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Abstract

Motivation: The rapid growth of diverse biological data allows us to consider interactions between

a variety of objects, such as genes, chemicals, molecular signatures, diseases, pathways and envir-

onmental exposures. Often, any pair of objects—such as a gene and a disease—can be related in

different ways, for example, directly via gene–disease associations or indirectly via functional

annotations, chemicals and pathways. Different ways of relating these objects carry different se-

mantic meanings. However, traditional methods disregard these semantics and thus cannot fully

exploit their value in data modeling.

Results: We present Medusa, an approach to detect size-k modules of objects that, taken together,

appear most significant to another set of objects. Medusa operates on large-scale collections of

heterogeneous datasets and explicitly distinguishes between diverse data semantics. It advances

research along two dimensions: it builds on collective matrix factorization to derive different se-

mantics, and it formulates the growing of the modules as a submodular optimization program.

Medusa is flexible in choosing or combining semantic meanings and provides theoretical

guarantees about detection quality. In a systematic study on 310 complex diseases, we show the

effectiveness of Medusa in associating genes with diseases and detecting disease modules. We

demonstrate that in predicting gene–disease associations Medusa compares favorably to methods

that ignore diverse semantic meanings. We find that the utility of different semantics depends on

disease categories and that, overall, Medusa recovers disease modules more accurately when

combining different semantics.

Availability and implementation: Source code is at http://github.com/marinkaz/medusa

Contact: marinka@cs.stanford.edu, blaz.zupan@fri.uni-lj.si

1 Introduction

In recent years, there is increasing evidence that gene–disease associ-

ation prediction and disease module detection can benefit from inte-

grative data analysis (Moreau and Tranchevent, 2012; Ritchie et al.,

2015). Large-scale molecular biology data systems analyzed with in-

tegrative approaches are typically heterogeneous and contain objects

of different types, such as genes, pathways, chemicals, disease symp-

toms and exposure measurements. These objects interconnect

through multiple, most often pairwise, relations encoded in the

data. Consider an example of such a data system from Figure 1 that

contains 16 datasets (solid edges) and objects of 13 different types

(nodes). For example, dataset R2;7 encodes the clinical manifest-

ations of diseases, whereas dataset R5;3 describes associations of

chemicals with biological processes and molecular functions. The

ubiquity of complex data systems of this kind presents many unique

opportunities and challenges for uncovering genotype–phenotype

interactions, or, in general, interactions between any kind of objects.

Challenges in the joint consideration of systems of datasets, such

as that in Figure 1, include inferring accurate models to predict dis-

ease traits and outcomes, elucidating important disease genes and

generating insight into the genetic underpinnings of complex dis-

eases (Barab�asi et al., 2011; Han et al., 2013; Ruffalo et al., 2015;

Taşan et al., 2015). We would like these models to collectively con-

sider the breadth of available data, from whole-genome sequencing

to transcriptomic, methylomic and metabolic data (Navlakha and

Kingsford, 2010; Greene et al., 2015; Zitnik et al., 2015). A major

barrier preventing existing methods from fully exploiting entire data

collections is that individual datasets usually cannot be directly

related to each other. For example, datasets R5;3 (annotation of

chemicals with Gene Ontology (GO) terms) and R2;7 (symptoms of
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diseases) in Figure 1 reside in completely different feature space. As

we will learn in this manuscript, we can relate distant objects by

chaining through the fusion graph, for example, we can relate mo-

lecular signatures with disease symptoms through genes, GO terms,

chemicals and diseases. But such chaining actually exacerbates the

problem, as distant objects can be linked in many different ways.

For example, another way to relate molecular signatures with dis-

ease symptoms is via genes, pathways, chemicals, GO terms

(Ashburner et al., 2000), exposure events and diseases. A priori, it is

not obvious which of the two ways, or which of any existing ways

of connecting the signatures with the symptoms, performs better

and should thus be preferred when mining disease data.

Different ways of relating objects often carry different semantic

meanings and can potentially generate different results. Intuitively,

different semantics imply different similarities. However, traditional

methods that we review in the next section disregard the subtlety of

different types of objects and links. These methods mix, discard or

ignore different semantics, which might impede their performance

and explanatory capabilities. In this work, we aim to fill this gap by

developing an approach for disease module detection that can con-

sider diverse semantics in a principled manner.

We here introduce a novel approach, called Medusa, for auto-

matic detection of size-k significant modules from heterogeneous

systems of biological data. Unlike previous works in integrative data

analysis, Medusa explicitly takes different semantics into consider-

ation during module detection by allowing a user to either choose a

particular semantic or combine them. Our goal is to answer associ-

ation queries on possibly complex data systems, such as the one in

Figure 1. For example, given a small number of diseases, infer the

most significant group (module) of genes of size k. Or, given a list of

genes, propose a group of k other genes that, taken together, will

give the highest significance under a particular null hypothesis.

Or, given a selection of molecular pathways of interest, find which k

chemicals have the largest collective impact on these pathways. To

achieve this level of versatility, Medusa builds upon a recent collect-

ive matrix factorization algorithm (Zitnik and Zupan, 2015). In

addition, Medusa formulates a submodular optimization program,

which provides theoretical guarantees about the significance of the

detected modules (Fujishige, 2005).

In a case study with datasets shown in Figure 1, we applied

Medusa to find gene–disease associations and infer disease modules.

We demonstrate that Medusa-inferred associations are more accur-

ate than those of alternative approaches, which conflate distinct se-

mantics that exist in the data system. Importantly, we find that

different semantics vary in their ability to make accurate predictions.

We also show that the performance of different semantics depends

on the disease category. Finally, we observe that the overall best per-

formance is achieved when Medusa infers associations by combining

distinct semantics.

2 Related work

The question of distinguishing different semantics that exist within

biomedical data systems remains largely unexplored. Two notable ex-

ceptions include a meta-path-based approach for gene–disease link

prediction in heterogeneous networks (Himmelstein and Baranzini,

2015) and a latent-chain-based approach for gene prioritization

(Zitnik et al., 2015). These approaches, however, are algorithmically

different. The approach of Himmelstein and Baranzini (2015) is a

network-based technique that relies on meta-paths (Sun et al., 2011a,

2011b, 2012; Wan et al., 2015). Meta-paths represent the number of

path instances between two objects that follow a particular sequence

of object types in a heterogeneous network. In contrast to meta-paths,

Zitnik et al. (2015) use collective matrix factorization (Zitnik and

Zupan, 2015) to estimate a latent data representation of a data system

and then derive new connections by appropriately multiplying the la-

tent matrices. In Section 5.3, we empirically compare our Medusa,

which formulates module detection on top of latent representation of

the system, to alternative meta-path-based approaches.

Advances in computational approaches for mining disease related

relationships, such as gene–disease, drug–disease or disease–disease

associations may lead to better understanding of human disease and

may help identify new disease genes, drug targets and biomarkers

Barab�asi et al. (2011). Representative studies include Davis and

Chawla (2011); Gonçalves et al. (2012); Köhler et al. (2008); Li and

Patra (2010); Warde-Farley et al. (2010); Zitnik et al. (2013).

Barab�asi et al. (2011) and Navlakha and Kingsford (2010) found that

random walk approaches usually outperform clustering and neighbor-

hood approaches when predicting gene–disease associations from net-

work data, although most methods make unique predictions not

proposed by any other method. Recently, latent factor models (e.g.

Natarajan and Dhillon (2014); Zitnik et al. (2013); Zitnik and Zupan

(2016)) have been successful in predicting gene–disease and disease–

disease associations. These methods can combine heterogeneous data

for diseases and genes by estimating latent models that are coupled

across different datasets and explain well the observed associations.

Cofunction (Ruffalo et al., 2015; Taşan et al., 2015) networks are

also important for fine-scale mapping of diseases by prioritizing genes

located at disease-associated loci, for example, by connectivity to

known causal genes. Most of these approaches are restricted to infer-

ring pairwise associations.

There are several lines of research on how to consider many

datasets to derive good groupwise disease associations. Vanunu
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Fig. 1. Data fusion graph showing relations between the datasets used in this

study. Each node represents a distinct type of objects, such as chemicals,

pathways or exposure events, and each edge represents a dataset. For ex-

ample, R2;6 is a matrix of curated exposure data containing environment-

disease connections from the CTD database (Davis et al., 2015). In total, the

analysis based on this graph considers objects of 13 different types and 16

datasets (ignoring dotted edges, see Section 4.2). For a detailed description

of the data, see Section 4.1
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et al. (2010); Ghiassian et al. (2015) considered network propaga-

tion and random walk analysis for prioritizing disease genes and

inferring protein complex associations. Han et al. (2013) sought

groupwise disease associations for sets of single nucleotide poly-

morphisms mapping to a given functional category. On a related

note, guilty-by-association methods (Wang et al., 2012) have used

cofunction networks to assign functions to uncharacterized genes in

various organisms and to functionally characterize whole sets of

genes. Functionally coherent subnetworks were also used to aug-

ment curated functional annotations by connecting genes that share,

or are likely to share, functions (Greene et al., 2015; Lee et al.,

2004; Taşan et al., 2015), for example, by sharing protein domain

annotations or tissue-specific interactions.

However, while these gene–disease association and disease mod-

ule detection methods use the information from different data sour-

ces, none, including our previous work on this topic (Zitnik et al.,

2013; Zitnik and Zupan, 2016), explicitly considers that different

purposes of disease-related analysis might benefit from considering

different, potentially distant, semantics between genes and diseases,

nor do they ask users to select/combine different ways of connecting

genes with diseases. Medusa, the algorithm presented here, differs

from the above methods in that it utilizes semantically distinct

chains consisting of possibly many relations to derive relationships

between objects, such as genes and diseases. Medusa can establish

connections between objects for which direct relationships are not

available in present data. It then uses these connections to find size-

k modules of objects that together exhibit near-highest significance

to the preselected pivot objects. The flexibility of Medusa is further

shown in that the object type of the pivots can, but not necessarily,

coincide with the object type of the candidates and that chains carry-

ing different semantic meanings can be combined in a principled

manner.

3 Methods

Medusa is an approach for the detection of size-k modules that are

maximally significant for a predefined set of pivot objects. On the

input, Medusa accepts (i) a set of candidate objects that are potential

module members, (ii) a set of pivot objects that are not necessarily

of the same type as the candidates and (iii) a possibly large and het-

erogeneous collection of datasets represented in the form of a data

fusion graph such as that shown in Figure 1.

Medusa uses collective matrix factorization to jointly estimate a

latent data model from all datasets included in a fusion graph. It ex-

ploits the latent data model to establish semantically distinct connec-

tions between candidate objects and domains of other object types

in the fusion graph (Section 3.2). The module detection algorithm in

Medusa (Sections 3.3–3.5) is a submodular optimization program

which yields an efficient algorithm and provides theoretical guaran-

tees about the significance of the detected modules.

3.1 Preliminaries and notation
3.1.1 Data fusion graph

A data fusion graph G ¼ ðV;R; T Þ is a relational map of datasets

(Zitnik and Zupan, 2015). Nodes of the graph V represent different

types of objects, such as ontological terms, genes, diseases, pathways

and chemicals. The edges of the graph correspond to datasets, which

are given in matrices annotated next to the edges. An exemplar data

fusion graph is shown in Figure 1. Matrix R2;7 therein is a n2 � n7

real-valued matrix whose rows correspond to diseases indexed by a

respective disease-based controlled vocabulary and whose columns

indicate disease symptoms indexed by a symptom-based vocabulary.

Elements of matrix R2;7 represent a dataset, such as disease–symp-

tom associations.

Technically, the edges of the fusion graph are given by a set of re-

lation matrices R ¼ fRI;J; I; J 2 V; I 6¼ J;RI;J 2 RnI�nJg that repre-

sent dyadic datasets and a set of constraint matrices

T ¼ fHI; I 2 V;HI 2 RnI�nIg that represent unary datasets. It is pos-

sible to have multiple relation matrices that relate object types I and

J (i.e. more than one edge between I and J in the fusion graph) or

multiple constraint matrices for object type I (i.e. more than one

loop for I in the fusion graph). Here, this possibility is suppressed

for notational brevity.

3.1.2 Collective matrix factorization

Collective matrix factorization (Zitnik and Zupan, 2015) is an algo-

rithm that considers a fusion graph G ¼ ðV;R; T Þ and infers its la-

tent model by compressing the datasets with co-factorization of

matrices in R. Matrices T are used for regularization of the latent

model. The method simultaneously co-factorizes all the relation

matrices into the products of much smaller latent matrices through a

procedure which (i) ensures the transfer of information between

related matrices and (ii) promotes good generalization via a high-

quality data compression. To achieve the first point, collective fac-

torization reuses the latent matrices when decomposing distinct but

related relation matrices. The second feature is possible due to the

low-dimensional nature of matrix factorization.

The collective matrix factorization algorithm aims to estimate

low-dimensional latent matrices GI; I 2 V, and SI;J; I; J 2 V, which

minimize the following objective:X
RI;J2R

����RI;J �GISI;JðGJÞT
����2

Fro
þ
X

HI2T
trððGIÞTHIGIÞ: (1)

Here, the inferred latent matrices tri-factorize each relation ma-

trix as bRI;J
¼ GISI;JðGIÞT . Matrix Gi is a nI � kI (kI � nI) non-

negative latent matrix containing latent profiles of objects of type I

in rows, GJ is a nJ � kJ (kJ � nJ) non-negative latent matrix with

profiles of objects of type J in rows and SI;J is a kI � kJ latent matrix

that models interactions between latent components in the (I, J)-th

dataset. The latent profile of an object of type I is given by its corres-

ponding row vector in GI: Semantically, the profile encodes mem-

bership of the object to the kI latent components.

The parameters of the algorithm are factorization ranks, kI, for

every object type I in the data fusion system, which are selected as in

Zitnik et al. (2015). We refer the reader to Zitnik and Zupan (2015)

for a detailed description and theoretical analysis of the factoriza-

tion algorithm.

3.1.3 Chaining of latent data matrices

A factorized system of latent data matrices returned by the collective

matrix factorization can be used to establish connections between

distant object types, i.e. non-neighboring nodes in the fusion graph

(Zitnik et al., 2015).

DEFINITION 1: Chain: A chain CS;T is a sequence of relations defined

on a fusion graph G ¼ ðV;R;T Þ that connects object type S 2 V
with possibly distant object types T 2 V: The chain CS;T is denoted

in the form of:

CS;T ¼ RS;I1 � RI1 ;I2 � . . . � RIl�2 ;Il�1 � RIl�1 ;T ; (2)

which defines a composite relation between object types S and T,

where � denotes the composition operator on relations. Here, for I1;

i92 M.Zitnik and B.Zupan
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I2; . . . ; Il the object types Ij and Ijþ1 must be adjacent in the fusion

graph G.
The length l of chain CS;T is measured by the number of its con-

stituent relations. We now formulate how to materialize a given

chain and derive the profiles of objects of one type in the space of

objects of another type.

DEFINITION 2: Materialized chain: Given a fusion graph

G ¼ ðV;R; T Þ and a latent data system estimated by collective ma-

trix factorization, a materialized chain CS;T 2 RnS�nT for chain CS;T

specified in Equation (2) is defined as:

CS;T ¼ bRS;I1 bRI1 ;I2
. . . bRIl�2 ;Il�1 bRIl�1 ;T

; (3)

where bRI;J
is the relation matrix reconstructed from the latent data

system as bRI;J
¼ GISI;JðGJÞT : (ð�ÞT is matrix transposition.)

3.1.4 Submodular functions and optimization

Submodular functions (Edmonds, 1970; Fujishige, 2005) have re-

cently attracted much interest, e.g. see Krause and Guestrin (2011).

Let us assume we are given a finite set of n objects V and a valuation

function f : 2V ! Rþ that returns a non-negative real value for any

subset X � V: The function f is said to be submodular if it satisfies

the property of diminishing returns. That is, for any set X � Y and

i 62 Y, we must have: f ðX [ figÞ � f ðXÞ � f ðY [ figÞ � f ðYÞ: This

means that the incremental gain of element i decreases when the

background in which i is considered grows from X to Y � X: We de-

fine the ‘gain’ as f ði;XÞ ¼ f ðX [ figÞ � f ðXÞ, which implies that f is

submodular if f ði;XÞ � f ði;YÞ:
In this article, we deal with functions that are not only submodu-

lar but also non-negative (i.e. f ðXÞ � 0 for all X � V) and mono-

tone non-decreasing (i.e. f ðXÞ � f ðYÞ for all X � Y). Such functions

are trivial to uselessly maximize, since f(V) is the largest possible

valuation. However, we would typically like to identify a valuable

subset of bounded and small cost. Here, we are interested in subsets

whose costs are measured by their size. This leads to the optimiza-

tion problem X	 2 arg maxX�V;jXj 
 kf ðXÞ; where k is the desired

subset size. Solving this problem exactly is NP-complete (Feige,

1998). However, when f is submodular, then the greedy algorithm

has a worst case guarantee of f ð ~X
	Þ � ð1� 1=eÞf ðXoptÞ �

0:63f ðXoptÞ, where Xopt is the optimal and ~X
	

is the greedy solution

(Nemhauser et al., 1978).

3.2 Problem definition
In this section, we introduce a framework for module detection on

data fusion graphs, a novel approach to find size-k maximally sig-

nificant modules, Medusa, and propose a Medusa-based top-k mod-

ule detection problem that takes into consideration diverse

semantics in heterogeneous data systems.

We start by defining the concepts needed to guide the module de-

tection procedure and to assess the significance of the modules.

DEFINITION 3: Candidate objects: Given a fusion graph G ¼
ðV;R; T Þ, candidate objects are given by a set I ¼ fi1; i2; . . . ; inI

g of

all the entities that belong to type I 2 V: Candidates constitute a pool

of objects from which a module is identified.

DEFINITION 4: Pivot objects: Given a fusion graph G ¼ ðV;R;T Þ,
pivot objects are given by a subset S0 ¼ fs1; s2; . . . ; sug; u < nJ, of

the entities of type J 2 V: Pivots are the objects against which the

significance of the current Medusa module is assessed.

Depending on whether the pivots and the candidates belong to

the same or different type of objects in G, we distinguish two predic-

tion settings. This distinction is important because it will lead to dif-

ferent optimization objectives when detecting modules in

Section 3.4.

TASK 3.1: We aim to find a size-k module Mk ¼ fm1;m2; . . . ;mkg of

the candidates I that display the maximal significance with respect to

the given pivots S0.

Let J be the object type of the pivots. (i) In the candidate-pivot-

equivalence (CPE) regime, candidates and pivots are of the same

data type, I ¼ J: (ii) In the candidate-pivot-inequivalence (CPI) re-

gime, candidates and pivots are of different types, I 6¼ J:

We illustrate the CPE and the CPI regimes with concrete examples

in Figures 2 and 3, respectively. We proceed by formulating a meas-

ure, which we optimize for when detecting Medusa modules.

3.3 Submodularity for detection of Medusa modules
Submodularity is a natural model for detection of size-k maximally

significant modules in multiplex data. In this case, each i 2 Vsource is
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Fig. 2. The CPE regime in Medusa. In the CPE environment, Medusa detects a

relevant module of candidate objects based on a set of pivot objects, which

belong to the same object type as the candidates. For example, given three

disease genes (pivots, black circles), we want to find other potentially relevant

disease genes (candidates, white circles), a task denoted with a black dashed

line. In a special case where the studied objects are genes, as shown here,

and we are interested in size-1 modules, the CPE regime coincides with the

well-known gene prioritization task. The figure shows 15 distinct semantic as-

pects (solid black lines) that exist in the fusion graph in Figure 1 to relate

genes with all other types of objects. For example, one semantic to relate

genes with disease symptoms goes through Gene Ontology terms (‘GO’), ex-

posure events (‘E’) and diseases (‘D’). Notice that we cannot directly relate

genes to disease symptoms, i.e. at least one other object type is needed to es-

tablish the connection (gray dashed line)
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a distinct candidate and Vsource corresponds to a set of all candidate

objects. An important characteristic of a good model for this prob-

lem is that we wish to decrease the ‘value’ of a candidate i 2 Vsource

based on how much that candidate has in common with candidates

Sr that have been chosen in the first r rounds.

The value pði; SrÞ of a given candidate i in a background of previ-

ously chosen objects Sr � Vsource further diminishes as the back-

ground grows Vsource � St; t > r: When, for example, both

candidate and pivot objects are genes and a candidate’s value is rep-

resented as the statistical significance of its concentration, it is nat-

ural for the significance to be discounted based on how much

representation of that candidate already exists in a previously

chosen subset. When the module grows, it naturally becomes more

diverse, and hence, its characterization is less distinctive, which re-

sults in the overall reduction of statistical power. This means that

the candidate is pulled into the module when its significance to-

wards the pivot objects is the highest. If the candidate were added to

the module later, its significance could only be smaller. That is, if we

were to observe that candidate after being included into the module,

its significance would fade into insignificance.

This paradigm corresponds to submodularity, which we express

mathematically by functions in Equations (5) and (7) below.

3.4 Detection of size-k maximally significant modules
Next, we describe the Medusa module detection algorithm. Recall

that Medusa is able to operate in two prediction regimes defined in

Section 3.2. We start by describing the algorithm for the CPE regime

and proceed with the algorithm for the CPI regime.

Recall that a particular semantic aspect connecting object types S

and T is realized as matrix CS;T (Definition 2). For notational con-

venience, we here denote a given aspect simply as a matrix C: Prior

to the analysis, matrix C is row-wise normalized by the sum of the

matrix rows, and then multiplied by the number of matrix columns.

3.4.1 Medusa in the CPE regime

We capture the distinct connectivity patterns of the candidates by

evaluating the significance of their connections in matrix C: For a

randomly picked candidate we evaluate the probability that a cer-

tain fraction of the candidate’s strongest connections to the objects

in the columns of matrix C match exactly with the strongest connec-

tions of the pivots.

In the simplest case, we would simply count the connections, and

this notion would correspond to the hypergeometric distribution.

However, since matrix C is a real-valued object inferred by a latent

model, we take into account the estimated strength of connectivity

rather than its mere existence (cf. experiments in Section 5.3). For

this, we need to extend the binomial coefficient to the real line using

the gamma function (Fowler, 1996). Technically, this is imple-

mented in the following definition.

DEFINITION 5: Candidate concentration: Given a semantic C; pivots

S0, and a candidate i, we define the concentration of candidate i as:

hCPEðc; S0;QiÞ ¼ Bin

 X
q2Qi

CT
S0qwS0

; c

!
�

Bin

 X
j

CT
S0jdðwS0

Þ �
X
q2Qi

CT
S0qwS0

;Ci1� c

!
�

1=Bin

 X
j

CT
S0jdðwS0

!
;Ci1Þ;

(4)

where c is the observed strength of connectivity of candidate i,

Binðn; kÞ ¼ Cðnþ 1Þ=ðCðkþ 1ÞCðn� kþ 1ÞÞ; and CðxÞ is the

gamma function evaluated at x. Here, dðxÞ is the indicator function,

dðxÞ ¼ 1 if x¼1 and dðxÞ ¼ 0 otherwise. Also, XS0
returns the rows

of X indexed by set S0: Here, Qi is a set containing column indices of

i’s strongest connections. The weights in vector w are defined as

wi ¼ 1 if i 2 S0, else wi ¼ ð1� aÞr if i 2 Sr; where r is the iteration

when i was included into the module, and wi ¼ 0 otherwise. The

value for a; which promotes modules that are tight around the initial

set of pivots S0, and the size of Qi, are user-defined parameters.

We evaluate whether candidate i has greater correspondence

with the pivots than expected under this null hypothesis by calculat-

ing the cumulative probability for the observed or any weaker con-

centration of the connectivity:

pCPEði; S0; QiÞ¢

ð~ci

jQi j
hCPEðc; S0;QiÞdc (5)

where ~ci ¼ CiQi
1: A better candidate will have a lower pCPE value.

It can be shown that the use of this cumulative probability to se-

lect a candidate object, which is to be included into the current mod-

ule, leads to a submodular program (the proof is omitted here for

brevity). This appealing property allows us to use the greedy algo-

rithm to find modules of size k that approximate the optimal mod-

ules within a constant factor (Section 3.1.4). Recall that the optimal

modules can only be found using a prohibitively expensive exhaust-

ive enumeration of all size-k modules. Building on these observa-

tions, we propose the algorithm to identify a maximally significant

module of size k, which solves Task 3.1 in the CPE regime:

1. Start with an empty module M0 ¼ fg.
2. Compute concentration significance (Equation (5)) for all

candidates.

3. Rank the candidates according to their respective pCPE values.

4. Add the candidate i with the highest rank (i.e. lowest pCPE value)

to the current Medusa module, Mr !Mrþ1 ¼Mr [ fig, and to

the set of pivot objects, Sr ! Srþ1 ¼ Sr [ fig:
5. Repeat steps 2–4 k-times with the expanded set of pivot objects.

The order in which the candidates are pulled into the module re-

flects their relevance to the pivot objects according to semantic C:

Figure 4 is an example for finding a size-3 gene module based on a

Genes Diseases

Candidate gene Target profile diseasePivot disease

C

P

GO C
EGO

GO C D DS
M G C

C G GO E

Molecular signaturesExposure events

Gene Ontology termsChemicals

Pathways

Disease symptomsC

P

GO

E

DS

M

G

D
Genes

Diseases

Inference by Medusa

Fig. 3. The CPI regime in Medusa. In the CPI regime, Medusa detects a rele-

vant module of candidate objects based on a set of pivot objects, which be-

long to a different object type than the candidates. For example, given three

diseases (pivots, black squares), we want to find potentially relevant genes

(candidates, white circles), a task denoted with a dashed line. The figure

shows six distinct semantics (solid lines) that exist in the fusion graph in

Figure 1, which Medusa can choose or combine to identify the relevant mod-

ule. For example, highlighted is an aspect that connects genes with diseases

via chemicals (‘C’), pathways (‘P’), genes (‘G’), Gene Ontology terms (‘GO’)

and exposure events (‘E’)
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semantic that relates genes to disease symptoms via GO terms, ex-

posure events and diseases.

3.4.2 Medusa in the CPI regime

So far, we have seen that in the CPE regime, candidates and pivots

are given by the rows of matrix C. However, in the CPI regime this

is not true anymore. Here, pivots correspond to columns of matrix

C; whereas candidates are still given by rows of matrix C: To adjust

for this change, we assess a candidate’s significance by its visibility,

which we define next.

DEFINITION 6: Candidate visibility: Given a semantic C; pivots S0

and a candidate i, we define the visibility of candidate i as:

hCPIðc; S0Þ ¼ Bin
�X

j

CjS0
1; c
�
�

Bin
�X

l;j

Clj �
X

j

CjS0
1;Ci1� c

�
�

1=Bin
�X

l;j

Clj;Ci1
�
:

(6)

The notation follows that in Equation (4).

Intuitively, the visibility of a candidate is the strength of its con-

nections with the pivots. We evaluate whether candidate i has stron-

ger connections to the pivots than expected under this null

hypothesis by calculating the cumulative probability for observed or

any stronger visibility:

pCPIði; S0Þ¢

ðm

~ci

hCPIðc; S0Þdc (7)

where ~ci ¼ CiQi
1 and m is the number of columns in C: A better can-

didate will have a lower pCPI value.

Similarly as for the CPE regime, the use of cumulative probabil-

ity pCPI leads to a submodular optimization program, which has

the same appealing properties as the cumulative probability pCPE

in Section 3.4.1. Building on the theory of submodular functions,

we tackle Task 3.1 in the CPI regime by proposing the following

greedy algorithm to identify a maximally significant module of

size k:

1. Start with an empty module M0 ¼ fg.
2. Compute visibility significance (Equation (7)) for all candidates.

Visibility of candidate i naturally decreases in iteration r accord-

ing to ~ci ¼ ð1�
Pr

t¼1 btexpð�KLðCi;Cxt�1
ÞÞÞCiS0

1; where KL

denotes the Kullback–Leibler divergence, Cxt�1
is matrix row of

the candidate selected in iteration t � 1 and b is a user-defined

parameter promoting diverse modules.

3. Rank the candidates according to their respective pCPI values.

4. Add the candidate i with the highest rank (i.e. lowest pCPI value)

to the current Medusa module, Mr !Mrþ1 ¼Mr [ fig.
5. Repeat steps 2–4 k-times, bringing in one candidate object at a

time into the growing module.

Figure 5 shows a toy example for finding a size-3 gene module

based on a semantic that relates genes with diseases via chemicals,

pathways, genes, GO terms and exposure events.

3.5 Combining chains carrying different semantics
So far, we have described the Medusa algorithm that operates on

one particular semantic given by a single matrix C. To be able to

combine d different semantics, given by a set of chained matrices

Cð1Þ; Cð2Þ; . . . ;CðdÞ, we employ the following technique.

In the r-th iteration of Medusa, we independently score the can-

didates according to Equation (5) (in the case of the CPE regime) or

Genes

Disease symptoms

Candidate disease gene Target profile symptomPivot disease genes

9.5
8.8
8.9

11.6
8.3
9.7

8.8
11.3
11.6
10.6
11.0
9.8

10.0
10.6
10.9
11.3
10.3
10.0

10.4
11.6
11.8
8.8

11.5
10.9

Iteration 1

Nsource = 7
Ntarget = 4
s0 = [g1,g2,g4]

3-MEDUSA = [g5]
α = 0.5

Iteration 2

Nsource = 7
Ntarget = 4
s1 = [g1,g2,g4,g5]

3-MEDUSA = [g5,g0]
α = 0.5

Iteration 3

Nsource = 7
Ntarget = 4
s2 = [g1,g2,g4,g5,g0]

3-MEDUSA = [g5,g0,g6]
α = 0.5

Chain: GO E DG DS

Disease symptoms Disease symptoms

Detected disease gene

2.80 x 10-3

9.94 x 10-3

1.72 x 10-3

8.18 x 10-4

4.14 x 10-3

1.20 x 10-3
6.29 x 10-3

10.2 9.6 8.4 10.5

9.5
8.8
8.9

11.6
8.3
9.7

8.8
11.3
11.6
10.6
11.0
9.8
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10.6
10.9
11.3
10.3
10.0

10.4
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11.8
8.8

11.5
10.9

10.2 9.6 8.4 10.5

9.5
8.8
8.9

11.6
8.3
9.7

8.8
11.3
11.6
10.6
11.0
9.8

10.0
10.6
10.9
11.3
10.3
10.0

10.4
11.6
11.8
8.8

11.5
10.9

10.2 9.6 8.4 10.5
2.29 x 10-3

2.38 x 10-3

Genes Genes

Fig. 4. Inferring a three-maximally significant distant module with Medusa in

the CPE regime. Shown is a toy example of a chain that relates seven genes

in rows to four disease symptoms in columns via GO terms, exposure data

and diseases (see the highlighted chain in Fig. 2). Given the three pivot genes

shown as black circles, we would like to identify the most significant size-3

gene module. Notice that we operate in the CPE regime where both pivot and

candidate objects are of the same type (i.e. genes). In the first iteration, candi-

date g5 achieves the lowest score (i.e. pCPE ¼ 1:72� 10�3) and is thus added

to the module and included into the pivot set. However, the importance of g5

as a pivot object is downweighted according to the a ¼ 0:5. Notice also that

candidate g3 has a predominantly reversed concentration relative to the pivot

genes g1;g2;g4 in the first iteration, which results in the poor score of g3 (i.e.

pCPE ¼ 9:94� 10�3). In particular, candidate g3 is concentrated on symptoms

d0 and d2, whereas pivot genes are concentrated on d1 and d3. The score for

g3 improves in later iterations when the Medusa module becomes more di-

verse. The final module is M3 ¼ fg5;g0;g6g:

GenesGenesGenes

Diseases

Candidate gene Target profile diseasePivot disease

1.0
1.0
1.0
1.0
.57
.19

.56
1.0
.26
.56
.57
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1.0
1.0
1.0
1.0
.52
.86

1.0
1.0
1.0
1.0
.61
.90

.59
1.0
.37
.59
.13
.23

Iteration 1

Nsource = 6
Ntarget = 5
s0 = [d0,d2,d3]

3-MEDUSA = [g2]
ß = 0.05

Diseases
Iteration 2

Nsource = 6
Ntarget = 5
s1 = [d0,d2,d3]

3-MEDUSA = [g2,g5]
ß = 0.05

Diseases
Iteration 3

Nsource = 6
Ntarget = 5
s0 = [d0,d2,d3]

3-MEDUSA = [g2,g5,g0]
ß = 0.05

Chain: PC G GO EG D

0.46 x 10-1

0.25 x 10-1

Detected gene

1.0
1.0
1.0
1.0
.57
.19

.56
1.0
.26
.56
.57
.44

1.0
1.0
1.0
1.0
.52
.86

1.0
1.0
1.0
1.0
.61
.90

.59
1.0
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.59
.13
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1.0
1.0
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.52
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0.68 x 10-1

0.46 x 10-1

0.48 x 10-1

0.41 x 10-1

0.53 x 10-1

0.72 x 10-1

0.53 x 10-1

0.55 x 10-1

0.72 x 10-1

0.52 x 10-1

0.54 x 10-1

0.47 x 10-1

0.52 x 10-1

Fig. 5. Inferring a three-maximally significant distant module with Medusa in

the CPI regime. Shown is an example of a chain that relates six genes to five

diseases via chemicals, pathways, genes, GO terms and exposure data (see

the highlighted chain in Fig. 3). In this toy example, we are given three pivot

diseases shown in black squares and would like to find a three-maximally sig-

nificant gene module. Notice that we operate in the CPI data regime because

the pivots (i.e. diseases) are of different type than the candidates (i.e. genes).

In the first iteration, gene g2 shows the most significant visibility for the pivot

diseases (i.e. pCPI ¼ 0:25� 10�1) and is thus included into the module. Gene

g1 does not discriminate between the pivot and non-pivot diseases and is

hence considered an unlikely candidate (i.e. pCPI ¼ 0:68� 10�1 in the first iter-

ation and pCPI ¼ 0:72� 10�1 in later iterations). In second iteration, the algo-

rithm picks g5, although one might expect that g1 would be selected due to its

distinctive connections to the pivot disease. This is because Medusa detects

modules that are not only highly visible to the pivot objects but are also di-

verse, which is important when trying to identify non-redundant comprehen-

sive modules. Such behavior of Medusa is regulated by parameter b, which

promotes diverse modules in this example, b ¼ 0:05. The final module is

M3 ¼ fg2;g5;g0g
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Equation (7) (in the case of the CPI regime) for all matrices Cð1Þ;

Cð2Þ; . . . ;CðdÞ: We then combine candidate scores from different se-

mantics into one score per candidate by an affine combination of se-

mantics’ weights.

In the CPE regime, this is done such that the semantics which

rank the pivots higher are assigned larger weights than those in

which the pivots are ranked lower. Intuitively, this means that se-

mantics that are more informative for the given set of pivots contrib-

ute more towards the final candidate score.

In the CPI regime, the combination of semantics is done such

that the semantics in which the pivots have more similar profiles

measured by the KL divergence are assigned larger weights than

those in which the pivots have more heterogeneous data profiles.

Detailed steps are provided within the online implementation of

Medusa.

Once the aggregated candidate scores are calculated, Medusa

uses algorithms from Sections 3.4.1 and 3.4.2 to detect the modules.

4 Experimental setup

4.1 Datasets in the data fusion graph
In our experiments, we consider a collection of datasets shown in

Figure 1. Table 1 lists public sources from which data were obtained

to build 16 data matrices.

GO (Ashburner et al., 2000) annotations were downloaded from

http://geneontology.org in December 2015 containing 481 685

human gene product annotations. UniProt protein accession identi-

fiers were collapsed to human NCBI’s Entrez gene identifiers using

the mapping provided by the HUGO Gene Nomenclature

Committee resource (Gray et al., 2015). Curated human protein–

protein interactions were retrieved from the BioGRID 3.4.131 data-

base (Chatr-Aryamontri et al., 2014). The recourse contained inter-

actions for 19 702 genes. Data on clinical manifestation of diseases

were obtained from the human symptoms–disease network (HSDN;

Zhou et al., 2014; Suppl. data S4) and included 147 978 relation-

ships between symptoms and diseases. Term co-occurrences between

symptoms (MeSH Symptom terms) and diseases (MeSH Disease

terms) were weighted by the TF-IDF values.

We also compiled gene sets from the Molecular Signatures

Database (MSigDB; Subramanian et al., 2005) in December 2015:

326 positional gene sets (MSig-C1) corresponding to each human

chromosome and each cytogenetic bands; 3395 curated gene sets

(MSig-C2) representing expression signatures of genetic and molecu-

lar perturbations; 1330 gene sets (MSig-C2) corresponding to ca-

nonical representations of biological processes from the pathway

databases; 186 gene sets (MSig-C2) derived from the KEGG data-

base; 221 motif gene sets (MSig-C3) with genes sharing microRNA

binding motifs; and 615 gene sets (MSig-C3) with genes sharing

transcription factor binding sites. Curated chemical–gene inter-

actions (R1;3), chemical–pathway interactions (R3;4), gene–pathway

associations (R1;4), chemical–function associations (R5;3), chemical–

disease (R3;2), function–exposure events (R5;6), exposure event–dis-

ease relationships (R2;6) and gene–disease relationships were

retrieved from the Comparative Toxicogenomics Database (CTD;

Davis et al., 2015) in December 2015.

Each dataset was represented with a real-valued data matrix as

indicated in Table 1. Prior to the analysis, all matrices were inde-

pendently column–row normalized according to the second vector

norm.

4.2 Disease modules and gene–disease associations
The corpus of 310 diseases was downloaded from the CTD (Davis

et al., 2015) with the criteria that every disease should have at least

10 and at most 100 curated gene associations for which direct evi-

dence is available in the CTD database. These diseases and their

associated genes constituted our ground-truth information against

which we evaluated disease module detection and gene–disease asso-

ciation prediction. On average, each disease had 28 associated

genes.

To ensure there was no leakage of information from training to

test set in our integrative analysis, we used the following protocol.

From our data system we excluded datasets that directly or indir-

ectly rely on disease–gene associations (dotted lines in Fig. 1). For

example, we skipped the pathway-to-disease dataset (a hypothetical

data matrix R4;2 in Fig. 1) because a particular pathway would only

be linked to a particular disease if there was a disease-associated

gene in this pathway. Another example of an excluded dataset is

the GO term-to-disease dataset (a hypothetical data matrix R5;2 in

Fig. 1). Here, a given term and a given disease would be linked only

if there existed a gene that was both annotated with the term in the

GO and associated with the disease.

This protocol enabled us to construct a data system for perform-

ance evaluation of various methods that was not contaminated by

existing gene–disease associations. For example, dataset R3;2 in

Figure 1 contained curated chemical–disease associations that were

extracted from the published literature by the CTD curators (Davis

et al., 2015). However, this dataset omitted inferred chemical–dis-

ease associations from our training data, which associated chemicals

and diseases through shared gene interactions.

4.3 Performance evaluation
We evaluated prediction accuracy using a disease-centric cross-

validation procedure. (i) Prediction of gene–disease associations was

evaluated as follows. For a particular disease in our corpus of 310

diseases, we conducted a leave-one-gene-out cross-validation to

Table 1. Datasets used for the analyses presented in this article

Matrix Reference Size Matrix Reference Size

R1;5 Ashburner (2000) 19 828� 19 951 R5;6 Davis (2015) 19 951� 565

R1;3 Davis (2015) 19 828� 12 614 R1;8 Subramanian (2005) 19 828� 326

R1;4 Davis (2015) 19 828� 291 R1;9 Subramanian (2005) 19 828� 3; 395

R2;6 Davis (2015) 9350� 565 R1;10 Subramanian (2005) 19 828� 186

R2;7 Zhou (2014) 9350� 321 R1;11 Subramanian (2005) 19 828� 1; 330

R3;2 Davis (2015) 12 614� 9350 R1;12 Subramanian (2005) 19 828� 221

R3;4 Davis (2015) 12 614� 291 R1;13 Subramanian (2005) 19 828� 615

R5;3 Davis (2015) 19 951� 12 614 H1 Chatr-Aryamontri (2014) 19 828� 19 828
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obtain an estimated score for the left-out gene. The remaining (train-

ing) genes were considered positive instances and were used to select

and fit the model parameters. (ii) Detection of disease modules was

evaluated using the procedure from Ghiassian et al. (2015). For each

disease module, we randomly removed a certain fraction (25%,

50% and 75%) of the disease genes and used the remaining genes as

pivots.

For Medusa, we need to specify the parameters required by col-

lective matrix factorization, the value for a, the size of Q (in the case

of the CPE regime) and the value for b (in the case of the CPI re-

gime). We tuned a, b and the size of Q in an internal cross-

validation procedure on the training genes. Factorization ranks for

collective matrix factorization were selected using a procedure simi-

lar to the one described in Zitnik et al. (2015); 13 values were

required, each representing latent dimension of one object type in

our fusion graph. We selected these dimensions through a single par-

ameter p, which specified latent dimension for an object type as a

fraction of the number of objects of that type: kI ¼ pnI: The value

p¼0.05 was used in the experiments because it maximized the

mean areas under precision-recall curves (AUPRC) achieved on a set

of 10 diseases from the CTD, which were later not considered for

performance comparison. The selection of parameters for other

approaches was made based on internal cross-validation.

We measured accuracy using the AUPRC and the area under the

receiver operating characteristic curve (AUROC).

5 Results and discussion

5.1 Capturing biological semantics with Medusa
First, our goal was to investigate the effects of different biological se-

mantic aspects on the prediction of gene–disease associations. We

used Medusa to estimate disease genes for 310 diseases included in

the CTD database (Section 4.1). We considered eight distinct seman-

tic aspects denoted as C1–C8 (Fig. 6, left). For example, chain C6

corresponds to a matrix that relates genes to diseases via GO terms

and exposure events (see Definition 2).

Medusa detects significant modules of a specified size k. To

apply it to the prediction of gene–disease associations, we search for

size-1 modules and use probability estimates returned by the algo-

rithm (Equation (5)) to make predictions.

Figure 6 shows the performance of Medusa in terms of AUROC

and AUPRC. In addition to the eight distinct semantics, we also ana-

lyzed the performance of Medusa in its mode, which combines dif-

ferent semantic aspects, denoted as CA in the figure (Section 3.5).

We further studied how prediction accuracy varies across classes of

diseases, which were identified using Disease Ontology (Kibbe et al.,

2014). A cutoff at level 2 of the Disease Ontology graph revealed 25

disease classes (Fig. 6), such as ‘cognitive disorders’ and ‘gastrointes-

tinal diseases’.

We observed substantial variation of AUROC and AUPRC val-

ues across different semantic aspects (i.e. chains). In terms of the

AUROC, the best single semantic appeared to be C1, which was fol-

lowed closely by C3 and C5. In addition to genes, chemicals were

the common object type considered for construction of these three

chains. These results are important because they demonstrate that

different ways of establishing connections between genes and dis-

eases can result in more or less accurate predictions. The results also

suggest that objects of different types and links carry different se-

mantic meanings, and it might not make sense to mix them without

distinguishing their semantics when associating genes with diseases.

This experiment also alludes to the explanatory value of Medusa.

Medusa is able to provide insights into the utility of different seman-

tics, a capability, which most present models for co-factorization of

multiple matrices do not have.

While a user might explicitly specify a semantic that he would

like to consider in a concrete application, Medusa can also make

predictions that are consistent with multiple chains. In particular,

combining semantics C1–C8 in Figure 6 yielded the most accurate

predictions overall. However, prediction accuracy in Figure 6 varies

greatly by disease and we explore this issue next.

5.2 Detecting disease modules with Medusa
We analyzed the extent to which Medusa could recover the full dis-

ease module if we removed a certain fraction of disease associated

genes. Recall that a disease module is given by the set of genes asso-

ciated with that disease in the CTD (Davis et al., 2015). For a given

disease, Medusa used 50% of the disease genes as pivots and

GO

G C D DS

G C

G P CM G

G GO C D DS

G GO C

G GO E D

G GO E

G

All chains

C1

C2

C3

C4

C5

C6

C7

C8

CA

Fig. 6. Gene–disease association prediction with Medusa. Nine different biological semantics (C1–C8, CA) were considered in the analysis. Each semantic is

shown as a sequence of object types contained in the fusion graph (Fig. 1). For example, in the ‘C4’ semantic, Medusa estimated gene–disease associations

based on the latent chain that related genes (‘G’) with disease symptoms (‘DS’) via Gene Ontology terms (‘GO’), chemicals (‘C’), diseases (‘D’) and disease

symptoms (‘DS’). For each distinct biological semantic we report the AUROC and AUPRC values aggregated over 310 complex diseases. For visualization pur-

poses, diseases were partitioned into 25 disease classes based on Disease Ontology (Kibbe et al., 2014), such as ‘reproductive system diseases’ and ‘muscu-

loskeletal system diseases’, and the points representing accuracy scores of each individual disease are colored according to corresponding disease classes.

Notice the substantial variation of performance across different semantics. Generally, Medusa achieved the highest accuracy when combining semantics

from C1–C8 (i.e. CA, last row).
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detected a size-k module, where k was set to the size of the full dis-

ease module. Notice that Medusa pulls in one gene at a time into the

growing module and given the inferred latent model, the running

time of the module detection increases linearly with the desired

module size k. Figure 7 shows the fraction of held-out disease genes

(recall) that were found in Medusa modules. Higher values indicate

better performance.

We found that the highest rate of true positives was achieved in

the early iterations of the Medusa algorithm, i.e. when the number

of executed iterations was less than the size of the full module. This

is an important observation because it indicates that the highest

ranked genes are most likely to be part of the disease module.

The results in Figure 7 further show that the estimated recovery

rates varied across different semantic aspects as can be seen by com-

paring rows in the heat map. Typically, the best performance was

observed when Medusa was used to detect modules based on joint

analysis of all semantics (see CA in Fig. 7).

It is interesting to examine which classes of diseases display

higher recovery rates than others and how the rates compare to

each other. The dendrogram in Figure 7 shows that ‘monogenic

diseases’ exhibited a distinct recovery pattern. For example, mod-

ules corresponding to monogenic disorders according to Disease

Ontology (Kibbe et al., 2014) were best recovered using the chain

C7, whereas other disease classes (with the exception of cognitive

disorders) were best detected when Medusa was used in the CA set-

ting. We also observed that related disease classes displayed similar

patterns of recovery rates across different semantics. For example,

immune system diseases and viral infectious diseases are placed

closely together in the dendrogram, as well as acquired metabolic

diseases and diseases of the gastrointestinal system. It is known

that diseases from similar disease classes are more likely to be asso-

ciated with sets of genes that overlap (Barab�asi et al., 2011). The

similar recall patterns from related disease classes thus suggest that

the Medusa outcome is robust with respect to variations in the set

of pivot genes.

5.3 Comparing Medusa with existing methods
So far we have studied the utility of Medusa to take into consider-

ation distinct semantics that exist in heterogeneous biological data

when predicting gene–disease associations and detecting disease

modules. We proceed by examining how Medusa performs relative

to several other approaches for mining gene–disease associations.

First, we compare Medusa with meta-path based approaches

(Section 2). These approaches have just recently been tested on pre-

diction problems in biology for the first time (Himmelstein and

Baranzini, 2015) and have shown promising performance for priori-

tizing genetic associations from genome-wide association studies.

Meta-paths (Sun et al., 2011b) are sequences of object types. They

are used to represent complex relationships between objects beyond

what links in a homogeneous network capture. For example, given a

meta-path that corresponds to the chain C6: Genes! GO terms!
Exposure events ! Diseases (Fig. 6, left), a meta-path-based ap-

proach in its simplest form relates a particular candidate gene with a

particular pivot disease by counting the number of paths in a hetero-

geneous network between a candidate and pivot node. These counts

then serve to derive features. Each feature represents one meta-path

originating in a given candidate gene and terminating in a given

pivot disease and quantifies the prevalence of that meta-path be-

tween any gene–disease pair. To describe different aspects of con-

nectivity, we computed eight features based on chains C1–C8 (Fig.

6, left) and then used a rank-correlation metric or a sophisticated

PathSim meta-path-based metric (Sun et al., 2011b; Wan et al.,

2015) to score gene–disease associations. The results in Table 2

show that Medusa compares favorably to both meta-path models in

terms of AUROC and AUPRC values. It is important to understand

the subtlety: Medusa relates candidate genes to diseases by deriving

new connections between them based on matrices estimated by a

collective latent factor model. This highlights Medusa’s advantage

of taking into consideration projections of data into the latent space,

which potentially give more informative connections than the rather

crude meta-path count metrics. Furthermore, Medusa’s technique to

estimate associations considers the significance of derived

Table 2. Cross-validated performance for predicting gene–disease

associations using a heterogeneous data system shown in

Figure 1.

Approach AUPRC AUROC

Data model Prediction

model

Meta-path model Correlation 0.339 6 0.17 0.599 6 0.07

Meta-path model PathSim 0.587 60.18 0.754 60.13

Heterogeneous network Random walk 0.566 60.14 0.772 60.11

Collective latent model Correlation 0.483 60.23 0.605 60.09

Collective latent model Random walk 0.535 60.17 0.762 60.16

Medusa* 0.617 60.21 0.831 60.14

Higher values indicate better performance. Reported are averaged values

over 310 diseases and the maximum of the upper/lower quartile distances.

*The analysis combined eight distinct biological semantics (C1–C8) shown

in Figure 6.
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Fig. 7. Disease module detection with Medusa. We considered nine different

semantic meanings (C1–C8, CA; rows in the heat map) listed in Figure 6.

Reported is the recovery rate when 50% of genes from known disease mod-

ules were left out. The recall values were calculated for 310 diseases in our

corpus and then average aggregated into 25 groups based on a categoriza-

tion of diseases in the Disease Ontology (Kibbe et al., 2014; columns in the

heat map). The dendrogram reveals that recovery rates of disease modules

from related disease classes are similar.
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connections under a particular null hypothesis, whereas alternative

methods rely on similarity scoring.

Second, we applied a random walk algorithm (Li and Patra, 2010)

to the heterogeneous network whose schema is shown in Figure 1. It

is known that random walk approaches are often the best performing

methods for associating genes with diseases (Navlakha and

Kingsford, 2010). We found that the random walk approach has per-

formance comparable to the meta-path-based approach that used the

PathSim metric (Table 2). However, in the majority of the diseases,

Medusa achieved higher cross-validated accuracy.

Finally, we also considered two simplified variants of Medusa

(Table 2, third block). To measure the effect of Medusa’s submodular

optimization program, we ran Medusa against variations, which asso-

ciated genes to diseases based on: (i) the rank-correlation between

candidate gene profile and disease gene profiles in a materialized

chained matrix or (ii) the gene–disease score returned by the random

walk approach. Medusa offered an overall improvement of 37% over

the correlation-based variant and a 10% improvement over the ran-

dom walk approach as measured by the AUROC. The results suggest

that both key ingredients of Medusa, the collective latent model and

the submodular program, are important for its good performance.

6 Conclusion

We here presented a novel and practical approach to infer connec-

tions between objects that are either close to each other or far away

from each other in heterogeneous biological data domains. We

introduced Medusa, a module detection algorithm that, given a set

of pivot objects, finds a size-k module of candidate objects that are

jointly relevant to the pivots. Importantly, this module achieves sig-

nificance that is provably close to the maximum significance that

could be achieved by any size-k set of the candidates. Our experi-

ments reveal the versatility of Medusa to accurately detect disease

modules and predict gene–disease associations by either flexibly

choosing or combining different semantic meanings. The distinct

property of Medusa to distinguish diverse semantics enabled

Medusa to compare favorably against several alternative methods.

These findings put Medusa on the path towards a biomedical data

fusion search engine.
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