference of prediction models that

are predictive of clinical outcomes.
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Most branches of science and technology are data rich, both in volume and heterogene-
ity of available data sets. We can view data sets as relation matrices, and represent the
entire data domain as a relation graph. This representation has recently been explored
in fusion by collective matrix factorization to jointly infer predictive models with very

high accuracy.

We are interested in this chapter in how changes in one relation (data set) affect the
latent representation of another relation in the context of a given collective matrix fac-
torization model. For example, in a user-movie recommendation system, how would
a change of casting affect users’s preferences? We present FOReNsIC, an approach for
inter-relation sensitivity estimation in collective matrix factorization. FORENSIC derives
from theory of Fréchet derivation and condition number estimation. It can estimate
sensitivity for all pairs of relations within a single run of inference algorithm and can

be applied to any collective matrix factorization.

We investigate the properties of FORENSIC in a study consisting of 13 data sets from
molecular biology. Furthermore, we demonstrate its utility on a collection of 40 ex-
perimental protein physical interaction data sets, where FOReNsIC is able to correctly
identify surprising data sets and data sets containing experimental errors. 7o our best
knowledge, the latter study involves the largest number of data sets to date that were con-

sidered by any collective matrix factorization model.

Results show that estimated sensitivity highly correlates with the changes of target re-
lation reconstruction error when effect relation is removed. FORENsIC exhibits a sur-
prisingly high level of agreement when applied to different factorization models and
hence reports sensitivities that are properties of a relational data structure rather than a
confound of a given factorization model. Experiments provide evidence that Forensic

could be used as a scoring technique in data set selection for data fusion.
13.1  Background

Many applications of machine learning in social networks, e-commerce and molecular

biology involve heterogeneous data that describe multiple relations between multiple
gy g

types of objects (Pavlidis et al., 2001; Sutskever, 2009; Kim and Leskovec, 2013; Wang

etal., 2014). For example, a biological domain with genes, phenotypes, cellular path-
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ways and experiments might have four relations, as shown by a subgraph of relation
graph in Fig. 13.1: a real matrix representing expression values of genes at different time
points (R7), a matrix representing the phenotypes exhibited by the mutants (R;,) and
two binary matrices indicating the pathways each gene belongs to (R3) and whether
genes interact physically or not (@) (Hofree et al., 2013). In such multi-relational do-
mains, one could fit each relation matrix separately but this approach would not take
advantage of any correlations between relations (Greene and Cunningham, 2009). If
genes from a particular pathway are those whose mutants have similar phenotypes, one
would like to exploit this correlation to improve the prediction (Stingo and Vannucci,

2011).

One class of inference algorithms that can treat multiple, in principle tens or hun-
dreds of relations, are techniques of collective matrix factorization (Singh and Gordon,
2008c). Many collective factorization models were proposed recently (Long et al.,
2006; Banerjee et al., 2007; Singh and Gordon, 2008a; Wang et al., 2008, 201143;
Nickel et al., 20113 Zitnik and Zupan, 2015a; London et al., 2013). Given the in-
creased interest in considering a plethora of data sets during model inference such
factorization models are expected to become even more abundant in the future (Zitnik

and Zupan, 2014b).

Collective matrix factorization aims at improving predictive accuracy by exploiting in-
formation from one relation while predicting another (Singh and Gordon, 2008a).
Typically, one of the modeled relations represents target, such as users’ ratings matrix
in a recommendation task or genes’ functional annotation matrix in gene function
prediction. Methods of collective matrix factorization have to address the issues of
incomplete relations, missing patterns and possible disagreements between relations
that arise due to integrative nature of the analysis (Greene and Cunningham, 2009).
‘Therefore, understanding dependencies between relations seems essential both for ex-
ploratory analysis and for performing various predictive modeling tasks (Tang et al.,
2013). One would like to consider in a factorized model only relations that positively
affect completion of target relation and often for reasons of computational efficiency
remove relations with insignificant influence on target relation. On the other side, a
relation to which target relation is highly sensitive might be of analyst’s interest by itself
as the sensitivity can arise due to the unique characteristics of problem domain or noise

within a relation (Greene and Cunningham, 2009; Xing and Dunson, 2011).
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Figure 13.1

Relation graph of a biolog-
ical domain consisting of
seven object types (nodes)
and thirteen relations
(edges). For example, rela-
tion R; is a matrix with
genes in the rows and phe-
notypes in the columns,
and element Ry, (i, j)
indicates whether gene
mutant i exhibits pheno-
type j, relation @} encodes
protein physical interaction
network, and Ry7 contains
gene expression profiles.
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In this chapter we aim to understand the sensitivity of one relation to perturbations in
another relation when both relations are modeled by a collective matrix factorization.
We approach this challenge by providing a formal definition of inter-relation sensitivity
in collective matrix factorization and show how to estimate it efficiently. We propose
Forensic, a new method of inter-relation sensitivity estimation for collective matrix
factorization. To best of our knowledge, we are not aware of any existing approach
that would provide such functionality. Our formulation derives from matrix algebra
and Fréchet derivation (Higham, 2008) and provides consistent sensitivity estimates
across many collective factorization models. An appealing feature of FORENSIC is its
ability to estimate sensitivity for any pair of modeled relations for which it needs a one-
time-only inference of a factorized model. As such, FORENSIC avoids computational
burdens of controlling for latent factor initialization and additional parameter setting
of factorization algorithm. Further innovation of our approach is that we can estimate
sensitivity between relations coming from different data domains if they are related in
a relation graph. In the example from Fig. 13.1 we can relate phenotypic annotation of
genes (R ) to Medical Subject Heading (MeSH) description of research papers (Rsg)

through relation that records gene occurrences in research literature (Rys).

Moreover, the use of the Fréchet derivation in latent factor models opens many new
applications that were previously not possible. FORENSIC can be used to detect low-
quality experimental data sets. In biology, an often underappreciated issue is that even

when an experimental readout is mapped in a sample, it is usually done with few, if any,
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replicates owing to cost, time or sample material availability (Ernst and Kellis, 2015).
As a result, experimental variability can confound biological comparisons. This situa-
tion is exacerbated when analyzing large compendiums of data sets whose sheer number
increases the likelihood that there will be outlier data sets of lower quality (Ernst and
Kellis, 2015). This observation, together with the increasingly popular joint analysis
of large data collections using collective latent factor models calls for an efficient and
principled approach for estimation of sensitivities between data sets (relations). As
such, FORENSIC can provide recommendations as to which data sets to integrate and
can offer insights about “surprising,” i.e. potentially problematic, data sets. While
identification of problematic data sets is related to outlier mining in high-dimensional
data (Angiulli and Pizzuti, 2005), the most important distinctions between that body
of work and ours center on: (1) the estimation of sensitivity between relations rather
than differences between individual objects coming from a single data set, and (2) the
computational mechanisms that make Forensic readily applicable to any present col-

lective latent factor model.

Here, we first provide the background in collective matrix factorization and the Fréchet
derivation and then present our approach to inter-relation sensitivity estimation (Sec.
13.3). We investigate properties of the proposed approach in a domain with thirteen
relations from molecular biology and several collective factorization models (Fig. 13.1).
In a domain with forty protein interaction data sets we demonstrate the utility of
Forensic for investigation of influences between relations and identification of re-

lations to which a given target relation is most or least sensitive (Sec. 13.5).
13.2  DPreliminaries

13.2.1  Collective matrix factorizations

Low-rank matrix factorization have been widely used for pattern recognition in the
fields of data mining, signal processing, computer vision, bioinformatics, finance and
economics, among others (Wang ct al., 2013). Existing algorithmic variants include
factorizations that impose the nonnegativity constraints on matrix factors or constraints
such as sparsity, locality and orthogonality through regularization. Recent algorithms

bySingh and Gordon (2008a); Sutskever (2009); Banerjee et al. (2007); Wang et al.
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(2008, 20112); Nickel et al. (2011); Zitnik and Zupan (2015a); London et al. (2013)
modify standard factorization formulations to break through conventional data types

or factorization modes.

Multi-relational factorization simultaneously factorizes many data matrices and shares
latent factors between relations that have object types in common. Data Fusion by
Matrix Factorization (DFMF) (Zitnik and Zupan, 2015a) takes a system of relation
matrices and collectively factorizes them. Given a relation R;; € R"*" between
objects of type i and n; objects of type j, DEMF tri-factorizes it into a product of
three low-dimensional matrices in the following way. DFMF find a rank-c;,c ; fac-
torization of R;; as R;; ~ G;S; jGT, where an ¢; X ¢; matrix factor S;; represents
a relation-specific factor, and an n; X ¢; matrix factor G; and an n; X ¢; matrix fac-
tor G; are object type-specific matrix factors. The latter two matrix factors are shared
among decompositions of relations that describe objects of type i and j, respectively.
Related models of simultaneous matrix decomposition include Symmetric Penalized
Matrix Tri-Factorization (tri-SPMF) (Wang et al., 2008) and Symmetric Nonnegative
Matrix Factorization (S-NMTF) (Wang et al., 20112). They differ from DFMF by
incorporating graph regularization, requiring full set of relation matrices between all
pairs of object types and the symmetry of relations. Another model, RESCAL (Nickel
etal,, 2011), employs a tensor factorization to take the structure of relational data into
account. Given a collection of relation matrices of the same dimensions, RESCAL
finds a rank-c factorization of k-th relation R, € R"™" as R, ~ AS, AT, where an
n X ¢ matrix factor A contains global latent components and S is a ¢ X ¢ asymmetric
matrix that models participation of the latent components in the k-th relation. Typi-
cally, learning of these models is iterative by nature and alternates between updates of
local latent factors until convergence criteria are satisfied. Although the formed fac-
torization models are conceptually different, we demonstrate in the experiments that

FoRreNsic can be applied to them.

13.2.2  Condition numbers and Fréchet derivation

Ideally, a factorization algorithm returns not only an approximate solution but also
an interpretable estimate for the error in that solution. Producing an a priori error

bound for an algorithm can be very difficult (Higham, 2008), as it involves analysis
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of trunctation errors and rounding errors and, int the case of collective factorization
algorithm, their propagation across data sets. A separate question, usually easier to
answer, is how sensitive is the solution of the problems to perturbations in the data.
Knowledge of problem sensitivity can be crucial in applications, where it gives insight
into whether the problem of collective factorization has been well formulated, allows
prediction of the effects of data inaccuracies, and indicates the best reconstruction error

that any algorithm can be expected to provide (Higham, 2008).

Sensitivity is determined by the derivative of the function that maps the input data
to the latent model. For a matrix function view of the latent factor models the ap-
propriate derivative is the Fréchet derivative and its norm can determine the condition
number for the problem as explained in the following sections. Thus every latent factor
model gives rise to the related problem of characterizing, computing and estimating

the associated Fréchet derivative and its norm.

Condition numbers

Sensitivity is measured by condition numbers (Higham, 2008). We start by recalling
how condition numbers are defined for scalar functions f(x). The standard definition

of relative condition number is:

Condrel(f, X) = lim sup M

=0 | Ax|<elx| ef(x) (13.1)

This number measures by how much, at most, small changes in the data x can be
magnified by the function f, when both changes are measured in a relative sense. If f
is continuously differentiable, f(x) # 0 and x # O then it follows that the condition

number of function f at point x is:

xf'(x)
S

‘This definition of relative condition number extends readily to arbitrary matrix func-

cond,(f,x) = . (13.2)

tions F : C™" — C™". Higham (2008) defined the relative condition number of

matrix function F at value X by

F(X+E) - FX
cond,(F,X)=1lim sup IF(X + )X ()”, (13.3)
=0 El|<e)| x| e[l F(X)I|
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where E is a perturbation matrix and the norm is any matrix norm. Some care is
needed in interpreting Eq. (13.3) for matrix functions not defined throughout C"".
There exists a corresponding absolute condition number, which measures the change in

the data and the function in an absolute sense (Higham, 2008).

The Fréchet derivative

To obtain an explicit expression analogous to Eq. (13.2) we need an appropriate notion

of derivative for matrix function. The Fréchet derivative (Higham, 2008) of a matrix

function F : C™" — C"™" at point X € C™" is a linear mapping:

X Lr X

¢ — o (13.4)
E — Ly(X.E)

such that for all perturbation matrices E € C™" the following holds:
F(X + E) - F(X) - Lp(X, E) = o(|| El) (13.5)

The value Ly (X, E) is referred to as the Fréchet derivative of F at X in direction
E. The notation L(X, E) can be read as “the Fréchet derivative of F at X in the
direction E” or “the Fréchet derivative of F at X applied to the matrix E” (Higham,

2008).

The relative condition number can be expressed in terms of the norm of L (X)), which

is defined by:

ILE(X, Z2)|
I L (X))l —I?%W (13.6)

The relative condition number is then given by (cf. Theorem 3.1 in Higham (2008)):

cond

1L XX
F.X)= ———— .
rel ) TFOO] (13.7)

Approximation to the Fréchet derivative of a matrix function

It is usually not straightforward to obtain an explicit formula or representation for

the Fréchet derivative. In order to estimate cond, (F, X) efliciently we have to be
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able to evaluate L (X, E) for many directions E. Al-Mohy and Higham (2010) pro-
posed a complex step approximation to the Fréchet derivative of the matrix function
F, which is the idea that we employ in the estimation inter-relation sensitivity defined
in Sec. 13.3.2. They approximate the Fréchet derivative by evaluating a real-valued

matrix function F at a complex argument as:
Lp(X,E)=1Im F(X +ihE)/h + O(h?), (13.8)

wherei = \/—_1 is unit imaginary number. The complex step approximation is known
in the scalar case, where it can be derived from the Taylor series expansion. The use of
complex arithmetic is appealing because of two reasons. First, unlike in the finite dif-
ference approximation to the Fréchet derivative, subtractive cancellation is not intrinsic
in the expression Im F(X +ihE)/h. This means that the complex step approximation
offers the promise of selecting £ based solely on the need to make the truncation error
sufficiently small. Practical experience with the scalar-based complex step approxima-
tion, e.g., Cox and Harris (2004), has indeed demonstrated the ability of Eq. (13.8) to
produce accurate approximations even in scenarios with £ as small as 10719, Second,
the complex-valued approximation produces an estimate of the Fréchet derivative with
an order of convergence more than the real-valued approximation. The last attractive
property holds due to the cancellation of imaginary unit in the even-powered terms of

the Taylor series expansion.

Although complex step approximation is known in the scalar case, it is new in terms of
matrix functions and can produce estimates that are more reliable than those obtained

by techniques that use finite differences (Al-Mohy and Higham, 2010).

13.3  Inter-relation sensitivity estimation in
collective matrix factorization

Suppose we have a collective matrix factorization model Fj and we denote the setting of
its latent parametrization collectively by 8. We view Fj as a matrix function (Higham,
2008) that takes as it input a collection of relations €, infers latent representation 6 and
specifies Fy(R) to be a relation of the same dimensions as R € &; it does so in a way
that provides a useful decomposition of R into latent components, most often found by

minimizing a reconstruction loss with additional constraints. Suppose that € contains
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two designated relations, RO € R"1%"2 and R©® € R"a ™"

2 which we refer to as
target and effect relations, respectively. Selection of target and effect relations depends
on a predictive modeling task. It is unrelated to concepts of supervised learning since

matrix factorization typically implements unsupervised or semi-supervised model.

FORENSIC can estimate inter-relation sensitivity when R® and R‘® share either both
dimensions (n,1 =n,, An, = nez), one dimension (rlt1 =n, vVn, = nez) or neither
of them (n, # n, A n, # n,). This characteristic permits Forensic the analysis
of any two relations included in €. Given Fj, relations R® and R@, our goal is
to quantify the effects that relation R has on target relation R in the context of
Fy. We aim to do so efliciently without necessitating rerun of factorization inference

algorithm.
13.3.1  Definition of FORENSIC inter-relation sensitivity score

We begin with definition of FORENsIC and appropriate condition numbers. We define
FORENSIC’s ¢ score of inter-relation sensitivity as an estimate that quantifies the effects

(e)

of changes of effect relation R on target relation R in the context of a collective

matrix factorization Fj:
IL g, (RO, RO | RV
| Fy(RO)]|

$(RV, R Fy) = , (13.9)
where L, is Fréchet derivative of Fy, Fy(RY) is the estimate of target relation pro-
vided by the parameterized latent factor model Fy, and the norm can be any matrix

norm (we focus on matrix 1-norm in the next sections).

The Fréchet derivative L Fy (RY, R®)Yin Eq. (13.9) evaluates sensitivity of target rela-
tion R® to small perturbations in R®), where perturbations are determined by model
Fy. It is the essendal part of the above formula and represents the mapping instead
of its value in any particular direction. We refer to it as Fréchet derivative because of
its conceptual analogy with Fréchet derivatives (Higham, 2008). We define Fréchet
derivative of F at R with respect to perturbation E applied to R as a linear map-
ping Ly, (R”, R®; E) € R"1™" such that:

F3(R”16 = 6,- U{RYHE}) -~ F(RY)~ Ly (R”, R¥; E) = o(|| E||) (13.10)
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for any perturbation matrix E. Detailed definition and estimation of Fj and FH oper-
ator will become clear in the next section. Intuitively, F5 evaluates target relation when
small perturbations of respect relation are performed and the FH operator transforms
effect relation and perturbation to the same data domain as specified by a factorization
scheme. To estimate Fréchet derivative that does not depend on perturbation direction
we have to estimate matrix norm of the Fréchet derivative:

ILg, (R, RO)|| = max ILr, (R, RO E)| (13.11)
Forensic measures by how much, at most, small changes in the data can be magni-
fied by Fy, when both changes are measured in a relative sense. Recall that sensitiv-
ity is measured by condition numbers and Forensic generalizes the relative condi-
tion number of a scalar function f at point x defined in Eq. (13.2). More explicitly,
$(RD, RO, Fy) represents relative condition number of factorization Fy at R® for

changes made in R@:

F;(RY19=0,_ U{ROFAE}) - F)(R?
(b(R(’),R(e);Fe) — lim sup Il 0( | e { HE) 9( )”

=0 Ell<e| RO €|l Fp(RD)]|
(13.12)
'This alternative but equivalent view of Eq. (13.9) implies that:
F3(RV10 =0,- U {R® H E}) — Fp(R? E
VFR(ROW = 0, (ROBED = Fy R _ o o o) WEL L e
| Fg(RO)]| RO

and provides an approximate perturbation bound for small perturbations E. We next

outline the procedure for estimation of FORENSIC’s ¢ score.

13.3.2  Estimation of FORENSIC score

In this section we focus on estimating the essential part of FORENSIC’s ¢ score, the
matrix norm of Fréchet derivative || L Fy (R®, R®)]|. Estimation of matrix norm re-
quires evaluating Fréchet derivative for certain E, a task on which we focus first. Ma-
trix norms of target relation and its reconstruction by Fj, which are also needed in
FoRrENSIC’s ¢ score, can be estimated with standard matrix norm estimators (cf. ma-

trix 1-norm estimation in Higham and Tisseur (2000)).
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; ; (N Re.

Estimation ofL,;H(R ,R'“;E)

Forensic estimates the Fréchet derivative L, via complex step approximation:

F3(R”10 = 6,- U{R® @ ihE})
p .

Lg,(R”, R E) » Im (13.13)
where L Fg(R(’), R, E) is evaluated at complex argument ihE. This expression ap-
proximates Fréchet derivative of F at R with respect to change of R in the direc-
tion iAE for suitably small A. In the scalar case, complex step approximation is derived
from the Taylor series expansion. FORENSIC generalizes it to matrix factorizations over
real numbers. Replacing E by ihE in Eq. (13.10), where E is independent of 4, and

using the linearity of L Fy» WE obtain:

Fz(R"|0 = 6,- U{R“ H@ihE}) — F(RV) = ihL (R®, R®) = o(h). (13.14)

Thus, if F operates over non-complex relations and R, R and E are real matrices

then:

F3(RY16 =0, u{R®@IRE})
A ,

L, (R",R©;E) = lim I (13.15)
which justifies complex step approximation. To be able to determine the rate of con-
vergence of the approximation as & — 0, we need stronger assumptions about F. In
particular, if the operation of F can be described by an analytic matrix function then
we rely on theory of matrix functions: the analyticity of that function is sufficient but
not necessary condition to ensure a second order approximation of Fréchet derivative
(cf. Lai and Crassidis (2008) and Theorem 1 in Al-Mohy and Higham (2010)). In

Sec. 13.4 we show the efficacy of L, in predictive modeling.

We select A in Eq. (13.13) such that & < \/EHR(') l5/ I Ell g, and u is the unit round-
off. Complex step approximation is attractive because it can be implemented as long
as the update rules of F can be evaluated at a complex argument, which is true for
existing collective matrix factorization algorithms. Perturbation matrix E has same
dimensions as target relation, E € R X"y . Hence, the operator F is concerned with

transforming perturbation matrix to latent space of effect relation, that is, [ specifies
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. X X . .
a mapping from R™1™"2 to R ‘¢ This procedure depends on the algorithm of col-
lective matrix factorization but typically involves a few multiplications of perturbation

matrix with inferred latent matrices that are part of Fj.

Latent parametrization @ in Eqgs. (13.13—13.15) is obtained from 6 by replacing latent
parameters specific to effect relation with their perturbed version obtained by the FH
operation. We next exemplify evaluation of F(R"”|6 = 6,- U {R© [HihE}) in
Eq. (13.13) for two different collective factorized models F. In general, Fj applies the
update rule specified by F to latent factors that are shared between target relation and
other relations modeled by Fj.

Example 1 — Evaluation ong(R(T)V; =0,-U (R B ihE}) in Nickel et al. (2011)
model.  Factorized model RESCAL (Nickel et al., 2011) factorizes k-th relation as
R, ~ ASkAT, where @ = {A} U {S}}. Forensic evaluates operator Ff as R© @
ihE =S, + ihATEA. Latent parametrization @ is then formed from @ by replacing
S, with S, +i hAT EA. Assuch, data perturbation affects only S, which is the latent
factor in RESCAL specific to effect relation R‘®. Given 8, Fj performs an update of
latent matrix A as defined by RESCAL factorization scheme and returns reconstructed
target relation R® as AS, A.

Example 2 — Evaluation of Fg(RmV} =0, U {R© B ihE}) in Zitnik and Zu-
pan (2015a) model. DFMF (Zitnik and Zupan, 2015a) is a factorized model that
models multiple relations between different types of objects, whereas RESCAL mod-
els multiple relations between two types of objects. DFMF factorizes relation be-
tween object types j and I (R;; € R"™) into a product of three low-rank matrices
R, ~ Gij,GIT, where Gj e R, G, € R"* and Sﬂ € RY™ are latent
matrices and ¢;, ¢; represent model dimensionality. Latent parametrization of DFMF
is given by 0 = {G;} U {.S},}. For target relation R and effect relation R1¢2),
both included in DEMF model F, we evaluate R® E ihE as follows:
Se,e, +ihG EG, S| S, . ift; =¢

Sere, + 1S, ., S, Gl EG,, ity = e

ROMRE=4{ ¢ arehn (13.16)
. T T . :
S,., +ihS,, GLEG, ST ift|=e,
o oT T .
Siye, +ihST, GTEG,S,, ift,=¢|
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Similarly as in RESCAL, Fj performs an update of latent factors that are shared be-
tween target relation and other relations in the model. In particular, it applies an
update rule of DFMF to latent matrix factors G;, and G, . The return value of Fj is
reconstruction of target relation R® computed as (_;,1 Sty G_g

Estimation of matrix 1-norm ofL,.-H(R(’), R©)

Next, we explain how to estimate the matrix 1-norm of the Fréchet derivative. Since

the Fréchet derivative L FB(R('), R©) is a linear operator:

vec(L FU(R“), R@:E)) = KFO(R(’); R©Yvec(E) (13.17)

22
for some K F, (RW; R@®) e R"1™™2 that is independent of E. We refer to matrix
K, (R®; R®) as the Kronecker form of the Fréchet derivative. This form is attrac-
tive because it explicitly captures the linearity of the Fréchet derivative and permits

Forensic to exploit standard linear algebra techniques to estimate || L Fy (RY, R©)|.

For large n, explicitly forming K F, (R(t); R©) is prohibitively expensive and so the
FORENSIC’s ¢ score must be estimated rather than computed exactly. In practice, what
is needed is an estimate that is of the correct order of magnitude — more than one

correct significant digit is not needed.

In Algorithm 5 we give a matrix 1-norm estimator for L F) (RY, R®). The idea of
applying a matrix norm estimator to the Kronecker form of the Fréchet derivative
has been used before for estimating the condition numbers of matrix exponential and
matrix logarithm (Al-Mohy and Higham, 2009; Al-Mohy et al., 2013), where it was
shown to produce more reliable matrix norm estimates than approaches based on finite
differences. Algorithm s is Lanczos-based and requires two evaluations of the Fréchet
derivative per iteration (steps 7 and 12 in Algorithm 5). FORENSIC computes them via

a complex step approximation given by Eq. (13.13).

Algorithm 5 does not require a starting matrix. In contrast to the power method,
which is an alternative matrix norm estimation technique, Algorithm s has a “built-
in” starting matrix (step 2 in Algorithm 5). Another advantage of Algorithm s is that

it has a natural formulation of the convergence test. It also has a more predictable
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Effect relation

objects of type &,

Effect relation

&1
«—

&

[ ]

&4

&1 & &3 &

number of iterations. In all our experiments it needed less than ten Fréchet derivative

evaluations for convergence.

Estimation of L F”(R(I), R whentne=g

Some care is needed in interpreting Eq. (13.16) for multi-object type factorizations
such as previously mentioned DFMF (Fig. 13.2, bottom), where it can occur that
target and effect relations do not describe a common object type. For example, target
relation matrix in the bottom pane of Fig. 13.2 contains relationships between objects
of type &5 and type &, whereas effect relation matrix relates objects of type &; to
objects of type &,. This means that the particular choice of target and effect relations

in Fig. 13.2 is represented in a relation graph by non-neighboring edges.

In scenarios, where target and relation matrices do not share an object type, ForREnsiC

defines the Fréchet derivative through a relation chain that starts at the effect relation
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Figure 13.2

Collective matrix factoriza-
tion models can be divided
into two groups: (top)
models for two-object

type and multi-relation
data and (bottom) mod-
els for multi-object type
and multi-relation data.
Shown are representative
data settings for the two
groups. In a two-object
type setting, we are given

a collection of relation
matrices between two types
of objects (&) and &),
whereas in a multi-object
type setting we are pre-
sented with a collection

of relation matrices that
potentially describe rela-
tionships between different
object types (& to &4 in
the bottom pane). Next to
the relation matrices are
shown relation graphs with
nodes corresponding to
different objects types and
edges denoting distinct re-
lations. Target and relation
matrices might not share
an object type.
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Algorithm s

LAPACK Matrix 1-norm estimator on the Fréchet derivative in factorization Fp; ||LF0 (R®, R(P))H 1. Given the latent factor

model Fy, target relation R® and effect relation R©, this algorithm uses the LAPACK norm estimator to produce an estimate
of |Lp, (RO, RO, given the ability to compute L, (RO, R®; E) forany E.

Input:
= matrix factorization F, with latent parameters 6,
u target relation R®,
u effect relation R,

Output:
® an estimate y = ||LF0 (R(t), R<e))|l1-

i v =vec(Lg, (RY, R®; (n, n,))" (11, xn, )

=y =|lvll

3: & = sign(v)

4 X =vec(Lp, (R, R, [fT]n,lxn,2 )
5: repeat

6 Jj=minf{i : |x;| = |||}

7: v =vec(Lp, (R®,R©; [ej]"z| Xty )), where e; € {0, 1}"1"2 is a standard
unit vector

8: v=v

9: r =1vlly

10: if sign(v) = +& or y < ¥ then goto line 14

I & = sign(v)

o x=vec(Lp, (R”, RO (ET],, 4, )

3 until |[x]| o = x;

e x; = (=11 + #) i=1:(n,n,)

150 X = vee(Lp, (R”, R@; (%1, xn,,))

6 if 20xl/Gny ) > y theny = 2]1xl| /G, m)

Here, sign is element-wise sign function, vec is an operator that stacks columns of a

matrix into one long vector, and [x] denotes dematricization operation, which

nyXny
reshapes the vectorized version of x back to its full matrix form.
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and end at the target relation:

ILg, (RO, RO)|| = ) min ||Lg (RED, RE). (13.18)
0 1<i<|%| 6
4
Here, € is a relation chain between the target and the effect relations and is determined
by the connectivity of a particular relation graph. Formally, a relation chain is given

by a sequence of relations:
€ =[RV,RP,...,RW, (13.19)

where R = R®@ and R® = R®. The ordering of relations in % is such that
R0 and R share an object type. Notice that in a well formulated collective
latent factor model there always exists a relation chain between any target and effect

relations.

An example of a relation chain. A data domain with users, movies, genres, actors, di-
rectors and user demographic profiles might have five relations shown in Fig. 13.3 rep-
resenting: users ratings of movies, users’ demographic profiles, the genres each movie
belongs to, the movies each actor appeared in, and the movies delivered by each direc-
Foren-

tor. To estimate sensitivity of Ry, to perturbations of R

Demographics Genre-Movie?

sic considers a relation chain € = [Rere_movier Riviovie_Users Ryser_Demographics |- Intu-
itively, Eq. (13.18) accounts for possible ways in which perturbations of R, novie

can propagate through relation graph to reach Ry pemographics-

13.3.3 Normalization of FORENSIC score

So far, we defined FORENSIC’s ¢ score as a value that measures how perturbation of one
relation affects another relation if both relations are collectively modeled by a latent fac-
tor model. We defined appropriate condition numbers and described computational
steps needed to efficiently estimate ¢ values. Next, we further normalize ¢ values to
ensure that we can compare the values when different effect and target relation pairs

are considered.

We define the normalized ¢,, score as:

H(RV, R, Fp)
| Fy(RO)||[| Fp(R@)]|”

¢, (R”,RY; Fy) = (13.20)
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Figure 13.3

An example of a data do-
main with six object types
(nodes) that are related

by five relations (edges).
Multi-object type data do-
mains can be analyzed with
collective matrix factoriza-
tion such as DEMF (Zitnik
and Zupan, 2015a) and
S-NMTE (Wang et al.,
2011a). To estimate the
sensitivity of user’s demo-
graphics profile (Ry3) to
perturbations of the genres
each movie belongs to
(Ry41), Forensic considers
sensitivity scores along

a highlighted chain of
relations (Rg; = Ryp =
Rp3).
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where ||F9(R(’))|| and ||F9(R<e))|| are matrix norms of the estimated target and effect
relations, respectively. The estimates are obtained by reconstructing target and effect

relations from the latent factors provided by F.

The reasoning behind the normalization terms introduced into the ¢ score is as follows.
We would like to have a score that would use an equal relative amount of perturbation
for various effect relations. When potential effect relations are of very different size
then the amount of perturbation, E, that is induced into the latent factor model also
varies. This situation is exacerbated when analyzing large collections of data sets (see
Sec. 13.5) whose sheer difference in the number of data points per data set increases
the likelihood that a given target relation will be more sensitive to a larger data set. We

thus divide the ¢ score by the norm of the estimated effect relation.

The second normalization term in Eq. (13.20) has a related role. A given effect relation
should have an approximately equal relative opportunity to affect various target rela-
tions, which in practice might contain substantially different number of data points.
We hence further divide the ¢ score by the norm of the estimated target relation to
obtain the final normalized ¢ score. We note that we employ matrix 1-norm in all our

experiments.
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13.4 A case study with 13 data sets from molecular biology

In this section, we show that Forensic has excellent inter-relation sensitivity estima-
tion power by applying it to four recent collective matrix factorizations, DFMF (Zitnik
and Zupan, 201 5a), tri-SPMF (Wang et al., 2008), S-NMTF (Wang et al., 20112a) and
RESCAL (Nickel et al., 2011) (overviewed in Sec. 13.2.1), and evaluating its perfor-
mance in two case studies. First, we consider thirteen relations from molecular biology
that describe relationships between seven object types including genes, phenotypes and
cellular pathways. In what follows, we describe the data sets, report performance of

Forensic and its utility for data analysis.

13.4.1  Experimental setup

Accurate identification of genes whose mutations are implicated in a certain phenotype
is a major challenge in biology (Radivojac et al., 2013; Sifrim et al., 2013). We had
gene expression profiles of D. discoideum development cycle by RNA-seq (Parikh et al.,
2010) (R}7), gene annotations from Gene Ontology (Ashburner et al., 2000) (R;4)
and Phenotype Ontology downloaded from dictyBase (http://dictybase.org) (R,),
mentions of genes in research articles from PubMed database (R;s, Rsy), catego-
rization of research articles by Medical Subject Headings (MeSH) (Rsg), and cellu-
lar pathway information (R 3, R34). Additionally, we include information about the
structure of gene and phenotype ontologies (@4, ©,), MeSH hierarchy (@), pathway

organization (@3) and protein physical interaction network (0,).

Fig. 13.1 shows the relation graph considered in this study. We applied DFMF model
to thirteen relations for the prediction of gene-phenotype associations in D. discoideum,
where target gene-phenotype relation matrix is denoted by R,. Two other considered
factorization algorithms, tri-SPMF and S-NMTE, require as their input a collection of
symmetric relation matrices between every possible pair of object types. We thus set
R; = R}.; for the choice of i and j that correspond to the relations shown in Fig. 13.1

and set R;; = 0 otherwise.

For the RESCAL model, which can consider data describing a one object type, we

preprocessed the relations from Fig. 13.1 to obtain several data matrices that described
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relationships between genes. We constructed eight relation matrices:

R, = Ry_R],
R, = RyR];
Ry = Ry,R],
R, = Ry;R],
Rs = RjR],
R = RcRguRLR]
R, = RyRyHRR],
Ry = R R;RIR],

In this way, RESCAL factorized relation matrices that were originally given as multi-
object type data. Intuitively, Ry = R14R1T4 counts the number of common gene
annotations between any two considered genes, and R, = R3 Rg counts the number
of molecular pathways to which any two genes simultaneously belong. The reasoning
behind the construction of other six relations considered by RESCAL follows similar

principles.

When excluding a certain relation from a factorized model, we either removed it (in
DFMF and RESCAL) or replaced the corresponding two symmetric relation matrices
with zero matrices (in tri-SPMF and S-NMTF).

13.4.2  Data set selection with FORENSIC

Table 13.1 shows the changes of relative reconstruction error of target relation R ,:
» pexcl.
(IIR12 = Ryallp = 1R12 = RS o) 1 R 12 [l o (13.21)

when either a high-ranked or a low-ranked effect relation was excluded from inference
of a factorized model. The ‘excl.” in Eq. (13.21) indicates the estimate R;, when a

reduced data collection was used as the input to the factorization algorithm.

The message of the results in Table 13.1 is two-fold. First, we can see that sensitivity
estimates are well aligned with the changes of target reconstruction error. For example,

omitting relation with the greatest effect on target relation in terms of FORENSIC’s ¢
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Table 13.1

The changes of relative reconstruction error (%) of target relation Ry (or the corresponding matrix in the RESCAL model)
when effect relations with the largest (17), the second-largest (27), the next-to-smallest (87) and the smallest (97) normalized
FORENSIC’s ¢b,, scores were excluded from a factorized model.

Model Fy| AErt(R 5 Fp 1-) AEr(Ryy: Fyy-) AEr(R)y: Fyg-) AEm(R y; Fyo-)

DEMF 2.040 2.001 < 0.001 < 0.001
S-NMTEF 4.179 3.084 < 0.001 < 0.001
tri-SPMF 3.427 3.153 < 0.001 < 0.001
RESCAL 13.832 4.640 0.655 0.637

score corresponded to the largest improvement of target approximation quality; similar
observations held for smaller effect sizes. A surprising aspect of FORENSIC approach is
its ability to estimate inter-relation sensitivity without the need to rerun inference algo-
rithm. Thus, efficient estimation and its superiority over baseline approach that omits a
relation and reruns the algorithm make FORENSIC an attractive option for understand-
ing inter-relation structure when applying methods of collective matrix factorization to
tens of different relations. Another message from Table 13.1 is that Forensic performs
well for many different models of collective matrix factorization including multi-object

type and multi-relation models.

On a related note, we also observed the changes of relative reconstruction error of the

entire data system:

~ —
Zi,j ”le - Rij”Fro Zi,j ”le - RI_CJ)_(C ”Fro

- 9

Zi,j ”Rij”Fro Zi,j;R,-j not excl. ”Rij”Fro

(13.22)

when, for a given target relation, either a high-ranked or a low-ranked effect relation
was removed from the data collection considered by a factorization algorithm. Simi-
larly as above, the ‘excl.” in Eq. (13.22) indicates the estimate ﬁi ; when a reduced data
collection was used as the input to the factorization algorithm. Fig. 13.4 shows that
for any choice of target relation from the relation graph in Fig. 13.1 the reconstruction
error of the entire system reduces 7ore when the effect relation with the Jzrger FOReN-
SIC’s ¢ score is excluded from model inference. This can be seen from the decreasing

trajectories of changes of reconstruction error in Fig. 13.4.
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Figure 13.4

Exclusion of relations with
high normalized Foren-
SIC’s ¢b,, scores improves
the reconstruction quality.
We evaluated each of the
relations from Fig. 13.1

in turn, and observed its
forensic’s ¢, scores when
any of the remaining re-
lations had the role of the
effect relation. We then or-
dered the effect relations by
the decreasing FORENSIC's
¢, scores and evaluated
the relative reconstruction
error of the entire data
system when high- or
low-ranked relations were
excluded from inference of
a DFMF factorized model.
For a given target relation,
its corresponding dashed
line shows the relative
reconstruction error de-
fined in Eq. (13.22) when
the effect relation with

the largest ¢, score (i.c.,
rank-1") up to the smallest
¢, score (i.e., rank-'6") was
excluded from inference of
a collective factor model.
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Sometimes, exclusion of a relation can worsen model inference. Indeed, negative val-
ues in Fig. 13.4 indicate that exclusion of an effect relation reduced the quality of the
inferred model. The good result is that FOReNsIC is capable of detecting such rela-
tions and can do so without the need to re-run factorization algorithm on the reduced
data collection. The results suggest that FORENsIC could be used for selection of data
sets considered by a collective latent factor model. In particular, relations that score
low by FORENSIC are those whose removal would in general worsen model quality. By
contrast, relations that score high by Forensic are those whose removal would im-
prove model quality. One could follow this guiding principle to select the appropriate
data sets within a single run of factorization algorithm. Results in Fig. 13.4 are shown
for the DFEMF model, however, we note that similar behavior was observed for other

factorization models as well.

Next, we investigated whether sensitivity estimates returned by FOrRensic depend on

the parameters of model inference. In particular, we were interested if the number of
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iterations of a factorization algorithm and the selected latent dimensionality correlated
with FORENSIC’s ¢ scores. A high correlation between the scores and model parame-
ters would be an undesired effect. FORENSIC’s ¢ scores exhibited no dependence on the
number of performed algorithm iterations during factorized model inference (z > 0.9,
p-value < 1 X 1073 ; all evaluated factorization models) or on reasonable selections of
factorized model dimensionality (z > 0.9, p-value < 1 X 107 ; all evaluated factoriza-
tion models). Note that we reported Kendall’s tau coefficient of the scores obtained by

varying the respective type of model parameter.

13.4.3  Concordance of FORENSIC scores across factor models

Table 13.2 shows concordance of FORENSIC’s scores in different collective matrix fac-
torizations when applied to the exact same data. Results indicate strong agreement of
estimates across models and suggest that FORENSIC provides sensitivities that are prop-
erties of inter-relation structure rather than individual factorization algorithms. Paired
with the relations are any number of algorithms that can be used to factorize them,
that is, to find their latent representation. This appealing property of Forensic fol-
lows from the definition of ¢ score and the theoretical underpinnings of Forensic (cf.
Eq. (13.12)).

13.4.4 Discussion

Results estimated by FORENsIC are consistent with genomics literature (Sifrim et al.,
2013). Fig. 13.5 shows that, for example, target gene-phenotype relation (R;,) was
most sensitive to literature data (R 5). Although mining the literature is a powerful way
of identifying new associations, it tends to over optimistically identify straightforward
candidates for which abundant knowledge is already available. It is likely that many
known gene-phenotype associations are explicitly stated in the literature and thus, their
latent factors relied strongly on the literature-derived relationship, hence high sensitiv-
ity. On the other side, relations about gene pathways (R 3, R34) had mild effects on
R/, and we observed insignificant reduction of prediction performance when these

relations were excluded from learning.
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Figure 13.5

Normalized ForensiC’s
¢, scores representing
sensitivity between any
two relation matrices con-
sidered in the molecular
biology study. For descrip-
tion of individual relations
see Fig. 13.1. (left) In
DFMF model, many rela-
tions were most sensitive
to literature data, as can be
seen from the width of the
bands that correspond to
R5. (right) Similarly, in
RESCAL model, all data
sets exhibited the largest
sensitivity to relations

that were derived from
literature data as shown by
the width of the bands for
matrices R7 and Rg.
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Kendall’s tau (7) coefficients of the correspondence of sensitivity estimates between different factorized models. For a given
factorized model and a target relation we estimated the sensitivity of target relation to each of the remaining seven relations
(effect relations) and ranked the relations by their normalized Forensic’s ¢, scores. Correlation coefficients for a given target
relation are cither in the upper triangle (target is in the first row of a block) or in the lower triangle of each block (target is in
the third row of a block).

Target DEMF S-NMTF tri-SPMF | Target DEMF S-NMTF tri-SPMF

DEFMF Ry, — 0.944 0.944 | Ry;s — 0.833 0.833
S-NMTEF 1.000 — 0.944 0.944 — 0.833
ui-SPMF  Ry3 1.000 0.833 — Ry, o0.777  0.833 —
DEMF Ry, — 0.722 0.944 | Rjs — 0.944 0.777
S-NMTEF 0.888 — 0.888 0.888 — 0.722
ui-SPMF  Rys 0.833  1.000 — Rys 1.000 0.944 —
DEMF Ry — 0.944 1.000
S-NMTF 1.000 — 1.000
ui-SPMF  R,, 1.000 1.000 —

RESCAL

Target relation
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13.5 A case study with 40 human protein interaction data sets

Next we consider data sets from 40 human physical protein interaction studies. In
what follows, we describe the data sets, report performance of FOReNsIc and its utility

for identification of potentially problematic data sets.

13.5.1  Experimental setup

We obtained human gene association network data from the GeneMANIA data archive
(http://genemania.org/data) (Mostafavi et al., 2008). Forty protein physical in-
teraction data sets listed in Table 13.3 were considered in the experiments. We rep-
resented each network with a symmetric network adjacency matrix, wherein protein-
protein interactions were represented with nonnegative weights that corresponded to

interaction strengths and were provided with the data.

Our case study was a multi-relation and two object-type task. This means that we
had many relation matrices, R(llz) to R(éo), and they all encoded relationships between
proteins. As can be seen from Table 13.3, data sets differ substantially in the number of
interactions they contain. For example, human protein interaction network from the
BioGRID data source (Chatr-aryamontri et al., 2014) contained more than 100,000
protein interactions curated from the primary biomedical literature, whereas many
experimentally derived interaction networks were much smaller in size and each of

them contained a few hundreds interactions (Table 13.3).

We evaluated an extension of recent DFMF algorithm (Zitnik and Zupan, 201 5a) that
performs matrix completion instead of matrix factorization. This means that a collec-
tive latent factor model is optimized over protein interactions that have been observed
in model organisms so far. Matrix completion is a more realistic approach for our case
study than matrix factorization. The reason is that interactions between proteins that
have yet to be reported by the biologists are not viewed by a matrix completion algo-
rithm as they would not exist (Rolland et al., 2014). In contrast, matrix factorization
algorithms require dense matrices at their input and often make unrealistic assump-

tions about unknown values, such as substituting them with zero values.

We computed FORENSIC sensitivity scores for all target-effect relation pairs of data
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matrices Rﬁlz) to R%O) that were modeled by a matrix completion-based extension of
DEMEF algorithm. We aimed to investigate whether FORENSIC can detect potential ex-
perimental errors in the data, such as interaction mix-ups (Westraetal., 2011). We sim-
ulated interaction mix-ups in a given effect relation and deliberately introduced protein
mix-ups by swapping entire interaction profiles, i.e. respective rows and columns in a
given relation matrix. We then compared FORENSIC’s scores of all relations before and

after a selected effect relation was mixed-up.

13.5.2  Detection of surprising or problematic data sets

Experimental procedures in genomics and molecular biology typically involve many
steps before actual analysis of the data, during each of which samples could be acciden-
tally swapped. Sample mix-ups, cross-reacting antibodies or other experimental errors
can arise during sample collection, handling, genotyping or data management (Ernst
and Kellis, 2015). Since many studies are pushing toward larger sample-sizes in order
to be able to get a more detailed view of cellular machinery, the presence of sample

mix-ups becomes almost unavoidable (Westra et al., 2011).

For quality control in particular, we show in Fig. 13.6 and Fig. 13.7 that FORENSIC’s
scores are informative of potential errors present in the data. To simulate experimental
errors in a data set we randomly swapped entire interaction profiles of R(1321) (Behrends
et al., 2010) and obtained a permuted version of the original relation matrix, ﬁgl).
We then observed changes of FORENSIC's ¢, scores when ﬁ(él) was either a target or
an effect relation. Compared with Fig. 13.6 results in Fig. 13.7 show that FORENSIC’s
¢, scores of ESI) increased substantially relative to the scores of Rgl). These obser-
vations were consistent for different choices of target relations and when 1“{‘5321) had the
role of an effect relation. We note that we observed similar trends when simulating
experimental errors in other data sets. These results suggest that FORENSIC can reveal
problematic data sets that would otherwise unintentionally be included in a collective

latent factor model.
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Table 13.3

Human gene protein interaction networks.

Matrix Data set Genes Interactions|Matrix Data set Genes Interactions
Rgzz) Kneissl et al. (2003) 162 81 R(1227) Lehner and Sanderson (2004) ~ 854 427
R%) Ouyang et al. (2009) 210 105 R(ll;) Shi et al. (2011) 538 269
RESZ) Napolitano et al. (2011) 162 81 R(1128) Bennett et al. (2010) 8,772 4,386
R(1123) Wagner et al. (2011) 9,180 4,590 R(lzzz) Wang et al. (2011b) 6,798 3,399
KD el Go) 70 35 | R Hegmscol Gor) 2o o
R(1221) Varjosalo et al. (2013) 612 306 R(172) Reinke et al. (2013) 286 143
Rggz) Zanon et al. (2013) 388 194 R(1228) Abu-Odeh et al. (2014) 432 216
R(1224) Nakayama et al. (2002) 252 126 R(lzzg) de Hoog et al. (2004) 450 225
RY Jin ctal. (2004) 466 233 | R Jones etal. (2006) 344 172
R(132) Cannavo et al. (2007) 202 101 R(II;) Behzadnia et al. (2007) 224 112
R(1326) Alexandru et al. (2008) 228 114 R(IGZ) Barr et al. (2009) 330 165
R(1325) Brehme et al. (2009) 1,158 579 R(;;O) van Wijk et al. (2009) 612 306
R(lzz()) Ravasi et al. (2010) 1,270 635 R(132]) Behrends et al. (2010) 1,532 766
R(1329) Kahle et al. (2011) 264 132 R(lzzé) Tarallo et al. (2011) 478 239
R(1129) Rowbotham et al. (2011) 228 114 R(llzl) Pichlmair et al. (2011) 200 Too
R(1127) Gao etal. (2012) 324 162 R(llz) Wong etal. (2012) 230 115
R(1322) Woods et al. (2012) 1854 927 R(1324) Blandin et al. (2013) 1,316 658
R Royetal. (2013) 306 153 R(y Foerster ctal. (2013) 322 161
R BIND 14156 7,078 | R\YY BioGRID 254414 127,207
R(1323) InnateDB 7,740 3,870 R(1225) OPHID 88,984 43.492
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Figure 13.7

Normalized FORENsIC’s

¢,, scores representing
sensitivity between any two
relation matrices consid-
ered in the human gene
association study when

the protein interactions in

relation R(l’jzl) (Behrends
et al., 2010) were randomly
permuted. Permuted re-
lation matrix is denoted

by R}, For description
of individual relations see
Sec. 13.5.1. For a given
target relation shown in the
left, a horizontal bar chart
represents a distribution of
FORENSICs ¢, scores when
each of the remaining
thirty-nine relations takes,
in turn, the role of an ef-
fect relation. Compared
with results for R%l) in
Fig. 13.6, this figure shows
a substantial increase in
FORENSIC’s ¢, scores of
Eﬁl) for most choices of
target relations.
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13.6 Conclusion

The estimation of inter-relation sensitivity in collective latent factor models opens
many new applications that were previously not possible. We demonstrated two such
applications of FORENSIC, our new approach to sensitivity estimation. In a study with
data sets from molecular biology, we used FORENSIC’s scores to identify data sets that
worsened latent model quality and to select complementary data sets, which improved
the quality of relations modeled by a collective matrix factorization algorithm. In an-
other study we considered forty human protein association data sets, the largest number
of data sets analyzed by a collective latent factor model to date. We used global discrep-
ancies between FORENSIC’s sensitivity scores as a quality control metric. By simulating
experimental errors, we were able to detect surprising and potentially problematic data

sets.

We believe that post hoc methods, such as Forensic, which provide insights into es-
timated latent factor models, represent a structured approach when handling multi-
ple large-scale and sparse data sets with latent factor models. Methods offering such
functionality are currently scarce, however, we expect that they will quickly become a

valuable tool and a necessary step in doing state-of-the-art data fusion.
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The abundance and the ubiquity of complex data and rich computing applications
in the life sciences provide computer science with a unique opportunity to design and
build computing systems and applications capable of handling large volumes of hetero-
geneous data. Indeed, producing large quantities of genomic data is now relatively easy,
but analyzing these data is not (Vihinen, 2015). For example, working out whether
a particular genetic variation of an individual is important relative to the reference
genome, and understanding the roles of these variants in disease, is a complex and
time-consuming quest. To fulfill the potentials of incentives, such as recently unveiled
“The Precision Medicine Initiative” (Collins and Varmus, 2015), we need to develop
scalable, reliable and integrative data analysis tools that can draw the connections be-

tween genetic variation and disease, which are then further analyzed by domain experts.

Odur Thesis presents a combination of (i) empirical work and experiments, (ii) design
and analysis of prediction models, and (iii) development of machine learning algo-
rithms and data mining tools. The research focus of this Thesis is to analyze and model
large heterogeneous data compendia via methods of data fusion. Our contributions
so far are the following. We introduced the probabilistic matrix completion model
that can consider side information presented with networks. We also developed two
approaches to network inference: the epistasis-based probabilistic model for gene net-
work inference, and the general network inference model that can fuse data from many
potentially nonidentical data distributions. We designed algorithms for efficiently es-
timating its parameters. In addition to methods that model single and dual hetero-
geneity, we also introduced the collective matrix factorization model for emerging ap-
plications that exhibit triple data heterogeneity. We also introduced the technique that
reduces a triple data heterogeneity problem to a problem with dual data heterogeneity.
Furthermore, we developed the algorithm in which our collective matrix factorization

model walks hand in hand with the regression-based survival model (Fig. VII.1).

On the application side, we presented analyses of the roles genes have in cells, asso-
ciations between diseases and drug toxicity levels. We showed that networks inferred
from cancer genomic data and prediction of cancer patient survival time benefit from
inclusion of circumstantial evidence. We also showed that the ability to accurately pre-
dict genetic interactions does not simply increase monotonically with the number of
available interaction measurements, but rather reflects more subtle features of genetic

interaction landscape. Finally, in a fruitful collaboration with biologists from Baylor
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College of Medicine we were able to successfully validate eight genes, which were pre-
dicted by our gene prioritization method to have a role in the bacterial resistance of

Dictyostelium.

Last, we also showed how working with large data compendia gives us opportunities
to arrive at observations that are practically invisible at small scales. We demonstrated
this by analyzing the largest number of data sets with a collective latent factor model
so far, and made novel observations about selection of data sets from which data fusion

might benefit.

In the long run, outside the scope of this Thesis, we would like to build tools for
modeling heterogeneous data both in the life sciences and also in other data domains,
such as in the social sciences. We want to study how complementary different data
perspectives are and how to harness data diversity to improve prediction modeling.
Ideally, we would like to marry these two views, so that we can detect “surprising”

patterns that bridge across the disciplines.

Next, we give a summary of contributions and our vision for future work.



Summary of contributions
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We summarize our contributions by grouping them by the columns defined by the
Thesis structure in Table 14.1. The Thesis adheres to the following three types of data
heterogeneity and their combinations. (1) In relation data heterogeneity, learning by
fusing heterogeneous data aims to harness heterogeneous input data spaces. (2) In
object type heterogeneity, approaches to data fusion leverage heterogeneous types of
features. (3) In task heterogeneity, data fusion exploits related prediction tasks to trans-

fer knowledge between data views.

Table 14.1

Structure of this Thesis with references to the parts.

Thesis Types of data heterogeneity
part Relation  Object type  Task

Part I Network side information v v
Part I Network inference v
Part IIT Compressive data fusion v v v
Part IV Latent chaining and profiling v
Part V. Regression by data fusion v v
Part VI Large-scale data fusion selection | Exploring types of heterogeneity

Relation heterogencity (Part I1):

= We developed FUsENET, an off-the-shelf network inference framework for mixed
data arising from any combination of exponential family distributions. More-
over, FUSENET is the first model that is able to combine the theory of Markov

network inference, latent factor models and data fusion.

= We developed Réd, an approach to epistasis-based gene network inference that is
able to reconstruct known cellular pathways more accurately than present state-

of-the-art methods.

= Using Réd we were able to infer networks consistent with the theory of epistasis
analysis by considering hundreds of thousands of genetic interaction measure-

ments, the largest data compendium considered for epistasis analysis up to date.
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= We analyzed heterogeneous data from the International Cancer Genome Con-
sortium and found that joint network inference by FuseNET from multiple re-
lated data sets, i.e. RNA-sequencing and somatic mutation data, showed greater

functional enrichment than networks learned from any data type alone.

Object type heterogeneity (Part IV):

= We developed Collage, an approach to gene prioritization. Given a handful of
seed genes important for a biological function of interest, Collage aims to identify
the most promising candidate genes for further studies. Collage represents a ma-
jor advancement relative to gene-centric prioritization algorithms in the breadth
of data it can incorporate, the ease of data integration without complex feature
engineering, and the ability to retain the relational data structure during model

inference.

= We provided a new formalization of gene prioritization and designed models
for assessment of drug toxicity and discovery of disease-disease associations that
have had a wide range of implications for researchers in the life sciences. For
example, the identification and characterization of four seed genes for the bac-
terial resistance study in Dictyostelium was a laborious task that required several
months of laboratory work per gene. Collage has substantially simplified this task
by suggesting eight genes that have been successfully validated in the wet lab.

Dual data heterogeneity (Parss I and V):

= We developed the network-guided matrix completion, which is mathematically
tractable and general probabilistic matrix completion model. Network-guided
matrix completion is unique in fusing relational data with network side informa-
tion by inferring a single predictive model. It achieves better generalization than

competing approaches in predicting genetic interactions.

= We showed that our work on analyzing genetic interaction data has high prac-
tical value for the prediction of entire gene interaction profiles for genes whose

interactions otherwise cannot be measured directly due to limits of biotechnol-

ogy.
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= We developed DFMF-SR, a data fusion model of survival regression and an ef-

ficient algorithm for the estimation of its parameters. We analyzed cancer data
from the International Cancer Genome Consortium and showed that DFMF-
SR performs well relative to a popular approach that first transforms data into
the latent space and then does survival regression independently of data transfor-
mation. Moreover, DFMF-SR is the first approach that is able to infer a latent

data model and regression coeflicients of a survival model at the same time.

Triple data heterogeneity (Part I11):

We developed DFME, an algorithm for collective matrix factorization and its
variant for collective matrix completion. We proved that latent matrices found
by our algorithm for the DFMF model locally minimize the total reconstruction

error of a data system presented with the data fusion graph.

We found that latent matrices estimated by the DFMF algorithm have high
predictive power and compare favorably to techniques that transform data into
a single feature-based data table, i.e. early integration, and to techniques that
explicitly address the multiplicity of data via multiple kernel learning, i.e. inter-

mediate integration.

Exploring types of data heterogeneity (Part VI):

We developed FoRENsIC, a general and computationally efficient approach to
inter-relation sensitivity estimation in collective latent factor models. Further-
more, FORENsIC is the first principled model offering such functionality for col-
lective latent factor models and shows a potential to be used as a scoring tech-

nique for selection of data sets for data fusion.

We analyzed a compendium of 40 experimental protein physical interaction data
sets, which is to the best of our knowledge the largest collection of data sets ex-
amined with a collective latent factor model up to date. We demonstrated that

FoRreNsic can correctly pinpoint corrupted data.
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Our long-term research goal is to tackle large data compendia to understand, model,
predict, and finally, enhance biological, technological and social systems. We would
like to create accurate and explanatory predictive models of relationships and roles of
large groups of biological entities, e.g., genes, drugs and diseases; societal entities, e.g.,
people, communities, social events; and technological systems, e.g., the web. Many
times, complementary data descriptions of various entities are available and integrative
methods of machine learning and statistics can be applied to heterogeneous data, which
yield effective models with boosted prediction ability. Based on our research experience
and recent results, we believe that the study of latent and factor models is one of the
promising ways to develop such understandings, as these models can naturally share

information between related data views, different types of objects and various predictive

tasks.

In our Thesis research, we made several steps towards this long-term goal. We now
better understand mixed, multiscale, multiplex and multislice data and models that
connect the different types of data heterogeneity. Moreover, we can efficiently fit the
latent models to the data and make predictions about the systems. We also have a
clearer view of how inclusion of circumstantial evidence affects the model performance,
what the relational structure of data systems are, and how to select relevant data for

fusion.

On the way towards the long-term goal, our research will center on three dimensions:
(1) addressing problems with multiple types of data heterogeneity and designing pow-
erful models to encompass rich and complex data, (2) scaling up the analysis to huge

and massive data collections, and (3) developing explanatory system-view models.
15.1  Medium-term aims

We first allude to the medium-term future aims that build on the work presented in

the Thesis.

Time-dependent and locality-aware analysis of multiscale and multiplex dara

Many experiments in the biological and technological sciences generate series of mea-

surements that are snapshots of different states that a particular system might be in.
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The series of measurements might be taken at different scales and positions within
the system, or recorded at different stages of the system’s operation. For example, an
RNA-seq experiment measures RNA-content within a cell population and produces
data in the form of millions of short nucleotide sequences that are informative of the
activity of genes in a particular environment and developmental stage of the organism.
Profiling gene expression over time then provides information about the dynamical
behavior of genes. Moreover, the precise roles of genes frequently depend on their
tissue context and cell-type identity. We want to understand how, for example, in
the biological domain, genes that participate in distinct cellular processes according
to developmental and anatomical context, rewire in different tissues to associate with
different functional partners, and, more abstractly, how pathways rewire, arise and de-
cay in different contexts. We would like to design and explore integrative methods that
can answer questions that are specific to individual system’s components, e.g., a single
gene in a single tissue, which is important, for e.g., human diseases, where tissue and
cell-type specific factors combine in the context of a whole organism. We believe that
the key here is to relate data on a microscopic scale with a macroscopic view, connect
local to global, and complement data about comprehensive system’s operation with the

assays on specific features of interest.

Data fusion selection

Beyond simply including more data into the analysis, one can try to understand levels
of consistency across different data views and degrees of relatedness of various predictive
tasks. In practice, data fusion often encounters one or more of the following issues.
Data relations are typically incomplete, where each relation contains a subset of the
total set of objects in the domain. Furthermore, patterns that are present in one data
set, can be largely or entirely absent from another data set. Such disagreements can be
the result of unique properties of the problem domain, or can simply arise due to noise
and experimental errors. Explorations in this realm could lead to data fusion strategies
that would help to identify the most informative data sets for a given predictive task
or data subparts of questionable quality. A natural next step is then to suggest experi-
ments that one could perform to collect data, which would maximally boost predictive
performance of data fusion methods. In this context, we plan to continue with our

work on modeling sensitivity and interdependence of data sets in large data compen-
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dia. Furthermore, better understanding of the collected data could help us decide the

type of integrative data analysis that is most appropriate for the predictive task at hand.

Huge data and scalability

Another important aspect of our research work focuses on large-scale data and analysis
architectures for manipulation of large data collections. To handle such data compendia
with hundreds of data sets and billions of data points, scalability becomes an issue. Alter-
nating least squares and stochastic gradient descent type algorithms are two popular ap-
proaches that were employed in several parallelizations of the latent factor algorithms.
However, alternating least squares type techniques are not scalable to large-scale data
due to their cubic time complexity in the dimensionality of the latent model, i.e. the
factorization rank. On the other hand, the updates of stochastic gradient descent are
efficient but usually have slow convergence. The question here is what kind of matrix
update sequences can be easily parallelized on multi-core and distributed systems to
scale to thousands of machines. Here, additional challenges arise when we want to
Jjointly co-factorize multiple matrices, one of our primary research interests, for which
parallel and distributed algorithms that can exploit thread-level parallelism, in-memory
processing and asynchronous communication have yet to be developed. We plan to
extend our software library to parallel architectures and batch and streaming scenarios,
and explore coordinate descent type optimization techniques to scale to many skinny

and wide data matrices with billions of data points.
15.2  Long-term vision
Last, we present the long-term goals of our research.

Universal data fusion

The scope of the Thesis is centered on current challenges in bioinformatics and sys-
tems biology. We tackle these challenges by developing mathematically sound and
computational data fusion methods, which capture interesting patterns and relation-
ships. However, we believe there is still a long way to a truly comprehensive data fusion

of everything. For this reason it is important to study how our results translate to other
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data domains, e.g., the social sciences and the fields of engineering and technology.
Human activities leave digital traces in various data systems, which collectively capture
our “social genome,” the footprints of our society. On the other hand, for example,
experiments in physics and engineering have already generated massive heterogeneous
data discerning the “technological genomes,” the blueprints of natural phenomena seen
through the lenses of technology. Like the human genome, the “social genome” data
and the “technological genomes” data have much buried in the massive almost chaotic
data compendia. Here, we plan to continue our preliminary work in collective data
analysis models for predictive tasks beyond those presented in the Thesis, e.g., for clas-
sification and ranking (Zitnik and Zupan, 2016). This line of research will allow us
to respond to the specific requirements of science, society and technology, and make
predictions with levels of reliability that cannot be achieved by considering a single

data perspective.
Explanarory multi-modeling with dynamic feedback

Ultimately, understanding a phenomenon entails development of both accurate as well
as explanatory models that can continuously change as new evidence arrives to add cir-
cumstantial support. To fulfill the vaunted promise of precision medicine, i.e. pre-
vention and treatment strategies that take individual variability into account (Collins
and Varmus, 2015), substantial gains still need to be made in computational methods
for data analysis, integration and interpretation. In precision medicine, for example,
incorporating the variety of information about environmental exposures, genetic ex-
posures, and prior clinical courses may better explain the disease burden. We plan to
focus on machine learning methods for determining causality and evidence evaluation
in incremental and online learning settings, which will allow for more explanatory

prediction models.
Some further last words

Data become most powerful when integrated. Fragmented efforts to make prediction
from a single data source or of a single data type are neither effective nor efficient.
Furthermore, current integrative approaches are often inaccessible to domain experts

while making data less useful. On a long term we envision facilitating the massive
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amounts of data by building a transparent infrastructure of tools and machine learning

algorithms that will make our decision making more informative.

What if knowing the daily habirs of a patient’s Facebook friends could enhance
predicting patients clinical outcome of a selective drug therapy (Christakis
and Fowler, 2014)? Consider the rotality of information! Whether you are
mapping pathways in cancer, matching genetics to phenotype, modeling the
electrical behavior of neurons, or recommending which product ro buy next,
data fusion will make it easy to build artificial intelligence into the “fuseome”
— the connections among all of the information-rich resources across disci-
plines, scales and data types. Soon you will add your data to the fuseome,
choose the type of prediction you want to get returned via an ‘app”, and you

will be alerted when the results are in.

If properly designed and interpreted, this “fuscome” could one day offer insights into

many of the most challenging problems facing our society.
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A1 Uvod

V nasih raziskavah posku$amo razumeti razli¢ne vrste heterogenosti podatkov, s kate-
rimi se soo¢amo pri gradnji napovednih modelov. To znanje nato uporabimo za ra-
zvoj ucinkovitih in zmogljivih algoritmov za uenje v heterogenih podatkovnih okoljih.
Razviti algoritmi pri gradnji napovednih modelov uporabljajo predznanje, ki je lahko
podano v razli¢nih podatkovnih formatih, kot so tabele znacilk, ontologije in mreZe, in
opisano z znacilkami razli¢nih tipov. Cilj so¢asne obravnave vecih podatkovnih virov
tekom gradnje napovednega modela je izboljsanje kakovosti modela, ki jo ocenimo z
raznimi merami za oceno to¢nosti napovedi, zmoznostjo razlage in razumljivosti na-
povedi ter delom problemskega podro¢ja, ki ga je model sposoben obravnavati. Nekaj
vpra$anj, ki si jih zastavimo v disertaciji in nanje tudi odgovorimo, je sledecih. Kateri
so ucinkoviti in uspesni pristopi za vkljucitev dodatnih podatkovnih virov v uéenje?
Kako znanje o stranskih u¢inkih zdravil vkljuciti v model, ki napoveduje povezave
med boleznimi? Ali, kako upostevati razli¢ne vloge filmskih igralcev, ko Zelimo upo-
rabniku predlagati film, ki bi ga utegnili zanimati? Kako lahko zlijemo heterogene
podatkovne prostore in zgradimo enotni napovedni model z odli¢no napovedno uspe-
$nostjo? Kateri podatkovni viri so komplementarni pri gradnji napovedi? Kako dovolj
zgodaj zaznati problemati¢ne podatkovne nabore z napa¢nimi meritvami, ko so¢asno
obravnavamo ve¢ deset ali celo ve¢ sto podatkovnih naborov? Odgovori na tovrstna
vpra$anja so pomembna v Stevilnih sodobnih izzivih znanosti, tehnologije in druZbe,
kjer lahko zberemo veliko podatkov, ki sisteme opisujejo z razli¢nih zornih kotov in

beleZijo delovanje njihovih sestavnih delov.

Vseprisotnost domen z veliko raznovrstnih podatkov ponuja priloZnosti za uporabo
metod, ki gradijo modele z zlivanjem podatkov, a hkrati predstavlja Stevilne algorit-
micne izzive. Kako lahko povezemo na prvi pogled neodvisne napovedne naloge, da
izbolj$amo napovedno uspesnost? V¢asih se zdi, da med razli¢nimi nalogami ne more-
mo vzpostaviti povezovalnih elementov, ¢e so podatkovni nabori, ki tem nalogam pri-
padajo v povsem neprekrivajocih se podatkovnih prostorih. Na primer, v ve¢jezikovnem
uvr$¢anju je lahko prva naloga uvri¢anje zbirke angleskih dokumentov, katerih podat-
kovni prostor sestoji iz angleskega besednjaka, druga naloga je lahko uvr$¢anje zbirke
slovenskih dokumentov, katerih vhodni prostor je sestavljen iz slovenskega besednjaka.

S podobno heterogenimi podatkovnimi viri se sre¢amo ob hkratnem razvr§¢anju doku-
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mentov in slik. Tu je lahko prva naloga gru¢enje dokumentov, opisanih z besedilnimi
znacilkami, in druga naloga razvricanje slik, opisanih z znadilkami izra¢unanimi nad
razli¢nimi slikovnimi obmod¢ji. Razvoj novih tehnologij je omogo¢il zbiranje veliko
raznovrstnih podatkov ne le na podro¢ju analize besedil in slik, temve¢ tudi v vedah o
Zivljenju, kot je biologija. Pri napovedovanju genskih funkcij tako napovednim nalo-
gam ustrezajo razli¢ni bioloski procesi in vloge, ki jih imajo geni v celici, vsak proces
pa lahko opisemo z relevantnimi genskimi potmi in boleznimi, povezanimi z okvarami
teh poti. Moznost skupnega ucenja ve¢ih nalog, podanih v heterogenih podatkovnih
prostorih, tako da uenje ene naloge izbolj$a u¢enje povezanih nalog, je klju¢nega po-
mena na $tevilnih podro¢jih, med katerimi so ve¢jezikovno razvri¢anje besedil, gradnja
priporo¢ilnih sistemov, odkrivanje povezav med boleznimi, napovedovanje toksi¢nosti

zdravil in genskih funkcij ter na¢rtovanje eksperimentov v biologiji.

Studije, ki gradijo napovedne modele z zlivanjem heterogenih podatkov, tipi¢no pred-
postavljajo, da so podatkovni prostori razli¢nih napovednih nalog vsaj posredno po-
vezani. V primeru ve¢jezikovnega uvri¢anja se zdi naravna povezava med besedami iz
dveh razli¢nih jezikih (na primer, "boat” v angles¢ini pomeni "¢oln” v slovens¢ini); v
primeru so¢asnega razvri¢anje dokumentov in slik lahko besede prevedemo v slikovna
podrogja; v primeru napovedovanje genskih funkcij lahko vzpostavimo odnose med
geni preko interakcij proteinov, ki jih ti geni kodirajo, ali preko komorbidnosti bole-
zni, ki jih ti geni povzrodajo. Odvisnosti med razli¢nimi podatkovnimi prostori tako

vzpostavljajo pomembne povezave med razli¢nimi napovednimi nalogami.

Cilj u¢enjaz zlivanjem heterogenih podatkov je izkoris¢anje razliénih podatkovne hete-
rogenosti za izboljSanje u¢inkovitosti napovednega modeliranja. V pri¢ujoci disertaciji
preucujemo tri vrste podatkovne heterogenosti in njihove kombinacije, ki prepletajo

vec vrst heterogenosti in vodijo v vse bolj ra¢unsko in algoritmi¢no zahtevne izzive:

= Heterogenost podatkovnib relacij: V primerjavi s tradicionalnim razumevanjem
heterogenosti napovednih nalog, kjer so razli¢ne naloge opisane s homogenimi
podatkovnimi prostori, lahko ucenje z zlivanjem podatkov izmenjuje vzorce med

Stevilnimi potencialno heterogenimi vhodnimi prostori.

Heterogenost tipov objekrov: V primerjavi s tradicionalnim razumevanjem hete-
rogenosti podatkovnih relacij, kjer so u¢ni primeri opisani z znadilkami enega

tipa v razli¢nih podatkovnih relacijah, zlivanje podatkov obravnava hbererogene
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vrste znacilk, da se izboljsa u¢inkovitost u¢enja posameznih napovednih nalog.

= Heterogenost napovednih nalog: V primerjavi z uveljavljenimi pristopi za anali-
zo znacilk, ki opisujejo ve¢ tipov objektov, in napovedne naloge obravnavajo
lo¢eno preko razli¢nih tipov objektov, zlivanje podatkov izkoris¢a morebitno po-
vezanost med nalogami, s Cimer se prenasa znanje med razli¢nimi podatkovnimi

relacijami.

Motivacija

Uveljavljeni pristopi pri gradnji napovednih modelov tipi¢no uporabljajo en podat-
kovni nabor in u¢ne primere predstavijo z vektorji znacilk. Na primer, pri razpozna-
vanju rakavega tkiva lahko vsak vzorec tkiva opiSemo z vektorjem (profilom) genskih
izrazov v danem tkivu in z binarno spremenljivko, ki kaze, ali je vzorec rakavega iz-
vora ali ne. Stevilni pristopi strojnega uéenja in tehnike odkrivanja znanj iz podatkov
razviti v zadnjih desetletjih obravnavajo tabelari¢ne podatkovne predstavitve in gra-
dijo modele za napovedovanje ciljnih spremenljivk, kot so verjetnost razvoja bolezni
v posamezniku. Ceprav so ti modeli zmogljivi in imajo veliko izrazno mo¢, pogosto
ne morejo obravnavati razli¢nih podatkovnih predstavitev, ki izhajajo iz heterogenih
podatkovnih prostorov. Poleg tega moramo pogosto analizirati ve¢ deset ali celo ve¢
sto podatkovnih naborov, da lahko zanesljivo ocenimo vrednost ciljne spremenljivke;
torej, nae raziskovanje se osredotoci na so¢asno rac¢unsko analizo velike heterogene

zbirke podatkov.

Vseprisotnost visoko prepustnih tehnologij v naravoslovnih, humanisti¢nih in tehno-
loskih vedah poraja veliko moznosti za $tudij pojavov in sistemov v velikem obsegu in
iz razli¢nih perspektiv, kar Se pred kratkim ni bilo mogoce. To je mogoce povzeti z

naslednjimi tremi to¢kami:

= Meritve naravnih sistemov (na primer ¢loveskega genoma) in tehnoloskih sis-
temov (na primer splet) vsebujejo podrobne podatke, ki opisujejo kompleksne
odnose med $tevilnimi objekti razli¢nih tipov (kot so geni, molekule RNK in
celi¢ne poti v primeru ¢loveskega genoma; uporabniki, dogodki in skupnosti v
primeru spleta), kjer so objekti posredno in na vnaprej neznani nadin poveza-

ni s ciljno spremenljivko (na primer pomen posameznikovega okolja na razvoj
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genetske bolezni; vpliv prijateljev s spletnega omreZja na posameznikovo naklo-

njenost izbranemu filmu).

“Velike podatke” zbrane s tovrstnimi meritvami je mogoce razumeti kot “veliko
zbirko manjsih ali srednje velikih podatkovnih naborov” v primerjavi z alterna-
tivnim pogledom “ene velike podatkovne tabele” (Zoubin Ghahramani, osebna

komunikacija).

= Tako bogati podatki so podani z razli¢nimi stopnjami negotovosti in opisani z
raznimi podatkovnimi predstavitvami, kot so tabele, povezave, omrezja in on-

tologije.

Na primer, projekt ENCODE (Consortium et al., 2012) je enciklopedija elementov
DNK, ki si prizadeva doloditi vse funkcionalne elemente v ¢loveskem genomu. Ra-
¢unski strokovnjaki in biologi uporabljajo visoko prepustne biotehnoloske pristope za
dolo¢anje zaporedij DNK, ki imajo bioloske funkcije. Ta nedavni vir informacij je po-
leg ¢loveskega genoma (Venter et al., 2001) in $tevilnih meritev v molekularni biologiji
in funkcijski genomiki privedel do razvoja sistemske biologije, ki si prizadeva celostno
analizirati bioloske sisteme (na primer, razpoznava sekven¢nih variant, ki povzroca-
jo bolezni in stratifikacija bolnikov z rakom). Primeri drugih podatkovno intenziv-
nih podro¢ij vklju¢ujejo: podatke, ki jih proizvede eksperiment ATLAS v projektu
CERN (Toor et al., 2012), ki i$¢e nove delce s trkanjem protonov pri visoki energiji in
odkriva razli¢ne vrste dogodkov; spletni priporo¢ilo sistemi (Feuerverger et al., 2012),
ki upostevajo podatke o preteklih ogledih filmov, demografske profile uporabnikov
in informacije o filmih, igralcih ter Zanrih, da nudijo podporo ve¢ sto tiso¢im upo-
rabnikov pri izbiri filmov; globalni satelitski navigacijski sistemi, ki zlivajo podatke za
izbolj$anje zanesljivosti pozicioniranja in optimizacije prostorske geometrije (Li et al.,
2015); ali na primer spletna druzbena omrezja (Szell et al., 2010; Mucha et al., 2010),

» «

ki zajemajo kompleksne komunikacijske vzorce, kot so “vSecki,” “glasovi,” in kaskade

raz§irjanja objav med posamezniki oziroma spletnimi skupnostmi.

Analiza podatkov, ki se belezijo v tovrstnih sistemih, predstavlja $tevilne edinstvene
priloZnosti in izzive. Ozko grlo, ki nam preprecuje, da bi bolje razumeli in resni¢no
zlili raznovrstne podatke v velikem obsegu predstavlja opredelitev znanja, ki se lahko
prenasa med podatkovni nabori, tipi znacilk in napovednimi nalogami. V disertaciji

predlagamo algoritme, ki za vzpostavitev povezav med heterogenimi podatkovnimi viri
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uporabljajo eno ali ve¢ izmed naslednjih predpostavk:

= Prenos podatkovnib relacij/pogledov: Gradimo karto podatkovnih relacij — graf’
glivanja, ki opisuje odnose med heterogenimi podatkovnimi viri. Za ucinko-
vito socasno obravnavo heterogenih podatkovnih virov se pogosto ne moremo

zanasati na predpostavko o neodvisno in enako porazdeljenih podatkovnih virih.

Prenos tipov objektov: Tu predpostavljamo, da obstajajo znacilke v podatkih, ki
so skupne razli¢nim podatkovnim prostorom. Te znacilke izkoristimo za prenos

znanja med heterogenimi podatkovnimi domenami.

= Izmenjava ucnih parametrov: Tu se zanaSamo na parametrizacijo latentnega po-
datkovnega modela in predpostavljamo, da so nekateri parametri in hiperpara-

metri souporabljeni v modelih razli¢nih podatkovnih virow.

Profiliranje
in veriZenje

Predznanje v

Analiza preZivetja z
obliki mrez p !

zdruZevanjem podatkov

Faktorski model
zlivanja podatkov

Izbor modela pri
zlivanju velikih
heterogenih
podatkovnih zbirk

Slika A.1

Organizacija doktorske
disertacije.

Pristopi k prenosu informacij med sorodnimi podatkovnimi pogledi, povezanimi tipi
objektov in u¢nimi parametri so usklajeni z vrstami podatkovne heterogenosti, ki jih
obravnavamo v disertaciji. Pri modeliranju posameznih heterogenosti sledimo nasle-

dnjih trem korakom:
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» FAZA 1 - Raziskava: Tu zastavimo vprasanje, ki se osredotoca na trenutne izzive
v sistemski in molekularni biologiji, razis¢emo uveljavljene in sorodne pristo-
pe ter oblikujemo delovno hipotezo. Zberemo podatke iz podatkovnih baz, ki
hranijo meritve bioloskih eksperimentov, in podatke s sodelujo¢ih ustanov ter
dolo¢imo eno ali ve¢ vrst podatkovne heterogenosti, ki jih Zelimo obravnavati

tekom gradnje podatkovnih modelov.

= FAZA 2 - Modeliranje: Tu razvijemo ralunske modele, ki nam sluzijo za gra-
dnjo napovedi in ocenjevanje verjetnosti povezano z zastavljenim vprasanjem.

Preizkusimo naso hipotezo in opravimo dodatne analize podatkov.

= FAZA 3 - Algoritmi: Predstavimo splosne algoritme za zlivanje podatkov, em-
piri¢no ovrednotimo njihovo zmogljivost in uéinkovitost ter jih primerjamo z
uveljavljenimi pristopi. Nase napovedi partnerji s sodelujocih ustanov preverijo

z bioloskimi eksperimenti, ¢e to dopus¢a zastavljeno vprasanje.

V disertaciji preu¢ujemo Sest smeri, kjer pokazemo, da lahko z nadelnimi pristopi za
zlivanje podatkov izboljsamo kakovost zgrajenih napovednih modelov. Obravnavane

smeri naSega dela so prikazane na karti doktorske disertacije na Sliki A.1.

Disertacija se tako naravno organizira v Sest delov, kot je prikazano v Tabeli 1: vrstice
ustrezajo zastavljenim raziskovalnim vpraSanjem in stolpci predstavljajo prej opisane

viste podatkovne heterogenosti, ki so obravnavane v pripadajocih delih disertacije.

Tabela 1

Razli¢ne vrste podatkovne heterogenosti in deli doktorske disertacije, ki jih naslavljajo.

Del Vrste heterogenosti

disertacije Relacija Tip objektov Naloga
Del I Predznanje v obliki mrez v v
Del IT Gradnja mrez v
Del III Faktorski model zlivanja podatkov v v v
Del IV Profiliranje in verizenje v
Del V' Analiza preZivetja z zdruZevanjem podatkov v v
Del VI Izbor modela pri zlivanju velikih zbirk Odvisnosti med heterogenostmi
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A.2 Latentni faktorski modeli

V tem razdelku oriSemo latentne faktorske modele, ki so namenjeni obravnavi posame-
znih podatkovnibh matrik. Ti modeli so temeljni gradnik pristopov zlivanja podatkov,

ki jih obravnava pri¢ujoca disertacija.

Naj bo dana podatkovna tabela predstavljena z matriko X € R™", ki jo Zelimo apro-
ksimirati s produktom dveh matrik UVT, kjer U € R"™* in ¥V € R™, Ce na vrstice
matrike X gledamo kot na podatkovne vektorje X;, potem vsak tak vektor predstavimo
z linearno kombinacijo U; VT vrstic v matriki ¥7. O vrsticah v VT lahko razmislja-
mo kot o latentnih faktorjih in o elementih v U kot uteZeh te linearne kombinacije.
Z geometrijskega vidika so vektorji U; € R™ predstavljeni s k-razseznim linearnim
podprostorom, ki ga razpenjajo vrstice V. Velja tudi obratno: stolpce v matriki X
je mozno razumeti kot linearne kombinacije stolpcev matrike U. Matriki U in V sta

pogosto oznaceni kot latentni matriki ali matriki latentnih faktorjev.

V kolikor ne zahtevamo, da matriki U in V' zado$¢ata dodatnim omejitvam, torej sta
lahko poljubni realni matriki ustreznih razseznosti, potem so matrike, ki jih je mo-
zno zapisati s produktom X = UV7, natanko tiste, katerih rang je omejen s k. To
pomeni, da je faktorizacija matrike X brez dodatnih omejitev enakovredna k-razsezni

aproksimaciji matrike X.

Zgornji opis se namenoma ne ukvarja z razumevanjem pojma “aproksimacije” podat-
kovne matrike. V kak$nem smislu Zelimo aproksimirati podatke? Nadaljnje, kako
merimo neskladje med podatki X in modelom X, ki ga zelimo zgraditi? Ali lahko na

“aproksimacijo” gledamo kot na gradnjo primernega verjetnostnega modela?

Faktorizacija brez omejitev.  Najpogosteje uporabljeno merilo neskladja med podatki

X in modelom X je Frobeniusova razdalja med X in X:
IX - X3, = X (X, - X,;)? (1)
Fro ) yre
i.j
Matri¢ne fakrorizacije, ki izhajajo iz optimizacije Frobeniusove razdalje, se pogosto
uporabljajo zaradi enostavnosti njihovega izratuna. Izkaze se namre¢, da je matrika

X ranga k, ki minimizira vsoto razlike kvadratov do matrike X, dana s k glavnimi

komponentami v singularnem razcepu matrike X (Jolliffe, 2002).
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Faktorizacija z omejitvami. 'V dosedanjem opisu smo se osredotodili na faktorizaci-
je brez dodatnih omejitev, kjer lahko matriki U in V' zavzameta kateri koli matriki
iz prostorov R™ oziroma R™¥, To pomeni, da je model X =uv" omejen le z
matri¢nim rangom. V analizi podatkov pogosto Zelimo, da latentne matrike zados¢ajo
dodatnim omejitvam, kar dosezemo z uvedbo regularizacije v cenitveni funkciji. Regu-
larizacija latentnega modela omogoca lazjo interpretacijo latentnih faktorjev, zmanjsa
prostor vseh moznih resitev in dovoljuje obstoj vecih latentnih matrik, ki so z vidika
cenitvene funkcije enake kakovosti. V splosnem vpeljava omejitev zmanijsa Stevilo pro-
stostnih stopenj razcepa UV T. Lee and Seung (2000) sta raziskovala razli¢ne omejitve
faktorskih matrik, vklju¢no z zelo razirjeno omejitvijo, ki dolo¢a, da morata latentni
matriki vsebovati le nenegativne vrednosti. Celovit pregled razli¢nih vrst regularizaci-
je, kot so nenegativnost, ortogonalnost, stohasti¢nost, redkost in ohranitev topoloskih
lastnosti med razli¢nimi omejitvami, so podani v Zitnik and Zupan (2012); Wang and

Zhang (2013).

Enotni pogled na matriéno faktorizacijo.  Singh and Gordon (2008b) sta nedavno pred-
stavila formalno ogrodje za matri¢no faktorizacijo, ki omogoca opis zelo razli¢nih vrst
faktorizacije s spreminjanjem majhnega Stevila modelnih parametrov. To ogrodje obse-
ga razsirjene metode, kot so nenegativna matri¢na faktorizacija (Lee and Seung, 2000),
utezeni singularni razcep (Srebro et al., 2003), eksponentna analiza glavnih kompo-
nent (Collins et al., 2001), matri¢na fakrtorizacija z velikim robom (Srebro et al., 2004),
verjetnostni model latentnega semanti¢nega indeksiranja (Hofmann, 1999), Bregma-

novo socasno razvr$¢anje (Gordon, 2002) in Stevilne druge.

Definicija 1: Matri¢no faktorizacijo lahko opredelimo z izbiro naslednjih mozZnosti,
ki so dovolj splo$ne, da obsegajo $tevilne pogosto rabljene matri¢ne razcepe v analizi

podatkov:
1. Podatkovne utezi W € R}
2. Funkcija preslikave f : R™" — R™".
3. Omgjitve latentnih matrik, U,V € 6.

4. UteZena mera napake med X in X = Faovh), 9(X||)?, W) >0.
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5. Parametri regularizacije, Z(U, V) > 0.

Z danimi izbirami zgornjih moznosti poiS¢emo latentni model X =~ f ov™ .

re$evanjem ustrezne optimizacijske naloge:

argmin (X || f(UVT), W) + R(U, V). (2)
Uyves®

Funkcija preslikave f omogo¢a modeliranje nelinearnih odvisnosti med modelom
UvT in podatki X (Singh and Gordon, 2008b).

Matriéno dopolnjevange je koncept, ki je tesno povezan z matri¢no faktorizacijo. Cilj
matri¢nega dopolnjevanja je rekonstrukcija podatkovne matrike, pri ¢emer imamo na
vhodu na voljo le podmnozico njenih elementov (Todeschini et al., 20135 Lee and
Shraibman, 2013). Problem matri¢nega dopolnjevanja se pojavi v priporo¢ilnih siste-
mih, cf. Shi et al. (2012a). Pristopi, ki ga reSujejo, najpogosteje pois¢ejo matriko ¢im
manj$e kompleksnosti, ki se ujema s podatki na vhodu. Tu se kompleksnost matrike
obi¢ajno meri z velikostjo ranga ali ocenjevanjem norme sledi matrik. Ti racunski pri-
stopi so dobro raziskani ob predpostavki, da je mnoZica matri¢nih vrednosti na vhodu

vzoréena naklju¢no enakomerno (Candés and Recht, 2009; Candés and Tao, 2010).

Matriéna tri-faktorizacija z omejitvami.  Mnogo podatkovnih naborov ustreza diadi¢-
nim relacijam, ki opisujejo odnose med objeki dveh tipov. Tovrstne nabore algoritmi
matri¢ne faktorizacije predstavijo z relacijskimi oziroma omejitvenimi matrika. Re-
lacijska matrika R;; je realna matrika razseznosti n; X n;, v kateri vrstice ustrezajo
objektom tipa i, stolpci predstavljajo objekte tipa j in element R;;(k, /) opisuje raz-
merje med objektom k in /. Omejitvena matrika ©; je realna matrika dimenzij n; X n;,
ki opisuje razmerja med objekti tipa i. Njene vrednosti kodirajo podobnosti/razlike
med objekti. Cenitvena funkcija latentnega faktorskega modela je taka, da bolje ceni
latentne matrike, ki zado$¢ajo omejitvam in dobro rekonstruirajo elemente matrik na
vhodu (Slika A.2). Na primer, modeli matri¢ne tri-faktorizacije razcepijo relacijsko
matriko R;; na ui latentne matrike, tako da R;; = F;; SijGS, kjer F;; € R">kii
S;; € RFu>€ij in G;; € R"/. Parametra k;; in ¢;; predstavljata rang matri¢ne fak-
torizacije in sta v analizi podatkov obi¢ajno bistveno manj$a od razseznosti vhodnih

matrik, k;; << n;, ¢;; < n;. Matri¢na tri-fakrorizacija predstavi profile, t.j. vrsti¢ne

299




300

Slika A.2

Matri¢na tri-faktorizacija
z omejitvami. Poleg po-
datkovne matrike sta na
voljo omejitveni matriki,
ki izrazata stopnjo podob-
nosti med geni (matrika

z rumenimi in oranznimi
celicami) oziroma med
fenotipi (matrika z modri-
mi in zelenimi celicami).
Negativne vrednosti v
omejitvenih matrikah na-
grajujejo latentne matrike,
v katerih imajo pripadajoci
geni oziroma fenotipi po-
dobne profile. Velja tudi
obratno; vegje pozitivne
vrednosti kaznujejo la-
tentne modele, v katerih
imajo pripadajoci geni
oziroma fenotipi podobno
predstavitev.
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vektorje v R;;, z bistveno manj vektorji v S;; in z nizko-razseznimi vekeorji G; in G ;.
To pomeni, da je dobro rekonstrukcijo mozno doseli le, ¢e ti vekrorji razpenjajo pro-
stor, ki razkriva strukturo, ki je skrita, a lastna vhodnim podatkom (Fig. A.2). Slednja
lastnost je klju¢na predpostavka, na katero se zanaajo pristopi latentnih faktorskih

modelov v strojnem udenju in odkrivanju znanj iz podatkov.

Omejitve podobnosti
*  med fenotipi

Omejitve podobnosti
med geni

Latentna
matrika genov

Matrika interakcij

med Iatenlnlm! Latentna matrika
komponentami fenotipov
e H = X
= a
- 0 + O,
= Pripadnost fenotipa

Pripadnost gena
genskim latentnim t-:.

komponentam

fenotipskim latentnim
komponentam

Latentni faktorski modeli v analizi podatkov. Latentni faktorski modeli so se izkazali
za zelo uspesne pri odkrivanju zapletenih struktur v visoko-dimenzionalnih podatkih
in se zato uporabljajo na Stevilnih domenah in raznih poslovnih, tehnoloskih, znan-
stvenih in raziskovalnih podro¢jih. Poleg izjemnega uspeha, ki so ga algoritmi matri¢-
ne fakrtorizacija dosegli v priporo¢ilnih sistemih (Bell and Koren, 2007), se te tehnike
med drugim uspesno uporabljajo v pristopih za zmanj$anje dimenzij podatkov (Jolliffe,
2002; Li et al., 2009¢; Maurus and Plant, 2014), razvr$¢anje (Hochreiter et al., 2010;
Arora et al., 2013) in nizko-razsezno aproksimacijo podatkov (Matsushita and Tanaka,

2013).

Eden izmed nadinov za merjenje prileganja faktorskega modela u¢nim podatkom je
uporaba raznih metrik, kot je kvadratni koren povpre¢ne kvadratne napake med vho-
dnimi meritvami in napovedanimi vrednostmi modela. Slednja metrika se je upora-

bljala za vrednotenje resitev v izzivu Netflix Prize Contest (http: / /www.netflixprize.


http://www.netflixprize.com
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com), ki je eden najpomembnejsih katalizatorjev uporabe matri¢nih metod v zadnjem
desetletju strojnega ucenja. V zadnjem casu se veliko matri¢nih pristopov osredotoc¢a
na naloge uvri¢anja in rangiranja, kjer naivna uporaba metrik, kot je povpre¢na kva-
dratna napaka, ne vraca zadovoljivega rezultata (Rendle, 2010; Rendle et al., 2010). Na
primer, v nalogah skupinskega filtriranja se uporabniki osredotocijo le na nekaj najbolj
obetavnih priporo¢il. To pomeni, da mora biti razvoj ra¢unskih pristopov usmerjen na
generiranje kakovostnega a kratkega seznama priporocenih izdelkov. Primerne metri-
ke za optimizacijo in vrednotenje prileganja faktorskih modelov za danega uporabnika
v tovrstnih primerih ocenjujejo relevantnost seznama prvih-N izdelkov. Mnogi nedav-
no predlagani algoritmi in faktorski modeli tako merijo neskladje med vhodnimi in
napovedanimi vrednostmi z metrikami za vrednotenje rangiranja, uvrs¢anja in regre-
sije (Rendle et al., 2009; Rendle, 20105 Shi et al., 2012b, 2013). Faktorski modeli se
zato lahko uporabljajo ne le za regresijske naloge, kjer se primerni matri¢ni produke
latentnih matrik neposredno uporablja za gradnjo napovedi in je merilo optimizacije
kvadratna napaka, temve¢ tudi v dvorazrednem uvr$¢anju, kjer se parametri dolo¢ijo z
optimizacijo funkcij napak, kot sta hinge in logit (Rendle, 2010), in v nalogah rangira-
nja, kjer je optmizacija usmerjena v iskanje relevantnih seznamov objektov (Shi et al.,
2013). Nedavni razvoj tovrstnih pristopov torej postavlja latentne faktorske modele v
skupino splosnih napovednih modelov, ki lahko obravnavajo raznovrstne matri¢ne pred-
stavitve podatkov (Rendle, 2010). Ti modeli obravnavajo interakcije med spremen-
ljivkami s pomo¢jo faktoriziranih parametrov in so sposobni robustnega ocenjevanja
interakcij tudi v primerih, kjer so podatki zelo redki in so uveljavljene tehnike strojnega

ucenja manj uspesne (Rendle, 2013).
A.3  Predznanje podano z omrezji

Problem matri¢nega dopolnjevanja se pojavi v mnogih nalogah podatkovnega rudarje-
nja in je v zadnjih letih delezen izjemne pozornosti na podroéju gradnje priporo¢ilnih
sistemov, kjer so tovrstni algoritmi med najuspe$nejsimi (Shi et al., 2012b). Ti al-
goritmi redko matriko na vhodu dopolnijo na nacin, da je kompleksnost dopolnjene

matrike ¢im manja in da se dopolnjena matrika dobro ujema z znanimi vrednostmi.

Razvili smo pristop matri¢nega dopolnjevanja na osnovi izmenjave podatkov med viri,

ki uposteva predznanje podano v obliki omrezij (Slika A.3). Iterativni algoritem gra-
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Slika A.3

Matri¢no dopolnjevanije s
predznanjem podanim z
omrezji. Dani so podatki
E-MAP s petimi geni,
{g1,...,85}. Predznanje
je podano z mrezo P. In-
terakeijski profili genov so
podani v matriki G (desno)
in zraven pripadajocih voz-
lis¢ genov (levo). Algoritem
fakrorizira vhodno matriko
G z latentnima faktorjema
F in H. Struktura njunih
latentnih komponent je
skladna z oddaljenostjo
genov v dani mreZi.
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di verjetnostni latentni model in vklju¢uje predznanje po principu tranzitivnosti. To
pomeni, da so latentni profili objektov v vsaki iteraciji algoritma odvisni od profilov
njihovih neposrednih sosedov v danih omreZjih. Iterativna narava algoritma omogo-
¢a Sirjenje vpliva med latentnimi profili objektov glede na njihove lokalne okolice v

omrezjih.

Primer delovanja algoritma na meritvah petih objektov prikazuje Slika A.3. Naj bodo
dani objekti g; ... g5. Znane vrednosti so prikazane ob pripadajocih vozli§¢ih omrezja
P in v matriki G. Matriki F in H sta latentni matriki, ki ju zZelimo dolo¢iti. Pro-
fili objektov v F so v vsaki iteraciji algoritma odvisni od profilov njihovih sosedov v
omrezju P. Na primer, algoritem v prvi iteraciji pri posodobitvi vektorja Fgl uposteva
predstavitev njegovih sosedov g4 in g5 (profila Fy, in F_ sta prikazana na vhodnih
povezavah objekta g; na Sliki A.3), pri ¢emer je stopnja vpliva dolo¢ena s Py, in P;s.
V drugi iteraciji se pri posodobitvi Fy uposteva profil objekra g, (Slika A.3).

Matri¢no dopolnjevanje, ki v gradnjo modela vklju¢i predznanje, nam omogoca, da
napovemo vrednosti za vrstice oziroma stolpce vhodne matrike, za katere sicer ni na
voljo nobenih meritev. Ta zanimiv izziv je v literaturi priporo¢ilnih sistemov znan
kot problem hladnega zagona in ga je brez vkljutitve predznanja zelo tezko ustrezno
nasloviti.

—-— Prvaiteracija
------ Druga iteracija

F; Mo
<[y
91193194
[ ][] ] 91 92 93 94 9y
g1
g2 7
93 ~
5 9a
95
G

Viednotenje razvitih metod. 'V disertaciji poro¢amo o ve¢ empiri¢nih eksperimentih,
v katerih gradimo napovedne modele genskih interakeij v Studijah epistati¢nih mi-

kromrez (E-MAP) (Wilmes et al., 2008). Predlagani algoritem primerjamo z ve¢imi
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obstoje¢imi metodami za napovedovanje genskih interakcij in ga ovrednotimo na vecih
podatkovnih naborih in z razli¢nimi omreZji, kot sta omreZje proteinskih interakeij in
omrezje genskih pripisov. IzkaZe se, da je matri¢no dopolnjevanje udinkovit pristop,
ki se pri napovedovanju genskih interakcij obnese bolje od alternativnih tehnik. Zelo
dobro obnasanje modela je mogoce razloziti z njegovo zmoznostjo vkljucitve dodatnih
virov informacij in z naravo algoritma, ki uposteva tako globalno kovarianino strukturo

kot tudi lokalno izmenjavo latentnih profilov med sosednimi geni v omrezju.

Preucili smo vpliv velikosti u¢ne mnozice meritev in porazdelitve znanih vrednosti na
napovedno to¢nost zgrajenih modelov. V realnih situacijah meritve pogosto ne vzor¢ijo
domenskega prostora enakomerno naklju¢no, kar pomeni, da manjkajoce vrednosti
sledijo vzorcu, ki je posledica tehnoloskih ali domenskih omejitev (Slika A.4). Rezultati
empiri¢nih raziskav kazejo, da je obravnava vecih virov informacij vselej koristna. Se
posebej dobro se modeli s predznanjem obnesejo v situacijah, v katerih manjkajoce

meritve sledijo netrivialnim vzorcem prikazanim na Sliki A. 4.

Krizni vzorec

Matri¢ni vzorec

Nakljucni vzorec Hladni zagon

A.q  Solasna gradnja mrez iz veih virov

V disertaciji smo razvili dva pristopa za gradnjo mrez, ki temeljita na izmenjavi laten-

tnih informacij med podatkovnimi viri.
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Slika A.4

Porazdelitev manjkajo-

&h vrednosti v podatkih.
Manjkajoce meritve so
lahko porazdeljene enako-
merno nakljuéno (Nakljué-
ni vzorec). Alternativno
lahko manjkajo vse meritve
interakcij znotraj mnozice
objektov (Matricni vzorec),
med dvema disjunktni-

ma mnozicama objektov
(Krizni vzorec) ali celotni
meritveni profili (Hladni
zagon).
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Gradnja genskibh mrez na osnovi analize epistaze

Pristopi h gradnji genskih mreZ nas zanimajo v smislu napovedovanja vrstnega reda
delovanja genov, to je, njihove urejenosti v bioloskih poteh, o ¢emer lahko sklepamo
iz fenotipskih podatkov enojnih in dvojnih mutant. Analiza epistaze je princip znan v
klasi¢ni genetiki, ki ocenjuje vpliv in urejenost dveh genov na osnovi meritev njunih
fenotipov. Fenotip je najpogosteje podan z oceno fitnesa, to je, sposobnost organizma,
da se razvija in raste, ali z oceno o izraZenosti izbranega gena. Analiza epistaze primerja
fenotip dvojne mutante s fenotipom ustreznih enojnih mutant in oceni, kateri izmed
pripadajocih genov deluje v genski poti blizje izhodnemu signalu (Roth et al., 2009).
Epistaza ne omogoca le sklepanja o linearni urejenosti genov in o soodvisnosti njiho-
vih vlog v celici, ampak je koristna tudi za odkrivanje delnih odvisnosti in razkrivanje
vzporednih bioloskih poti. Razkrivanje neposrednih funkcijskih odvisnosti med geni
in razlaga vzro¢no-posledi¢nih razmerij sta klju¢ni lastnosti, v katerih se analiza epi-
staze razlikuje od drugih pristopov h gradnji genskih mrez, ki temeljijo na ra¢unanju
podobnosti med profili genskih interakeij in lahko o odvisnostih med geni sklepajo le

posredno (Costanzo et al., 2010; Mostafavi and Morris, 2012).

Razvili smo algoritem Réd za gradnjo velikih genskih mrez, ki so skladne z epistati¢-
nimi razmerji genov. Algoritem gradi napovedni model na osnovi fenotipskih meritev
enojnih in dvojnih mutant in je zaradi faktorizacije modelnih parametrov primeren za
$umne in redke podatke. Pristop se konceptualno razlikuje od obstojecih tehnik, saj
socasno gradi nelinearni verjetnostni model za vse pare genov in vse mozne funkcijske
odvisnosti, to je, linearno, vzporedno ali vzporedno-odvisno delovanje genov. Laten-
tni podatkovni model sluzi za izratun ocen verjetnosti razli¢nih odvisnosti med geni

in za izgradnjo genske mreZe.

Viednotenje razvitih metod.  Zmogljivost predlaganega algoritma Réd vrednotimo na
ve¢ih podatkovnih naborih (Jonikas et al., 2009; Costanzo et al., 2010; Surma et al.,
2013), tako da merimo plo§¢ino pod krivuljo ROC in rekonstrukeijsko napako med
napovedanimi genskimi mrezami ter referen¢nimi mrezami oziroma znanimi odvi-
snostmi med geni. Na podrodju gradnje genskih mreZ z analizo epistaze obstaja le
nekaj algoritmov (Battle et al., 2010), ki lahko obravnavajo nabore z meritvami nekaj

sto mutant. Réd je racunsko ucinkovit in za izgradnjo napovednega modela vseh mutant
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v kvasovki z ve¢ tiso¢ geni in sto tisoci meritev potrebuje le nekaj minut na osebnem
ra¢unalniku. Znani pristopi niso primerni za analizo podatkov takih razseznosti. Poleg
ra¢unske ucinkovitosti Réd rekonstruira genske mreze s presenetljivo visoko precizno-

stjo in dosega to¢nost, ki je vsaj primerljiva, a ve¢inoma bolj$a od uveljavljenih tehnik.

Gradnja mrez iz veih virov in raznovrstnih podatkovnih porazdelitev

Markovska mreZe so neusmerjena grafi¢ni modeli, ki se pogosto uporabljajo za odkri-
vanje kompleksnih odnosov med objekti iz meritev o njihovem delovanju (Rue and
Held, 2005). Uveljavljeni postopki za gradnjo markovskih mreZ tipi¢no temeljijo na
analizi podatkov, ki sledijo Gaussovi porazdelitvi (Friedman et al., 2008; Ravikumar
etal., 2010). Obsezni podatki pridobljeni z visoko-prepustnimi tehnologijami, kot so
tehnike sekvenciranja RNA v molekularni biologiji, sledijo raznovrstnim podatkovnim
porazdelitvam in pogosto krsijo predpostavke Gaussove porazdelitve. Ko je za dane
objekte na voljo ve¢ virov podatkov, ki izhajajo iz razli¢nih porazdelitev, je verjetno,
da imajo markovske mreZe, zgrajene nad razli¢nimi viri, dolo¢ene skupne strukturne

lastnosti.

V disertaciji se ukvarjamo z novim statisti¢nim pristopom, ki lahko so¢asno obravna-
va heterogene zbirke podatkov, kjer heterogenost izhaja iz raznolikosti podatkovnih
porazdelitev. V ta namen smo razvili algoritem FUseNET, ki gradi markovske mreze
iz ve¢ih morebitno razli¢no porazdeljenih podatkovnih virov. FuseNET je racunsko
ucinkovit in splosen pristop, ki lahko so¢asno obravnava ve¢ virov opisanih z razli¢ni-
mi porazdelitvami iz eksponentne drugine. FuseNET parametrizira napovedni model
s faktoriziranimi parametri, ki souporabljajo latentne faktorje, le ti pa opredeljujejo

soses¢ino vozlis¢ v zgrajeni mrezi (Slika A.s).

Viednotenje razvitih metod.  V empiri¢nih $tudijah pokazemo dobro napovedno to¢-
nost pristopa FUSENET v primetjavi z ve¢ uveljavljenimi neusmerjenimi grafi¢nimi mo-
deli (Allen and Liu, 2013; Friedman et al., 2007a; Gallopin et al., 2013; Liu et al.,
2009). Utinkovitost pristopa razi§¢emo z analizo podatkov RNA-sekvenciranja in po-
datkov o somatskih mutacijah vzorcev rakavega tkiva v International Cancer Geno-
me Consortium, kar je nova uporaba neusmerjenih grafiénih modelov. Zlivanje vi-

rov znatno izbolj$a to¢nost zgrajenih mrez in stopnjo njihove bioloske obogatenosti v
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Slika A. s

Metoda FuseNET za
gradnjo genskih mrez.
FuseNET avtomati¢no
zgradi markovsko mrezo s
hkratno obravnavo vecih
podatkovnih naborov, pri
cemer lahko nabori sledijo
razli¢nim porazdelitvam

iz eksponentne druzine.
Prikazan je primer z dvema
naboroma: (a) meritve
genskih izrazov, ki sledijo
Poissonovi porazdelitvi

in (b) podatki somatskih
mutacij, ki jih je mozno
modelirati z multinom-
sko porazdelitvijo. (c)
FuseNET zgradi gensko
mrezo s hkratnim ucenjem
odvisnosti med geni in v
kontekstu vseh meritev
genske izrazenosti in muta-
cijskih profilov. Odsotnost
povezave med 57 and 53
(prekinjena ¢rta v sivem)
nakazuje, da gen s, deluje
neodvisno od gena s3 pri
znanem delovanju genov
sy in s4, ki sta neposredna
soseda gena 55 v mreZi.
Simbol L predstavlja po-
gojno neodvisnost. Gena
51 in s sta povezana, ker
genski profili s, v (a-b)
nosijo informacijo o delo-
vanju gena sy pri znanem
54, neposrednim sosedom
5. (d) Prikazani so ko-
eficienti odvisnosti med

55 in vsemi ostalimi geni
v sistemu. Nenicelne vre-
dnosti nakazujejo odvisnost
v delovanju pripadajocih
genov. Iz slike (d) izhaja,
da ima gen 55 dva soseda v
mrezi, 51 in s4.

(a) Podatki 1: Genski izrazi izmerjeni z RNA-sekvenciranjem
t Sq

S5
-

Normalizirani podatki mMRNA

Frekvenca

Frekvenca

51

52

57
Normalizirani podatki mRNA

FuseNet

Podatki 1: Poissonova porazdelitev
Podatki 2: multinomska porazdelitev

(c) Genska mreza, ki jo zgradi FuseNet

sy L os1

S4

53 Los3 | {s1,84}
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(b) Podatki 2: Razlicne vrste somatskih mutacij
84 85 Se¢ ST

Vzorec 1

Vzorec 2

Vzorec 3

Vzorec 4

Zamenjava
A ene baze

D Ni mutacije
I] Kraj$a vstavitev = Krajsi izpad

3] Zamenjava
vetih baz

(d) Izbor soses¢ine za vozlis¢e so
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primerjavi z mrezami, ki so zgrajene lo¢eno in nedvisno nad posameznim virom po-
datkov. Nasi rezultati tudi kaZejo, da lahko metode za gradnjo markovskih mrez iz
ne-Gaussovih porazdelitev izbolj$ajo modeliranje podatkov, pridobljenih z nastajajo-

¢imi visoko-prepustnimi tehnologijami v sistemski biologiji.
A.s  Vecrelacijski in veitipni faktorski model zlivanja podatkov

Algoritmi matri¢ne faktorizacije razcepijo podatkovno matriko v ve¢ latentnih matri¢-
nih faktorjev nizjega ranga, ki jih poiS¢emo z reSevanjem ustrezne optimizacijske nalo-
ge. Ceprav se algoritmi, ki temeljijo na latentnih modelih s faktoriziranimi parametri,
uspesno uporabljajo v podatkovni analizi za raznovrstne naloge, kot so manjanje di-
menzij v visoko-dimenzionalnih podatkih, gru¢enje in kompaktna predstavitev matrik,

so pristopi zlivanja virov, ki temeljijo na latentnih faktorskih modelih, malostevilni.

Predlagali smo algoritem DFMF za so¢asno matri¢no tri-faktorizacijo z omejitvami, ki
omogoca hkratni razcep nateloma poljubnega Stevila podatkovnih matrik v produkte
treh razcepnih matri¢nih fakeorjev. Prednost pristopa je, da lahko obravnava matrike,
ki opisujejo razli¢ne tipe objektov (na primer gene, bolezni, zdravila in kemikalije) Po-
membno je, da so latentni faktorji deljeni med razcepi matrik, ki opisujejo objekte istega
tipa (Slika A.6), kar omogoca socasno obravnavo vec¢ih podatkovnih virov. Algoritem
predstavi vsak podatkovni nabor z matriko, pri ¢emer razlikuje med omejitvenimi ma-
trikami, ki opisujejo relacije med objekti istega tipa, na primer interakcije med geni,
in relacijskimi matrikami, ki opisujejo razmerja med objekti razli¢nih tipov, na primer
pripisi konceptov hierarhije MeSH (angl. Medical Subject Headings) znanstvenim

¢lankom. Pristop sestoji iz treh glavnih korakov:

1. Dolotitev podatkovnih virov za zlivanje in njihova organizacija v graf zlivanja.
Graf zlivanja na Sliki A.6 prikazuje shemo enajstih podatkovnih virov med $ti-

rimi tipi objektov.

2. Socasna matri¢na tri-faktorizacija vseh relacijskih matrik, pri ¢emer omejitvene
matrike sluZijo za regularizacijo razcepnih matri¢nih faktorjev. Klju¢ni korak
zlivanja je souporaba latentnih faktorjev v razcepih sorodnih relacijskih matrik

(Slika A.6, spodaj).

3. Uporaba zgrajenega latentnega modela za gradnjo napovedi v nalogah, kot so:
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Slika A.6

Delovanije faktorskega mo-
dela za zlivanje podatkov
na primeru §tirih tipov
objektov, &1, &, & in
&,. Podatkovne nabore,

ki opisujejo razli¢ne tipe
podatkov, prikazemo z
grafom relacij med tipi
objektov (zgoraj) ali z ena-
kovredno blo¢no matri¢no
predstavitvijo (spodaj).
Faktorski model za so¢asno
ucenje predpostavlja, da
dani podatkovni nabor
opisuje odnose med dvema
objekenima tipoma. Viri
so prikazani s povezavami
v grafu (zgoraj) oziroma

s sivinskimi matrikami v
spodnji blo¢ni predstavitvi.
Na primer, podatkovna
matrika Rp3 opisuje odno-
se med objekti &, in &3.
Nekatere relacije so lahko
odsotne. Na primer, v dani
shemi ne obstaja nabor
podatkov, ki bi vzpostavil
odnose med objekti &3 in
&), zaradi ¢esar v grafu ni
usmerjene povezave med
&3 in &| oziroma enako-
vredno, matrika R3| ni na
voljo. Omejitvene matrike
so prikazane z zankami
(zgoraj) oziroma matrikami
z modrimi celicami (spo-
daj). Omejitvene matrike
predstavljajo podatkovne
nabore, ki opisujejo od-
nose med objekti istega
tipa. Dani primer vsebuje
omejitve za &, (ena ome-
jitvena matrika) in & (tri
omejitvene matrike).

&

&

&y

25 e
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= rekonstrukcija relacijskih matrik z namenom dopolnitve njihovih manjka-

jocih vrednosti,
= veriZenje razcepnih matri¢nih faktorjev vzdolZ poti v grafu zlivanja,

= socasno razvri¢anje objektov razli¢nih tipov v skupine na osnovi njihove

pripadnosti latentnim komponentam.

Viednotenje razvitih metod.  Zmogljivost razvitega pristopa primerjamo s pristopi zgo-
dnjega zdruzevanja virov, kot so naklju¢ni gozdovi (Breiman, 2001; Chen and Zhang,
2013), metodami poznega zdruZevanja, kot je zlaganje napovedi obstoje¢ih u¢nih algo-
ritmov (Pandey et al., 2010), in s tehnikami vmesnega zdruzevanja, kot so metode ucenja
z ve¢imi jedri (Gonen and Alpaydin, 2011; Yu et al.,, 2012). Na$ pristop primerjamo
z ve¢imi algoritmi matri¢ne faktorizacije v smislu njihove napovedne modi, ¢asovne
zahtevnosti in uporabnosti. Ti pristopi vkljucujejo enostavne dvo-razcepne matri¢ne
faktorizacije (Zhang et al., 2011b), ki obravnavajo diadi¢ne relacije, in tri-razcepne

matri¢ne faktorizacije za obravnavo vecih diadi¢nih relacij (Wang et al., 2008, 20112).

Metode ovrednotimo, tako da zlivamo ve¢ deset podatkovnih naborov iz molekularne
biologije, kot so genske interakcije, genski pripisi, podatki o izrazih mRNA, metila-
cijski in mutacijski profili, metaboli¢na omrezja, genske poti in podatki o celicnem
signaliziranju. Pri tem povezujemo objekte razli¢nih tipov, kot so geni, zdravila, bole-

zni, fenotipi, pacienti.
Zanimajo nas aktualni problemi v molekularni in sistemski biologiji:

= Napovedovanje funkcij genov in proteinov v ve¢ih modelnih organizmih z zli-
vanjem ve¢ deset podatkovnih virov, med drugim genske izraze, omrezja pro-
teinskih interakeij, znane genske pripise, podatke o vklju¢enosti genov v pre-
snovne poti ter izvlecke iz znanstvenih objav. Genske funkcije so opredeljene z
ontoloskimi koncepti v Gene Ontology (Ashburner et al., 2000), Dictyostelium
Phenotype Ontology (Fey et al., 2009), Disease Ontology (Schriml et al., 2012)

in Yeast Genome Database (Giildener et al., 2005).

= Napovedovanje farmakoloskih akcij kemikalij, pri ¢emer farmakoloske akeije

ustrezajo konceptom ustrezne MeSH podhierarhije.
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= Odkrivanje povezav med boleznimi z zlivanjem ve¢ kot desetih molekularnih

podatkovnih virow.

= Napovedovanje toksi¢nosti zdravil z namenom zgodnjega odkrivanja stranskih
ucinkov zdravil na delovanje jeter s soasno obravnavo skoraj trideset podat-
kovnih virov. Ta problem ni zanimiv le z raziskovalnega vidika, temve¢ je tudi
izrednega pomena za zmanjsanje nezazelenih u¢inkov zdravil in stroskov razvoja,

ki je posledica pozno ugotovljene toksi¢nosti zdravil.

= Rangiranje (prioritizacija) genov glede na oceno verjetnosti njihove vpletenosti
v izbrani bioloski proces. Bioloski procesi med drugim vkljucujejo raziskavo

bakterijske rezistence v amebi Dictyostelium in bolezni mreznice pri ¢loveku.

Rezultati empiri¢nih raziskav kazejo, da predlagani pristop DFMF dosega primerljive
ali vi$jo to¢nost od uveljavljenih pristopov, ki gradijo napovedne modele z zdruzeva-
njem podatkovnih virov. Prav tako pristop v ve¢ih empiri¢nih $tudijah napovedovanja
genskih funkcij, farmakoloskih akcij in toksi¢nosti zdravil, bistevno izbolj$a zmoglji-
vost modelov, zgrajenih nad enim samim podatkovnim virom. To spoznanje je po-
membno, saj kaze na prednosti, ki jih ima ucenje z zlivanjem podatkov pred metodami

za lo¢eno analizo posameznih podatkovnih naborov.

Poleg tega ima predlagani pristop nekaj zazelenih lastnosti, zaradi katerih je uporaben v
raznovrstnih napovednih nalogah, dosega ve¢jo fleksibilnost kot znane tehnike in je eno-
staven za uporabo. Algoritem DFMF za soasno matri¢no faktorizacijo namre¢ ohranja
relacijsko strukturo podatkov in lahko obravnava heterogene podatkovne predstavitve brez
njihove predhodne transformacije v enotni podatkovni prostor. Ta zazelena lastnost omo-
goca nadaljnjo analizo objektov katerega koli tipa vklju¢enega v zlivanje, pri ¢emer se

izkoris¢a bogata latentna predstavitev celotne zbirke virow.
A.6  Profiliranje in verizenje

Algoritmi zlivanja virov s pristopi matri¢ne faktorizacije opisani v prej$njem razdelku
poiscejo latentno podatkovno predstavitev celotne zbirke podatkov. Ta latentni pro-
stor ohranja bogato relacijsko strukturo raznih virov in tipov objektov, ki jih definira
graf zlivanja. Latentna predstavitev podatkov ponuja veliko priloznosti za gradnjo na-

povedi. Verjetno najbolj naravna in pogosta raba je dopolnjevanje relacijskih matrik,
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ki jo doseZemo z matri¢nim mnoZenjem primernih latentnih matrik. V disertaciji po-
leg omenjenega dopolnjevanja razi¢emo $e nekaj moznosti, kot so uporaba latentnih
matrik za razvr$¢anje objektov izbranega tipa, na primer genov, in socasno razvric¢anje

objektov vecih tipov, na primer hkratno grucenje genov in bolezni.

Da bi izkoristili relacijsko strukturo latentnega prostora (Slika A.6, spodaj desno), v
disertaciji predlagamo nov nacin profiliranja objektov, imenovan verizenje. Verizenje
latentnih matrik poteka vzdolZ poti v grafu zlivanja in sluZi izpeljavi vektorjev znatilk,

ki so primerni za nadaljnjo analizo z uveljavljenimi algoritmi strojnega ucenja.

Vrednotenje razvitih metod.  Verizenje je osrednji sestavni element pristopa Collage, ki
je predstavljen v disertaciji in sluZi prioritizaciji genov (Slika A.7). S predlaganim pri-
stopom smo napovedali nekaj genov amebe D. discoideum, ki imajo lahko pomembno
vlogo v bakterijski rezistenci in pred tem niso bili povezani s to funkcijo. Ameba je
pomemben modelni organizem, ki se hrani z bakterijami, a je pogosto tudi njihova
zrtev. BoljSe razumevanje amebinega odziva v okolju z raznovrstnimi bakterijami, tudi
takimi, ki so ¢loveku nevarne in postajajo vse bolj odporne na razvite antibiotike, je
pomembno za okuzbe pri ljudeh. Do sedaj je bila znana le peicica genov, vpletenih
v poti amebine bakterijske rezistence, ki so v nasi Studiji imeli vlogo semenskih genov
zoper katerih smo ocenjevali obetavnost kandidatnih genov. Obetavnost izbranega kan-
didata smo merili z ocenjevanjem podobnosti genskih profilov izvedenih s postopkom
verizenja (Slika A.7, cde). Nase napovedi osmih novih kandidatnih genov so bile eks-
perimentalno potrjene na sodelujodi instituciji (Baylor College of Medicine, Houston,
ZDA). Razsiritev seznama genov genov povezanih z razpoznavo bakterij ni le klju¢na
v raziskavah mehanizmov bakterijske rezistence, temve¢ lahko prispeva pri snovanju

alternativnih metod antibakeerijskega zdravljenja.
A.7  Analiza prezivetja z zdruevanjem podatkov

V mnogih pristopih analize podatkov je mozno izboljsati kakovost zgrajenih modelov
z zdruZevanjem neposredno ali posredno povezanih virov. V disertaciji predlagamo
razdiritev algoritma za so¢asno matri¢no tri-faktorizacijo DFME, tako da lahko gradi-
mo latentni model z zlivanjem podatkov in hkrati ocenjujemo parametre regresijskega

modela za analizo preZivetja. Novi pristop, imenovan DFMF-SR, je latentni faktorski
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Slika A.7
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model, ki princip izmenjave latentnih matrik zdruzi z Aalenovim aditivnim modelom

analize prezivetja (Aalen, 1989; Abadi et al., 2011).

Viednotenje razvitih metod. — Predlagani pristop ovrednotimo na heterogenih meritvah
vzorcev rakavega in zdravega tkiva v zbirki podatkov iz International Cancer Genome
Consortium. Obdobje prezivetja med ugotovljeno diagnozo in dogodkom modelira-
mo kot funkcijo genskih izrazov, izrazenosti proteinov in molekul miRNA, podatkov
o metiliranih regijah na genomu ter profilov somatskih mutacij. Empiri¢ne $tudije
kazejo, da sta tako izmenjava latentnih matrik in analiza vecih virov kot tudi so¢asno
ocenjevanje regresijskega modela preZivetja kljuénega pomena za gradnjo zmogljivih
napovednih modelov. Pristop DFMF-SR gradi bistveno bolj to¢ne napovedi kot iz-
hodi$¢ni Aalenov aditivni model. Izkaze se tudi, da so najbolj informativni latentni
faktorji statisti¢no znatilno povezani z bioloskimi procesi povezanimi z razvojem raka-

vih obolenj.

A.8  Izbor modela pri zlivanju velikih
heterogenih podatkovnih zbirk

Z zdruzevanjem ve¢ deset podatkovnih virov nastopijo novi izzivi, eden izmed njih je
problem izbire podatkovnih virov, ki naj bodo vkljuceni v zliti latentni model. Gre
za posplositev znanega problema izbora informativnih znacilk v danem podatkovnem
naboru, pri ¢emer nas pri zlivanju podatkov zanima, kateri so informativni podatkovni
viri v dani zbirki virov. V ta namen smo se posluzili ocenjevanja ob¢utljivosti latentnih

matrik na vkljuditev novega vira v obstoje¢o zbirko virov.

Predlagali smo racunsko ucinkovir algoritem FoRreNsIc, ki temelji na tehnikah nume-
riéne linearne algebre. FoRrENsIC za dani latentni faktorski model definira Fréchetov
odvod ciljne matrike pri izbrani vhodni matriki kot spremembo latentne predstavitve
ciljne matrike pri majhni perturbaciji latentnega modela vhodne matrike. Forensic
za ocenjevanje obcutljivosti ciljne matrike na spremembe vhodne matrike uporablja
inducirane matri¢ne norme in ocenjevanje pogojenostnih $tevil matrik. Privla¢na la-
stnost pristopa je njegova sposobnost, da oceni prispevke posameznih virov na zgrajeni
latentni model, ne da bi zahteval ve¢kratno gradnjo latentnega modela na manjsi zbirki

virov.
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Viednotenje razvitih metod. 'V empiri¢nih raziskavah nas je $e posebej zanimalo, ali
je FORENSIC moZno uporabiti za odkrivanje “presenetljivih” oziroma problemati¢nih
podatkovnih naborov, ki vsebujejo eksperimentalne napake. V ta namen smo zgradili
latentni faktorski model za zbirko 40 naborov genskih interakeij s socasno matri¢no
tri-faktorizacijo. Opazovali smo, kako se ocene, ki jih izra¢una FORENSIC, spreminjajo,
ko v posameznih naborih simuliramo napake, na primer zamenjave bioloskih vzorcev.
Ugotovili smo, da Forensic uspesno odkrije problemati¢ne podatkovne vire. Prav tako
smo pri zlivanju velike zbirke molekularnih virov uspeli izboljsati kakovost zgrajenega
latentnega modela, tako da smo izkljudili vire z visoko obéutljivostjo. Izbor relevantnih
podatkovnih virov je vsekakor zanimiv problem, ki v integrativnih latentnih faktorskih
modelih $e ni naslovljen, saj se faktorski modeli za so¢asno analizo velikih zbirk virov

Sele razvijajo. Verjamemo, da to podro¢je ponuja veliko moznosti za nadaljnje delo.
A9 Zakljucki in prihodnje delo
V pricujoci doktorski disertaciji so podani naslednji izvirni prispevki k znanosti.

Heterogenost podatkovnih relacij (Del I1):

= Razvili smo FuseNET, splosni in ucinkovit pristop za socasno gradnjo mrez iz
raznovrstnih podatkov, ki sledijo razli¢nim porazdelitvam iz eksponentne dru-
zine. FUSENET je prvi ratunski model, ki temelji na teoriji markovskih mrez in

izkori$¢a lastnosti latentnih faktorskih modelov za zlivanje podatkov.

= Razvili smo Réd, rac¢unski pristop za gradnjo genskih mreZ, skladnih s teorijo
epistaze. Pokazali smo, da Réd lahko rekonstruira genske poti iz podatkov o
fenotipu enojnih in dvojnih mutant, ki so bolj to¢ne od mrez, zgrajenih z uve-

ljavljenimi pristopi.

= Algoritem metode Réd je racunsko ucinkovit. Tako smo lahko gradili mreZe na
osnovi ve¢ sto tiso¢ meritev genskih interakeij, kar je najvecja tovrstna analiza

epistaze do sedaj.

= Z metodo FUuseENET smo analizirali heterogene podatke v International Cancer

Genome Consortium. Ugotovili smo, da mreZe, zgrajene z zdruZevanjem gen-
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skih izraznih in mutacijskih profilov, izrazajo ve¢jo funkcijo obogatenost kot

mreZe, zgrajene iz le enega podatkovnega vira.

Heterogenost tipov objektov (Del IV):

Razvili smo Collage, ra¢unski pristop h genskih prioritizaciji. Collage na osno-
vi pescice semenskih genov, relevantnih za izbrani bioloski proces ali funkcijo,
predlaga najbolj obetavne gene za nadaljnje bioloske Studije. Collage predstavlja
velik napredek v razvoju algoritmov genske prioritizacije, saj omogoca so¢asno
obravnavo velikih podatkovnih zbirk brez kompleksnih predobdelav podatkov

in ohranja relacijsko strukturo podatkov tekom gradnje napovednega modela.

Predlagali smo novo formalizacijo genske prioritizacije in postavili modele za
napovedovanje toksi¢nosti zdravil in odkrivanje povezanosti med boleznimi, ki
imajo veliko moznosti uporabe na podro¢ju raziskav ved o Zivljenju. Na primer,
odkritje in raziskava $tirih semenskih genov, povezanih z bakterijsko rezistenco
v amebi Dictyostelium, je bilo zahtevno opravilo, ki je zahtevalo ve¢ mesecev la-
boratorijskega dela za vsak gen. Z uporabo metode Collage smo predlagali osem
genov vpletenih v poti bakterijske razpoznave, ki so bili potrjeni z bioloskimi razi-
skavami. Na ta na¢in je Collage znatno poenostavil in skrajsal ¢as, potreben za

iskanje genov, ki so relevantni za dani biologki proces.

Duojna heterogenost podatkov (Del I in Del V):

Razvili smo verjetnostno metodo matri¢nega dopolnjevanja, ki obravnava pred-
znanje podano z mrezami. Razviti algoritem je u¢inkovit in dosega boljSo to¢-

nost pri napovedovanju genskih interakeij kot uveljavljeni pristopi.

Pristop matri¢nega dopolnjevanja zgradi en napovedni model, ki so¢asno zliva
relacijske podatke s predznanjem. Pokazali smo, da je ta lastnost izrednega po-
mena za ucinkovito napovedovanje polnih interakcijskib profilov genov, katerih
interakcij sicer ni mozno izmeriti zaradi biotehnoloskih omejitev. Vkljuceno
predznanje naslavlja problem hladnega zagona, ki se pojavlja v Stevilnih dome-

nah.

Razvili smo metodo DFMF-SR, racunski pristop za analizo preZivetja z zdru-
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zevanjem podatkovnih virov. Analizirali smo podatke o raku v International
Cancer Genome Consortium, kjer smo pokazali, da DFME-SR deluje bolje od
uveljavljenih pristopov, ki sprva transformirajo podatke v latentni prostor in na-
to neodvisno od transformacije izvedejo analizo prezivetja. DFMEF-SR je prvi
pristop, ki lahko soéasno gradi latentno podatkovno predstavitev in ocenjuje re-

gresijske koeficiente modela za analizo prezivetja.

Trojna heterogenost podatkov (Del I11):

= Razvili smo algoritem DEMF za sodasno matri¢no fakrorizacijo in ga razsirili z

metodo za matri¢no dopolnjevanje. Matemati¢ni model smo podkrepili z do-
kazi pravilnosti in konvergence algoritma za iskanje latentnih matrik. Latentna
predstavitev, ki jo zgradi DFME minimizira rekonstrukcijsko napako celotnega

sistema podatkov v grafu zlivanja.

= V empiri¢nih $tudijah smo ugotovili, da lahko z uporabo latentne predstavitve

podatkov gradimo napovedi, ki so bolj to¢ne od tistih, dobljenih z uspe$nimi
metodami za zgodnjo integracijo podatkov, kot so naklju¢ni gozdovi, in napove-

dnih modelov za vmesno integracijo, kot so ve¢jedrne metode.

Odvisnosti med podatkovnimi heterogenostmi (Del VI)

= Razvili smo FORENSIC, splosni in racunsko ulinkovit pristop za ocenjevanje ob-

¢utljivosti podatkovnih naborov, ki so vkljuceni v vecrelacijski faktorski model.
FORENSIC je prvi pristop, s katerim lahko ocenimo vpliv izbranega vira podatkov
na preostale vire v vecrelacijskih faktorskih modelih, in se lahko uporabi za izbor

virov, ki naj se vkljucijo v napovedni model zlivanja podatkov.

= Analizirali smo 40 podatkovnih naborov z meritvami fizi¢nih interakcij med pro-

teini, ki je najvecja zbirka virov analizirana z vecrelacijskih faktorskim modelom
do sedaj. S predlagano metodo smo pravilno odkrili vire z neskladnimi podatki

in vire, ki vsebujejo eksperimentalne napake.
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Pribodnje delo

Nas dolgoro¢ni cilj je analiza velikih in heterogenih podatkovnih zbirk, da bi bolje ra-
zumeli, modelirali in napovedali obnasanje ter izboljsali delovanje bioloskih, tehnolo-
$kih in druzbenih sistemov. Zeleli bi razviti zmogljive napovedne modele, ki bi lahko
razlozili odnose in vloge razli¢nih bioloskih entitet, kot so geni, zdravila in bolezni;
druzbenih enot, kot so posamezniki, skupnosti in dogodki; in tehnologkih sistemov,
kot je splet. V pri¢ujo¢i disertaciji smo zastavili nekaj moznih poti v smeri naSega
dolgoro¢nega cilja. Sedaj bolje razumemo mesane, velrelacijske, ve¢tipne podatke in
napovedne modele ki obravnavajo razli¢ne vrste podatkovne heterogenosti. Prav tako
lahko uéinkovito gradimo latentne modele, ki jih nato uporabljamo za napovedova-
nje delovanja sistemov na razli¢nih ravneh, nivoju posameznih entitet ali skupnosti.
Nadaljnje, dosedanja analiza ponuja zanimive poglede na odnose med predznanjem
in zmogljivostjo napovednih modelov, relacijsko strukturo podatkovnih zbirk in izbor

relevantnih podatkovnih naborov za dano napovedno nalogo.

V prihodnje se bomo osredotocili na sledece vidike nasega dela, ki ponujajo veliko

priloznosti za izbolj$ave:

= Razvoj udinkovitih napovednih modelov zlivanja podatkov za obravnavo pro-
storske in ¢asovne lokalnosti ter analizo na razli¢nih stopnjah podatkovne gra-

nularnosti.

= Razvoj metod za izbor relevantnih podatkovnih naborov, ki izboljsajo kakovost
integrativnih modelov. Zanimiv je tudi razvoj pristopov za analizo skladnosti

vzorcev preko podatkovnih naborov in iskanje naborov vprasljive kakovosti.

= Razvoj in uporaba naprednih tehnik za porazdeljeno in vzporedno matri¢no al-
gebro v smeri podpore interaktivne analize in analize ogromnih podatkovnih

zbirk z ve¢ sto podatkovnimi nabori in ve¢ milijardami podatkovnih tock.

Nasa vizija za prihodnost obsega vzpostavitev ucinkovitega ogrodja algoritmi¢nih pri-
stopov, s katerim bomo gradili raznovrsine napovedne modele za naloge uvrs¢anja, razvr-
$¢anja in rangiranja v velikem in heterogenem podatkovju, ki lahko opisuje razli¢ne tipe
objektov, uporablja raznolike semanti¢ne predstavitve in sledi raznovrstnim podatkov-

nim porazdelitvam.
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