
Appendix A Further Details on Notation

Table 4: The notation used in the paper.
Notation Description

G, G A set of graphs, graph G 2 G
V, E ,X A set of nodes, edges, and feature matrix for graph G
Y, Y, Y An entire set of labels, a label set for a task, and label Y 2 Y
S, S A set of subgraphs, subgraph S 2 S
u, v Nodes u and v
i, j Prediction tasks i and j
f✓ GNN model f parameterized by ✓

D, Dtrain, Dval, Dtest An entire meta-set, meta-training set, meta-validation set, and meta-test set
Ti, T support

i , T query
i Task i, support set, and query set for task i

N, M Number of graphs and labels
N, Ksupport, Kquery N-way, Ksupport-shot prediction for support set and Kquery-shot for query set

⌘ Number of steps in the inner-loop (see Algorithm 1)
Lsupport, Lquery Support loss and query-set loss
H A matrix of centroid embeddings
C A matrix of prototype embeddings
p A class probability distribution vector
ysupport,yquery Support and query set label vector
↵, � Learning rate of inner and outer loop update (see Algorithm 1)

Appendix B Further Details on the Applicability of Methods for Meta
Learning on Graphs

Table 5: A comparison of notable existing methods in the context of different graph meta-learning prob-
lems. We see G-META is able to tackle all problems whereas existing methods cannot.

Graph Meta- Single graph Single graph Multiple graphs Multiple graphs
Learning Problem Shared labels Disjoint labels Shared labels Disjoint labels

GNN, e.g., [20, 52, 50] " 7 7 7

Meta-GNN [61] 7 " 7 7

Meta-Graph [3] 7 7 " 7

G-META (Ours) " " " "

Appendix C Assumptions and Proof of Theorem 1

C.1 Assumptions

We use a popular GCN model [20] as the exemplar GNN model. The l-th layer GCN propagation
rule is defined as: H(l+1) = �(ÂH

(l)
W

(l)), where H
(l),W(l) are node embedding and parameter

weight matrices at layer l, respectively, and Â = D
�1

A is the normalized adjacency matrix.
Following [46], throughout these derivations, we assume that � is an identity function and that W an
identity matrix.

C.2 Definitions and Notation

Definition (Node Influence): Node influence Iu,v of v on u in the final GNN output is: Iu,v =

k@x(1)
u /@x(1)

v k, where the norm is any subordinate norm and the Jacobian measures how a change
in v translates to a change in u [46].

14

Definition (Graph Influence): Graph influence IG on u is: IG(u) = k[Iu,v1 , . . . , Iu,vn]k1, where
[Iu,v1 , . . . , Iu,vn] is a vector representing the influence of other nodes on u.

The graph influence of graph G on node u is: IG(u) =
P

i2V Iu,vi . Similarly, the influence of a
h-hop neighborhood subgraph Su on node u is: ISu(u) =

P
i2Vu Iu,vi where Vu contains nodes

that are at most h hops away from node u, i.e., {ix|d(ix, u)  h}.

Definition (Graph Influence Loss): Graph influence loss Rh is defined as: Rh(u) = IG(u) �
ISu(u), where IG(u) is the influence of entire graph G and ISu(u) is the influence of subgraph Su.

Notationally, we denote m paths between node u and v as: p1, ..., pm. We use px
i , px

j , ..., px
nv

to
represent nodes occurring on path px and use nv to denote the length of the path.

C.3 Theorem and Proof

Theorem 1 (Decaying Property of Node Influence). Let t be a path between node u and node v
and let Dt

GM be a geometric mean of node degrees occurring on path t. Let Dt⇤
GM = mint{Dt

GM}
and h⇤ = d(u, v). Consider the node influence Iu,v from v to u. Then, Iu,v  C/(Dt⇤

GM)h⇤ .

Proof. Using the GCN propagation rule, we see that node u’s output is defined as:

x
(1)
u =

1

Duu

X

i2N (u)

auix
(1)
i ,

where aui is the edge weight between node u and node i. In our datasets and many other real-world
graphs, all edges have the same weight 1.

By an expansion of nodes in the neighbor N (u), we have:

x
(1)
u =

1

Duu

X

i2N (u)

aui
1

Dii

X

j2N (i)

aijx
(1)
j .

In the same logic, it can be further expanded as:

x
(1)
u =

1

Duu

X

i2N (u)

aui
1

Dii

X

j2N (i)

aij · · · 1

Dmm

X

o2N (m)

amox
(1)
o . (1)

The node influence Iu,v = k@x(1)
u

@x(1)
v
k can then be computed via:

k@x
(1)
u

@x(1)
v

k = k @

@x(1)
v

0

@ 1

Duu

X

i2N (u)

aui
1

Dii

X

j2N (i)

aij · · · 1

Dmm

X

o2N (m)

amox
(1)
o

1

A k [1]

= k @

@x(1)
v

1

Duu
a(up1

i)
1

Dp1
i p1

i

a(p1
i p1

j)
· · · 1

Dp1
n1

p1
n1

a(p1
n1

v)x
(1)
v

!

+ · · · +

1

Duu
a(upm

i)
1

Dpm
i pm

i

a(pm
i pm

j) · · · 1

Dpm
nm

pm
nm

a(pm
nm

v)x
(1)
v

!!
k [2]

= k@x
(1)
v

@x(1)
v

k · |

1

Duu
a(up1

i)
1

Dp1
i p1

j

a(p1
i p1

j)
· · · 1

Dp1
n1

p1
n1

a(p1
n1

v)

!

+ · · · +

1

Duu
a(upm

i)
1

Dpm
i pm

i

a(pm
i pm

j) · · · 1

Dpm
nm

pm
nm

a(pm
nm

v)

!
| [3]

= |

1

DuuDp1
i p1

i
· · · Dp1

n1
p1
n1

a(up1
i)

a(p1
i p1

j)
· · · a(p1

n1
v)

!

15

+ · · · +

1

DuuDp1
i p1

j
· · · Dpm

nm
pm
nm

a(upm
i)a(pm

i pm
j) · · · a(pm

nm
v)

!
| [4]

 |m ⇤max

1

DuuDp1
i p1

i
· · · Dp1

n1
p1
n1

a(up1
i)

a(p1
i p1

j)
· · · a(p1

n1
v)

!

, · · ·,

1

DuuDp1
i p1

i
· · · Dpm

nm
pm
nm

a(upm
i)a(pm

i pm
j) · · · a(pm

nm
v)

!!
| [5]

= |m ⇤

1

DuuDpt⇤
i pt⇤

i
· · · Dpt⇤

n⇤pt⇤
n⇤

a(upt⇤
i)a(pt⇤

i pt⇤
j) · · · a(pt⇤

nmv)

!
| [6]

= |C ⇤

0

@ 1

n⇤

q
DuuDpt⇤

i pt⇤
i

· · · Dpt⇤
n⇤pt⇤

n⇤

1

A
n⇤

| [7]

= C/(Dt⇤
GM)n⇤ [8]

 C/(Dt⇤
GM)h⇤ . [9]

Explanations of the proof. (Line 1) Substitution of the term x
(1)
u via Equation 1. (Line 2) Since

we are calculating the gradient between two feature vectors x(1)
v and x

(1)
u , the partial derivative

on nodes that are not in the paths p1, ..., pm between node u and v becomes 0 and these nodes are
thus removed. Note that each term in line 2 is for one path between node u and v. This also means
that the feature influence can be decomposed into the sum of all paths feature influence. (Line
3) We separate the scalar terms and the derivative term within the matrix norm and then uses the
absolute homogeneous property (i.e.k↵Ak = |↵|kAk) of the matrix norm to convert them into
the matrix norm of Jacobian matrix times the absolute value of the scalar. (Line 4) We know the
Jacobian of the same vectors @x(1)

v

@x(1)
v

is the identity matrix I and we know for any subordinate norm

(kAk = supkxk=1{kAxk}), we have kIk = 1. Therefore, k@x(1)
v

@x(1)
v
k = 1. We also move the degree

and edge weight terms around to group each together for each path. (Line 5) Notice now the equation
becomes the sum of terms around paths between node u and v. We can identify the maximum of
these terms and it is smaller than the m times the maximum term. We denote the term with the
maximum value as the path pt⇤ . (Line 6) Clean the notations. (Line 7) We move all the constant as C
in the last line. Note that in all of our datasets and many real-world datasets, the network is usually
binary and the edge weight a are non-negative (in many cases a = 1), thus we remove the absolute
values. (Line 8) We rephrase the degree term into geometric mean format 1/DGM . (Line 9) h⇤ is the
shortest path and shorter than n⇤, thus the inequality. We then obtain the bound of the node influence.

Note that if we assume degree of nodes along paths are random, then the pt⇤ , which is the path that
has the smallest geometric mean of node degrees, is the shortest path from node u to v.

Appendix D Theorem 2 and its Proof

Theorem 2 (Local Subgraph Preservation Property). Let Su be a local subgraph for node u with
neighborhood size h. Let node v be defined as: v = argmaxw({Iu,w|w 2 V \ Vu}). Let t̄ be a
path between u and v and let Dt̄

GM be a geometric mean of node degrees occurring on path t̄. Let
Dt̄⇤

GM = mint̄{Dt̄
GM}. The following holds: Rh(u)  C/(Dt̄⇤

GM)h+1.

Proof.

Rh(u) = IG(u)� ISu(u) [1]

=

k@x

(1)
u

@x(1)
1

k+ · · · + k@x
(1)
u

@x(1)
n

k
!
�

k@x

(1)
u

@x(1)
i1

k+ · · · + k@x
(1)
u

@x(1)
im

k
!

[2]

16

= k @xu

@xt1

k+ k @xu

@xt2

k+ · · · + k @xu

@xtn�m

k [3]

 Ct1/(Dt1
GM)ht1 + · · · + Ctn�m/(Dtn�m

GM)htn�m [4]

 (n�m) ⇤ Ct̄⇤/(Dt̄⇤
GM)ht̄⇤ [5]

 (n�m) ⇤ Ct̄⇤/(Dt̄⇤
GM)h+1 [6]

= C/(Dt̄⇤
GM)h+1 [7]

Explanation of the proof. (Line 1) Definition of graph influence loss. (Line 2) Substitution of
definition. (Line 3) Subtract same node influence term from the subgraph and the entire network.
(Line 4) Use Theorem 1. (Line 5) They are smaller than (n�m) times the maximum term, which
is the node that has the highest node influence in the node set that is outside of the immediate
neighborhood of u. (Line 6) We know nodes in the outside of the immediate neighborhood of u is
more than h hops away from the node u, hence the path length ht⇤ between the maximum influence
node to the node u is larger than h. (Line 7) Move the constant term and we have the result.

Appendix E Algorithm Overview

We provide the pseudo-code for G-META in Algorithm 1.

Algorithm 1: G-META Algorithm. Steps in the algorithm correspond to steps in Figure 2.
Input: Graphs G = {G1, ..., GN}; Randomly initialized ✓ : [✓GNN].
S1, S2, ..., Sn = Subgraph(G) via step #1 // Local subgraph construction

{T } = {T1, T2, ..., Tm} ⇠ p(T) via step #1 // Meta-task construction

while not done do
{Ts} sample({T }) // Sample a batch of tasks

for Ti 2 {Ts} do
({S}support,ysupport) T support

i // Mini-batching support subgraphs

({S}query,yquery) T query
i // Mini-batching query subgraphs

✓0 = ✓
for j in 1, ..., ⌘ do // Update step j

Hsupport GNN✓j�1({S}support)centroid via step #2 and #3
C = 1

Nksupport

P
(Hsupport) via step #4 // Support prototypes

p = exp(�kHsupport�Ck)P
Yi

exp(�kHsupport�Ck) via step #5

Lsupport = L(p,ysupport) via step #5
✓j = ✓j�1 � ↵rLsupport via step #6 // Inner loop update

Hquery GNN✓j ({S}query)centroid via step #7 and #8
p = exp(�kHquery�Ck)P

Yi
exp(�kHquery�Ck) via step #9

Lij
query L(p,yquery) via step #9

end
end
✓ = ✓ � �r

P
i Liu

query via step #10 // Outer loop update

end

Appendix F Further Details on Datasets

We proceed by describing the construction and processing of synthetic as well as real-world datasets.
G-META implementation as well as all datasets and the relevant data loaders are available at https:
//github.com/mims-harvard/G-Meta.

17

https://github.com/mims-harvard/G-Meta
https://github.com/mims-harvard/G-Meta

F.1 Synthetic Datasets

We have two synthetic datasets where labels are depended on local structural roles. They are to show
G-META’s ability to capture local network structures. For the first synthetic dataset, we use the
graphs with planted structural equivalence from GraphWave [9]. We use a cycle basis network and
attach a distribution of shapes: House, Star, Diamond, Fan on the cycle basis. The label of each node
is the structural role in different shapes. Hence, the label reflects the local structural information. We
also add n random edges to add noise. For the single graph and disjoint label setting, we use 500
nodes for the cycle basis, and add 100 shapes for each type with 1,000 random edges. In the multiple
graph setting, we sample 10 graphs with varying distribution of number of shapes for each graph.
Each graph uses 50 nodes for the cycle basis, and add randomly generated [1-15] shapes for each
type with 100 random edges. There are 17 labels. To model local structural information under a more
realistic homophily network, we first construct a Barabási-Albert (BA) network with 200 nodes and
3 nodes are preferential attached based on the degrees. Then, we plant shapes to the BA network
by first sampling nodes and adding edges corresponding to the shapes. Then, to generate label, we
compute the Graphlet Distribution Vector [29] for each node, which characterizes the local network
structures and then we apply spectral clustering on this vector to generate the labels. There are 10
labels in total. For multiple graph setting, the same varying distribution of numbers of shapes as in
the cycle dataset are used to plant each BA network. See Figure 3 for a visual illustration of synthetic
datasets.

F.2 Real-world Datasets and Novel Graph Meta-Learning Datasets

We use three real world datasets for node classification and two real world datasets for link prediction
to evaluate G-META. (1) arXiv is a citation network from the entire Computer Science arXiv papers,
where features are title and abstract word embeddings, and labels are the subject areas [17]. (2)
Tissue-PPI is 24 protein-protein interaction networks from different tissues, where features are gene
signatures and labels are gene ontology functions [65, 15]. Each label is a binary protein function
classification task. We select the top 10 balanced tasks. (3) Fold-PPI is a novel dataset, which we
constructed for the multiple graph and disjoint label setting. It has 144 tissue networks [65], and the
labels are classified using protein structures defined in SCOP database [2]. We screen fold groups that
have more than 9 unique proteins across the networks. It results in 29 unique labels. The features are
conjoint triad protein descriptor [34]. In Fold-PPI, the majority of the nodes do not have associated
labels. Note that G-META operates on label scarce settings. (4) For link prediction, the first dataset
FirstMM-DB [26] is the standard 3D point cloud data, which consists of 41 graphs. (5) The second
link prediction dataset is the Tree-of-Life dataset. This is a new dataset, which we constructed based
on 1,840 protein interaction networks (PPIs), each originating from a different species [64]. Node
features are not provided, we use node degrees instead.

Appendix G Further Details on Hyperparameter Selection

We use random hyperparameter search over the following set of hyperparameters. For task numbers
in each batch, we use 4, 8, 16, 32, 64; for inner update learning rate, 1⇥10�2, 5⇥10�3, 1⇥10�3,
5⇥10�4; for outer update learning rate, 1⇥10�2, 5⇥10�3, 1⇥10�3, 5⇥10�4; for hidden dimension,
we select from 64, 128, and 256.

For arxiv-ogbn dataset, we set task numbers to 32, inner update learning rate to 1⇥10�2, outer update
learning rate to 1⇥10�3, and hidden dimensionality to 256. For Tissue-PPI dataset, we set task
numbers to 4, inner update learning rate to 1⇥10�2, outer update learning rate to 5⇥10�3, and hidden
dimensionality to 128. For Fold-PPI dataset, we set task numbers to 16, inner update learning rate to
5⇥10�3, outer update learning rate to 1⇥10�3, and hidden dimensionality to 128. For FirstMM-DB
dataset, we set task numbers to 8, inner update learning rate to 1⇥10�2, outer update learning rate to
5⇥10�4, and hidden dimensionality to 128. For Tree-of-Life dataset, we set task numbers to 8, inner
update learning rate to 5⇥10�3, outer update learning rate to 5⇥10�4 and hidden dimensionality to
256.

18

Appendix H Further Details on Baselines

We use nine baselines. (1) Meta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-GraphMeta-Graph [3] uses VGAE to do few-shot multi-graph link prediction. It
uses a graph signature function to capture the characteristics of a graph, which enables knowledge
transfer. Then, it applies MAML to learn across graphs. (2) Meta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNNMeta-GNN [61] applies MAML [12] to
Simple Graph Convolution(SGC) [50] on the single graph disjoint label problem. (3) Few-shot Graph
Isomorphism Network (FS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GINFS-GIN) [52] applies GIN on the entire graph and retrieve the few-shot nodes
to propagate loss and enable learning. Similarly, (4) Few-shot SGC (FS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGCFS-SGC) [50] switches GIN to
SGC for GNN encoder. Note that the previous four baselines only work in a few graph meta learning
problems. We also test on different meta-learning models, using the top performing ones in [40]. We
operate on subgraph level for them since it allows comparison in all graph meta-learning problems.
No-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-FinetuneNo-Finetune performs training on the support set and use the trained model to classify each query
example, using only meta-testing set, i.e.without access to the external graphs or labels to transfer.
KNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNNKNN [10, 40] first trains a GNN using all data in the meta-training set and it is used as an embedding
function. Then, during meta-testing, it uses the label of the voted K-closest example in the support
set for each query example. FinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetuneFinetune [40] uses the embedding function generated from meta-training
set and the models are then finetuned on the meta-testing set. ProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNetProtoNet [35] applies prototypical
learning on each subgraph embeddings, following the standard few-shot learning setups. MAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAMLMAML [12]
switches ProtoNet to MAML model as the meta-learner.

Appendix I Further Details on Performance Evaluation

All of our experiments are done on an Intel Xeon CPU 2.50GHz and using an NVIDIA K80 GPU.

For synthetic datasets disjoint label problems, we use a 2-way setup. In the shared label problem,
the cycle graph has 17 labels and the BA graph has 10 labels. The results use 5 gradient update
steps in meta-training and 10 gradient update steps in meta-testing. For real-world datasets node
classification uses 3-shots and link prediction uses 16-shots. For disjoint labels problems, we set it to
3-way classification task. The results use 20 gradient update steps in meta-training and 10 gradient
update steps in meta-testing. For Tissue-PPI, we use the average of ten 2-way protein function tasks
where each task is performed three times. For link prediction problem, to ensure the support and
query set are distinct in all meta-training tasks, we separate a fixed 30% of edges for support set and
70% of edges for query set as a preprocessing step for every graph.

Appendix J Parameter Studies

We select Fold-PPI from node classification and FirstMM-DB from link prediction to conduct the
parameter studies. We then conduct five runs on each setup and report the average performance
below. For varying the number of k, we experiment on k = 1, 3, 10 for Fold-PPI and k = 16, 32, 64
for FirstMM-DB. We find linear trend between k and predictive performance: for Fold-PPI, the
performance increases from 0.403 to 0.561 to 0.663; for FirstMM-DB, G-META increases from 0.758
to 0.784 to 0.795. Then, we vary the number of h-hops neighbor. We try h = 1, 2, 3. For Fold-PPI,
the performance is 0.399, 0.561 and 0.427. For FirstMM-DB, the result is 0.616, 0.784 and 0.837. It
seems that h = 1 has the worst performance but for h = 3, it depends on the dataset. For Fold-PPI,
h = 2 is significantly better than h = 3 but it is not the case for FirstMM-DB. Since h = 2 has pretty
close result with h = 3 in FirstMM-DB, we suggest to set h = 2 for stable performance.

Appendix K Further Results on Synthetic Datasets

Full version is reported in Table 6. The large standard deviation is because we sample only two-labels
for meta-testing in one data fold, due to the limit number of labels in synthetic datasets. If the shape
structural roles corresponding to the label set in the meta-testing set is structurally distinct from
all the meta-training label sets, the performance would be bad since there is no transferability for
meta-learner to learn. In our data splits, we find there is one fold that performs bad across all methods,
thus the reason for the large standard deviation. For real-world datasets, as the label set is large, we
sample more labels for meta-testing (e.g., five labels for 3-way classification where each meta-testing
task is of

�5
3

�
label sets) such that the result is averaged across different label sets. This makes the

standard deviation smaller. In both settings, the mean accuracy reflects the predictive performance.

19

Table 6: Further results on graph meta-learning performance for synthetic datasets. Five-fold average
multi-class classification accuracy on synthetic datasets for 1-shot node classification in various graph meta-
learning problem. N/A means the method does not work in this task setting. The disjoint label setting uses 2-way
setup and in the shared labels settings, cycle basis has 17 labels and BA has 10 labels. The results use 5-gradient
update steps in meta-training and 10-gradient update steps in meta-testing. See Figure 3 for a visual illustration
of synthetic datasets.

Graph Meta- Single graph Multiple graphs Multiple graphs
Learning Problem Disjoint labels Shared labels Disjoint labels
Prediction Task Node Node Node
Base graph Cycle BA Cycle BA Cycle BA
G-META (Ours) 0.872±0.129 0.867±0.147 0.542±0.045 0.734±0.038 0.767±0.178 0.867±0.209
Meta-Graph N/A N/A N/A N/A N/A N/A
Meta-GNN 0.720±0.218 0.694±0.112 N/A N/A N/A N/A
FS-GIN 0.684±0.144 0.749±0.106 N/A N/A N/A N/A
FS-SGC 0.574±0.092 0.715±0.100 N/A N/A N/A N/A
KNN 0.918±0.063 0.804±0.193 0.343±0.038 0.710±0.027 0.753±0.150 0.769±0.199
No-Finetune 0.509±0.011 0.567±0.105 0.059±0.001 0.265±0.141 0.592±0.105 0.577±0.104
Finetune 0.679±0.043 0.671±0.055 0.385±0.089 0.517±0.160 0.599±0.085 0.629±0.055
ProtoNet 0.821±0.197 0.858±0.144 0.282±0.045 0.657±0.034 0.749±0.182 0.866±0.212
MAML 0.842±0.207 0.848±0.212 0.511±0.050 0.726±0.023 0.653±0.093 0.844±0.202

20

