
MATRIX FACTORIZATION-BASED DATA FUSION FOR GENE
FUNCTION PREDICTION IN BAKER’S YEAST AND SLIME MOLD

MARINKA ŽITNIK

Faculty of Computer and Information Science, University of Ljubljana,
Tržaška 25, SI-1000, Slovenia

E-mail: marinka.zitnik@fri.uni-lj.si

BLAŽ ZUPAN

Faculty of Computer and Information Science, University of Ljubljana,
Tržaška 25, SI-1000, Slovenia

Department of Molecular and Human Genetics, Baylor College of Medicine,
Houston, TX-77030, USA

E-mail: blaz.zupan@fri.uni-lj.si

The development of effective methods for the characterization of gene functions that are able to com-
bine diverse data sources in a sound and easily-extendible way is an important goal in computational
biology. We have previously developed a general matrix factorization-based data fusion approach for
gene function prediction. In this manuscript, we show that this data fusion approach can be ap-
plied to gene function prediction and that it can fuse various heterogeneous data sources, such as
gene expression profiles, known protein annotations, interaction and literature data. The fusion is
achieved by simultaneous matrix tri-factorization that shares matrix factors between sources. We
demonstrate the effectiveness of the approach by evaluating its performance on predicting ontological
annotations in slime mold D. discoideum and on recognizing proteins of baker’s yeast S. cerevisiae
that participate in the ribosome or are located in the cell membrane. Our approach achieves predic-
tive performance comparable to that of the state-of-the-art kernel-based data fusion, but requires
fewer data preprocessing steps.

Keywords: gene function prediction, data fusion, matrix factorization, Gene Ontology annotation,
membrane protein, ribosomal protein

1. Introduction

Assigning functions to genes and proteins is a major challenge of biological research. Recent
genome-scale data capture distinct but possibly noisy and incomplete views of cellular func-
tion. Collectively, these data provide valuable information for inference of gene and protein
functions but require computational approaches capable of joint treatment of heterogeneous
data sources.

Gene function prediction aims to provide a set of functional terms along with associated
confidence for a given uncharacterized or partially characterized gene. In this work, we take
a step towards improved gene function prediction through fusion of data sets that are either
directly related to genes, such as genetic interactions, or are circumstantial, such as Medical
Subject Headings (MeSH) terms assigned to the relevant biomedical literature. In our previous
work, we proposed a matrix factorization-based data fusion1 and demonstrated its utility in
detection of drug-toxicity.2 Its advantage over some well-known approaches that infer predic-
tion models through integrative data analysis is its ability to directly consider data modality

and to retain the structure of data representation during fusion. Our algorithm can include
any data source that can be represented in a matrix whereby the concrete selection of data
sources depends on the given function prediction task.

Methods for gene function prediction often consider a metric space of genes, that is, a gene
set equipped with a notion of distance or similarity between any pair of genes.3–6 All available
data has to be expressed through relations between genes and their functions, although for
specific data sources that might not be natural in any sense. For instance, to include the
semantic structure of the MeSH terms into the prediction model we should design a metric that
would, for a pair of genes, measures the distance between the MeSH terms that are assigned
to relevant gene-pair-associated literature. Such distance function is hard to construct, and
for integration of many heterogeneous data sources, becomes a major obstacle in development
of prediction system. Our approach can consider circumstantial evidence for gene function
prediction directly even if expressed in a non-gene space. Its principal novelty is the ease of
adding new data sources without requiring their substantial preprocessing or transformation.
Data sources are simultaneous considered during data fusion and construction of predictive
model.

In the paper we outline our previously proposed data fusion algorithm2 and then study it
in computational experiments on three function prediction tasks for baker’s yeast and slime
mold’s genome-wide data sets. We fuse eleven data sources to predict the Gene Ontology
(GO)7 annotations in slime mold D. discoideum and investigate the recognition of particular
classes of proteins in baker’s yeast S. cerevisiae by combining four data sources on cytoplasmic
ribosomal class and four sources on membrane proteins. Our principal contribution in this work
is a demonstration that matrix-based data fusion approach can be applied to gene function
prediction problem and can successfully integrate a diverse set of data sources, thus raising
the accuracy of predictions.

2. Related Work

Methods to predict gene annotations either follow approaches that transfer annotations from
well-characterized to partially characterized genes,3,8 or approaches that directly associate
genes with functional classes using supervised learning.5,9–13 Although annotation transfer is
appealing at first sight, excessive transferring causes error propagation and is often outper-
formed by sophisticated classification algorithms.14

Recent methodological contributions to gene function prediction aim at extracting features
from different biological data sets and use them to train classifiers for functional categories,
such as GO terms or KEGG pathways.14 They derive features from gene expression pro-
files, genetic interactions, protein-protein interaction networks, conserved protein domains,
sequence similarity, physiochemical properties, co-expression and data on orthologs. For ex-
ample, Vinayagam et al. (2004)9 and Mitsakakis et al. (2013)13 both applied support vector
machines for the classification of GO terms from sequence data and microarray experiments,
respectively, and Yan et al. (2010)11 trained a random forest classifier for each functional
category separately and tested their prediction model on data from fruit fly. The accuracy
of developed methods for gene function prediction has been further improved by integrat-

ing data using multi-classifier approaches,12 Bayesian reasoning,3,4,10,15 network-based analy-
sis5,16,17 and kernel functions derived from different sources by multiple kernel learning.18,19

Automated gene and protein function prediction methods are often trained to only one species,
are not available for high-volume and heterogeneous data, or require the use of data derived
by experiments, such as microarray analysis. The approach we proposed in this manuscript is
organism-independent, it can be applied for various subsets of functional terms and it provides
confidence estimates of predictions. Also, it does not impose any restrictions on the nature of
underlying data.

Due to great potential of methods for computational prediction of gene function we recently
witnessed several initiatives6,20,21 for the critical assessment of their performance in different
experimental settings. These evaluations concluded that although best methods perform well
enough to guide the experiments, there is considerable need for improvement of currently
available approaches one of which is efficient data integration.

3. Methods

Matrix factorization-based data fusion1 can in principle consider an unlimited number of data
sources. In the context of gene function prediction, these could either describe characteristics
of genes and proteins directly (e.g., their physical interactions) or indirectly (e.g., through
MeSH terms that are assigned to scientific publications, which in turn mention the genes of
interest). Fig. 1 provides a toy example that combines five data sources on objects of three
different types: genes, GO terms and experimental conditions. Given a multitude of data
sources, we assume that each source describes relations between objects of two types. Data
fusion by matrix factorization involves three main steps. First, every data source is represented
as a matrix and together they are organized in a block-based matrix representation (Fig. 1,
left; Sec. 3.2). Constraint matrices, Θi, relate objects of type i and are placed on the main
diagonal of block representation. The off-diagonal blocks, which relate objects of different
types, i and j (i 6= j), are called relation matrices, Rij. We expect that these matrices are
sparse and that some are completely missing because associated data sources are not available.
For example, a missing source from Fig. 1 would relate GO terms to experimental conditions.
Second, we simultaneously factorize all relation matrices such that low-rank matrix factors
are shared between decompositions of relation matrices that describe objects of common
type (Fig. 1, middle; Sec. 3.3). Constraints indicate pairwise similarities or dissimilarities (it
depends on signs of values) between the two objects. If constraints are violated, for instance,
if two highly similar objects have very different low-rank profiles (i.e. corresponding rows
in matrix factors), then current low-rank matrix approximations are penalized. Finally, we
employ low-rank matrix factors to complete unobserved entries in relation matrices, to predict
GO terms and to estimate confidence of predictions (Fig. 1, right; Sec. 3.4 and Sec. 3.5).

We apply data fusion to infer relations between genes or proteins and their functions. We
observe target relation matrix in the context of all other data sources. We assume that it
is encoded as a [0, 1]-matrix that is only partially observed. Its entries indicate a degree of
relation, 0 denoting that corresponding function is absent from the gene and 1 denoting the
highest confidence that gene performs a specific function. We aim to predict its unobserved

entries by reconstructing them through matrix factorization.

G
en

e
G

O
 Te

rm
Ex

p.
 C

on
di

tio
n

GeneExp. Condition GO Term

Simultaneous matrix
tri-factorization

Matrix completion

Fig. 1: An example of data fusion by matrix factorization that combines five data sources on objects of three
different types: genes, Gene Ontology (GO) terms and experimental conditions. Target matrix relates genes to
GO terms (matrix with colorful entries). Data is presented in a block-based system (left), then a compressed
representation is inferred that shares low-rank matrix factors between decompositions of relation matrices
(shown by matrices with grey entries), which relate objects of common type (middle). Constraint matrices
(shown by matrix with blue entries) penalize violations of similarity constraints. Finally, original matrix of
gene annotations is completed (right).

3.1. Data

3.1.1. Gene Annotation Prediction in Slime Mold

In this study we observe objects of six different types: genes (type 1), GO terms (type 2),
experimental conditions (type 3), publications from the PubMed database (PMID) (type 4),
MeSH descriptors (type 5), and KEGGa pathways (type 6). The organization of object types
and data sources is shown in Fig. 2a; fusion algorithm can integrate all available data if
the underlying graph is connected. We include gene expression measurements at different
time-points of a 24-hour development cycle22 (R13, 14 experiments), gene annotations with
experimental evidence code to 148 generic slim terms from the GO (R12), associations of
PMIDs and genes from dictyBaseb, March, 2013 (R14), genes participating in KEGG pathways
(R16), assignments of MeSH descriptors to publications from PubMed (R45), references to
published work associated with GO terms (R42), and associations of enzymes involved in
KEGG pathways and related to GO terms (R62). To balance the target matrix R12 for the
purpose of performance evaluation we add an equal number of non-associations for which
there is no evidence of any type in the GO.

We consider protein interaction scores from STRING v9.0c (Θ1), the number of common
ortholog groups between KEGG pathways (Θ6) and slim term similarity scores (Θ2) that are

ahttp://www.kegg.jp
bhttp://dictybase.org/Downloads
chttp://string-db.org

computed as −0.8hops, where hops is the length of the shortest path between two terms in
the GO graph. Similarly, MeSH descriptors are constrained with the average number of hops
between each pair of descriptors in the MeSH hierarchy (Θ5).

3.1.2. Yeast Ribosomal Protein Classification

We observe three object types: proteins (type 1), cellular complexes (type 2) and experimental
conditions (type 3). Their relations are described by four data sources that correspond to arcs
in Fig. 2b. We consider the MIPS Comprehensive Yeast Genome Database (CYGD)d assign-
ments of 1150 yeast proteins to cellular complexes, of which 134 participate in the ribosome
and the remaining ∼5000 yeast proteins are unlabeled.18 We include gene expression measure-
ments from the Stanford Microarray Database (R13, 441 experiments), protein interactions
from STRING v9.0c (Θ(1)

1) and Smith-Waterman pairwise sequence comparisons (Θ(2)
1).

3.1.3. Yeast Membrane Protein Classification

We consider four data sources and three types of objects (Fig. 2c): proteins (type 1), subcel-
lular locations (type 2) and Pfame protein domain families. We consider subcellular location
information of 2318 yeast proteins from the CYGDd database (R12), of which 497 belong to
various membrane protein classes and ∼4000 proteins have uncertain location.18 We include
the expectation values from the hidden Markov models in the Pfam database (R13). Matrices
Θ

(1)
1 and Θ

(2)
1 from Fig. 2c have the same meaning as for the ribosomal protein classification.

In both yeast experiments the target R12 has a (6112 × 2)-shape, where a row of [0, 1]

denotes that the protein participates in ribosome or that it belongs to membrane protein class
and a row of [1, 0] that the protein is not assigned to the ribosomal complex or that it does
not belong to membrane protein class. Rows that correspond to unobserved proteins are set
to [0.5, 0.5].

3.2. Block-Based Data Representation

The data on slime mold from Sec. 3.1.1 can be represented in a block-based system:

R =



0 R12 R13 R14 0 R16

0 0 0 0 0 0

0 0 0 0 0 0

0 R42 0 0 R45 0

0 0 0 0 0 0

0 R62 0 0 0 0


,Θ(1) = Diag (Θ1,Θ2,0,0,Θ5,Θ6) . (1)

The number of non-zero blocks corresponds to the number of included data sources. Such
representation is then fed into fusion algorithm. The block-based schemes for yeast-related

dhttp://mips.helmholtz-muenchen.de/genre/proj/yeast
ehttp://pfam.sanger.ac.uk

Gene

PMID

R14

Experimental
 ConditionR13

Ə1

GO Term
R12

KEGG
Pathway

R16

Ə2

MeSH
Descriptor

R45

R42

Ə5

Ə6
R62

(a)

Protein

Cellular
ComplexR12

Experimental
Condition

R13

Θ
(2)
1

Θ(1)

1

(b)

Protein

Subcellular
Location

R12

Pfam Protein
Domain
Family

R13

Θ(1)

1

Θ
(2)
1

(c)

Fig. 2: Fusion configurations for the gene function prediction task in slime mold (a) and two yeast protein
classification tasks to recognize cytoplasmic ribosomal proteins (b) and membrane proteins (c). Nodes represent
types of objects and arcs correspond to relation and constraint matrices. The arcs that represent target
matrices, R12, and their object types are highlighted.

data (Sec. 3.1.2 and Sec. 3.1.3) have the structure from Eq. (2), where the individual matrices
are task-dependent:

R =


0 R12 R13

0 0 0

0 0 0

 ,Θ(t) = Diag(Θ
(t)
1 ,0,0) for t = 1, 2. (2)

Our fusion approach is different from treating an entire system from Eq. (1) or Eq. (2) as a
single large matrix. Factorization of such a matrix would disregard the structure from Eq. (1)
and Eq. (2).1

3.3. Data Fusion by Matrix Factorization

Approximate matrix factorization estimates matrix Rij as a product of low-rank matrix fac-
tors that are found by solving an optimization problem, which maximizes some quality of
approximation. A tri-factor decomposition, which we use in this study, decomposes Rij into

a product of three low-dimensional matrix factors such that Rij ≈ GiSijG
T
j (Fig. 3).

ni

nj

Rij Gi

ki

Sij GT
j

njkjni

× ×≈

Fig. 3: Matrix tri-factorization. Matrix Rij ∈ Rni×nj relates objects of two types, i and j. For instance, we
might relate genes to their expression profiles, publications to assigned MeSH terms or genes to themselves if
they interact genetically. Rij is decomposed into a product of three matrix factors such that Rij ≈ GiSijG

T
j ,

where Gi ∈ Rni×ki , Gj ∈ Rnj×kj and Sij ∈ Rki×kj , ki � ni, kj � nj .

For data fusion we use simultaneous penalized tri-factorization to simultaneously decom-
pose all blocks Rij while considering constraints in Θ

(t)
i for t = 1, 2, . . . ti. The block matrix R

from Eq. (1) is tri-factorized into block matrices S and G:

S =



0 S12 S13 S14 0 S16

0 0 0 0 0 0

0 0 0 0 0 0

0 S42 0 0 S45 0

0 0 0 0 0 0

0 S62 0 0 0 0


,G = Diag (G1,G2,G3,G4,G5,G6) . (3)

Yeast data matrix in Eq. (2) is similarly decomposed into block matrix factors S and G,
each having 3× 3 block-shape but we omit them here for brevity. Such factorization of block-
based representation retains the block structure of our systems from Eq. (1) and Eq. (2).
Matrix factors Sij in the resulting factorized system are specific to every data source and
factors Gi are specific to every object type. Factor Gi is present in decompositions of all
relation matrices that relate objects of type i to objects of some other type, whereas Sij is
used only for decomposing Rij. Thus, they capture object type- and source-specific patterns,
respectively. Sharing matrix factors between decompositions with common object type is the
key idea of our data fusion approach.

The objective function minimized by simultaneous penalized matrix tri-factorization en-
sures good approximation of the input data and adherence to constraints, which are repre-
sented in constraint matrices:

min
G≥0
||R−GSGT ||+

maxi ti∑
t=1

tr(GTΘ(t)G), (4)

where || · || and tr(·) denote the Frobenius norm and trace, respectively. Updating rules for
decomposing relation matrices,1 iteratively improve matrix factors G and S, which converge
to a local minimum of the optimization problem in Eq. (4). The algorithm first initializes
factors Gi and then successively updates G and S until stopping criteria is met. See Žitnik et
al. (2013)1 for details about initialization algorithm, updating rules and stopping criteria.

3.4. Predicting Gene Functions from Matrix Factors

Our target R12 is a partially observed [0, 1]-matrix, where 1 indicates that gene is assigned
the corresponding function and 0 that it is not. We complete it as: R̂12 = G1S12G

T
2 . When

the fused model is requested to propose relations for a new gene g that was not included
in the training data, we need to estimate its factorized representation and use the result-
ing factors for prediction. We formulate non-negative linear least-squares and solve them for
minhi≥0 ||GiS

T
1ihi−gi||2, where gi ∈ Rni is the original description of gene g in i-th data source

and hi ∈ Rk1 is its factorized representation. Here, i varies from 2 to the number of data
sources used for fusion. A solution vector given by

∑
i>1 h∗i is added as a new row to G1 and

new R̂12 is computed.
We then identify gene-function pairs (g, f∗) for which the predicted degree of relation

R̂12(g, f
∗) is unusually high. Candidate functions for gene g have greater estimated association

score than the mean estimated score of all known annotations of gene g:

R̂12(g, f
∗) >

1

|A(g)|
∑

f∈A(g)

R̂12(g, f), (5)

where A(g) contains functions annotated to g. Eq. (5) is a gene-centric rule. Given a test gene,
it identifies functional terms to which it might be assigned. If the gene does not have any
known annotations we use the function-centric rule to identify gene-function candidate pairs.

3.5. Assessing Strength of Predictions

We combine the gene- and function-centric rules such that, if possible, the gene-centric rule
is applied to identify gene-function candidate pairs and then the function-centric rule is used
to assess the strength of the candidate pair (g, f∗). We estimate the strength of association of
gene g to function f∗ by reporting an inverse percentile of association score in the distribution
of scores for all true annotations to function f∗, that is, by considering the scores in the f∗-th
column of R̂12 (Fig. 4). Higher value indicates higher confidence of prediction.

4. Performance Evaluation

We estimated the performance by ten-fold cross-validation. In each fold, we split the gene set
to a train and test set. The data on genes from the test set were entirely omitted from the
training data. We developed prediction models from the training data and tested them on
the genes from the test set. The performance was evaluated using an F1 score, a harmonic
mean of precision and recall, which was averaged across cross-validation runs. We selected
the parameters of our data fusion algorithm, factorization ranks for each type of objects (ki),
by observing the quality of R̂12 in internal cross-validation.1 The parameters for kernel-based
fusion, such as width of an RBF kernel and regularization weight, were also selected through
internal cross-validation.

5. Kernel-Based Fusion Setup

We compared our data fusion algorithm to state-of-the-art integration by multiple kernel
learning (MKL; Yu et al. (2010)19) that follows a multi-label classification approach. Kernel-

0.85 0.90 0.95 1.00 1.05 1.10
Estimated association scores for GO:0006909 - phagocytosis

0

2

4

6

8

10

12

14

16

Fr
eq

u
en

cy

pikA, s = 0.96

pten, s =0.91
ak1, s = 0.85

Fig. 4: An example of estimating strength of candidate slime mold genes for “phagocytosis” term. Association
scores from R̂12 for all genes that are annotated with term “phagocytosis” are shown in grey. Strength of
the candidate pair (pikA, “phagocytosis”), s = 0.96, is assessed by reporting its inverse percentile in the
distribution of scores for true annotations (in grey). That is, the percentage of estimated association scores
that are smaller or equal to the score of (pikA, “phagocytosis”).

based fusion used a multi-class L2 norm MKL with Vapnik’s SVM. The MKL was formulated
as a second order cone program and solved using the conic optimization solver SeDuMif . We
generated the kernel matrices for yeast experiments using the kernels proposed by Lanckriet et
al. (2004).18 In slime mold study, we applied an RBF kernel to gene expression measurements
and three linear kernels to protein interactions, genes that participate in KEGG pathways and
to associations of genes to PMIDs. Data sources that describe relations between object types
other than genes had to be transformed to explicitly relate them to genes. We represented the
hierarchical structure of MeSH descriptors, semantic structure of the GO graph and KEGG
ortholog groups as separate weighted graphs on genes (for instance, we counted common
KEGG ortholog groups and calculated the similarities of sets of GO terms associated with
genes) and constructed kernel matrices using diffusion kernel.

6. Results and Discussion

We evaluated our algorithm from the perspective of genes and functional terms. Thus, we
addressed two related questions: “What is the function of a particular gene or protein?” and
“What are the genes or proteins associated with a particular functional term?”.

6.1. Performance on Groups of Target Genes

We divided the D. discoideum gene set into three categories to compare predictive performance
in each category. In Table 1 we present the cross-validated F1 scores when selecting the 100
or 1000 most GO-annotated genes and the accuracy obtained when considering whole slime

fhttp://sedumi.ie.lehigh.edu

mold genome. The task was to provide a set of terms from the slim subset of GO terms for
every gene. We used the slim subset of GO terms to limit the optimization complexity of
the kernel-based approach18 with which we compare our performance. These categories were
selected to study the effects of data sparseness. Genes with many GO annotations tend to be
better characterized and more data is available about them. Thus, functional terms of such
genes would be considered easier to predict than those of genes with only few annotations.
The accuracy of our matrix factorization-based data fusion is comparable to that of kernel-
based approach. The performance of both approaches improved when we included more genes
and hence more data. Also, our approach performed well when we added genes with sparser
profiles although that increased the overall data sparsity.

Table 1: Cross-validated F1 scores for fusion by matrix factorization (MF) and kernel-based method (MKL).

Slime mold task MF MKL

100 genes 0.799 0.781

1000 genes 0.826 0.787

Whole genome 0.831 0.800

6.2. Performance on Functional Terms

We assessed the ability of our approach to predict individual GO terms when fusing whole
genome data from Fig. 2a. Table 2 shows the F1 scores for nine selected GO terms that belong
to “Biological Process” and “Molecular Function” categories from GO and which contain
variable number of annotated genes. These GO terms are of high relevance in Dictyostelium
community and were selected upon consultations. Predictions were examined in the context
of a complete set of GO terms rather than using a generic slim subset of terms. The resulting
data set had ∼2000 GO terms, each had on average 9.64 direct gene annotations.

Our approach achieved consistently higher accuracy than the kernel-based approach. With
the exception of “actin binding” and “lysozyme activity” terms, F1 scores are rather high.
We also found that prediction of less specific terms such as “chemotaxis” and “response to
bacterium” showed high performance. That was not expected because genes annotated with
less specific terms tend to have their profiles in data sets less similar. High performance is
important as all nine gene functions and processes are of interest in the current research of D.
discoideum where data fusion may propose new candidate genes for down-stream experimental
studies.

6.3. Ribosomal and Membrane Protein Classification

Table 3 shows the results of training a factorization-based fusion model and a kernel-based
method to recognize membrane and cytoplasmic ribosomal proteins in yeast. Our approach
yielded better accuracy than kernel-based method on the membrane proteins but worse on
the cytoplasmic ribosomal class. However, fused data sources were those whose kernels gave
best individual performance in kernel learning.18 Thus, the selection of data sources was

Table 2: Gene ontology term-specific cross-validated F1 scores for fusion by matrix factorization (MF) and
kernel-based method (MKL). Terms in Gene ontology belong to one of three categories, “Biological Process”
(BP), “Molecular Function” (MFn) or “Cellular Component”.

GO term name Term identifier Namespace Size MF MKL

Activation of adenylate cyclase activity 0007190 BP 11 0.834 0.770

Chemotaxis 0006935 BP 58 0.981 0.794

Chemotaxis to cAM 0043327 BP 21 0.922 0.835

Phagocytosis 0006909 BP 33 0.956 0.892

Response to bacterium 0009617 BP 51 0.899 0.788

Cell-cell adhesion 0016337 BP 14 0.883 0.867

Actin binding 0003779 MFn 43 0.676 0.664

Lysozyme activity 0003796 MFn 4 0.782 0.774

Sequence-specific DNA binding TFA 0003700 MFn 79 0.956 0.894

biased toward kernel-based method. The approach using factorization circumvents tedious
work of transforming different objects (e.g., strings, vectors, graphs) into kernel matrices.
These transformations depend on the choice of the kernels and may affect MKL’s performance.

Results in this and previous sections suggest that factorization-based data fusion might
be useful not only to identify proteins that share the same molecular function but also to
recognize proteins that participate in the same biological processes or are located in the same
subcellular region.

Table 3: Cross-validated F1 scores for yeast membrane and cytoplasmic ribosomal proteins using matrix
factorization-based fusion (MF) and kernel-based method (MKL).

Yeast recognition task MF MKL

Membrane proteins 0.843 0.835

Ribosomal proteins 0.901 0.921

7. Conclusion

We have examined the applicability of our recently proposed matrix factorization-based data
fusion approach1 on the problem of gene function prediction. We studied three fusion scenarios
to demonstrate high accuracy of our approach when learning from disparate, incomplete and
noisy data. The studies were successfully carried out for two different organisms, where, for
example, the protein-protein interaction network for yeast is nearly complete but it is noisy,
whereas the sets of available interactions for slime mold are rather sparse and only about
one-tenth of its genes have experimentally derived annotations.

Our approach can model any number of data sources that can be expressed in a matrix, and,
unlike most current data fusion approaches, does not require transformation of data into gene-
function space. This flexibility allows us to fuse the data derived from possibly very diverse
data sources without substantial preprocessing and loss of information. Described method is
applicable to problems such as prediction of regulatory, metabolic and other functional classes,
prediction of protein subcellular location and their interactions.

Acknowledgements

We thank Gad Shaulsky from Baylor College of Medicine, Houston, TX, for selecting functional
terms from Table 2. This work was supported by the Slovenian Research Agency (P2-0209,
J2-9699, L2-1112), National Institute of Health (P01-HD39691) and European Commission
(Health-F5-2010-242038).

References

1. M. Žitnik and B. Zupan, (submitted) Available at Arxiv:1307.0803. (2013).
2. M. Žitnik and B. Zupan, Matrix factorization-based data fusion for drug-induced liver injury pre-

diction, in Proc. of the 12th Annual International Conference on Critical Assessment of Massive
Data Analysis (CAMDA), ISMB/ECCB , 2013.

3. Y. Chen and D. Xu, Nucleic Acids Research 32, 6414 (2004).
4. H. Wu, Z. Su, F. Mao, V. Olman and Y. Xu, Nucleic Acids Research 33, 2822 (2005).
5. S. Mostafavi and Q. Morris, Proteomics 12, 1687 (2012).
6. P. Radivojac et al., Nature Methods 10, 221 (2013).
7. M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, A. P. Davis,

K. Dolinski, S. S. Dwight, J. T. Eppig et al., Nature Genetics 25, 25 (2000).
8. M. Falda, S. Toppo, A. Pescarolo, E. Lavezzo, B. Di Camillo, A. Facchinetti, E. Cilia, R. Velasco

and P. Fontana, BMC Bioinformatics 13 Suppl 4, p. S14 (2012).
9. A. Vinayagam, R. König, J. Moormann, F. Schubert, R. Eils, K.-H. Glatting and S. Suhai, BMC

Bioinformatics 5, p. 116 (2004).
10. Z. Barutcuoglu, R. E. Schapire and O. G. Troyanskaya, Bioinformatics 22, 830 (2006).
11. H. Yan, K. Venkatesan, J. E. Beaver, N. Klitgord, M. A. Yildirim, T. Hao, D. E. Hill, M. E.

Cusick, N. Perrimon, F. P. Roth and M. Vidal, PLoS One 5, p. e12139 (2010).
12. J. Jung, G. Yi, S. Sukno and M. Thon, BMC Bioinformatics 11, p. 215 (2010).
13. N. Mitsakakis, Z. Razak, M. Escobar and J. T. Westwood, BioData Mining 6, p. 8 (2013).
14. Ö. S. Saraç, V. Atalay and R. Cetin-Atalay, PLoS One 5, p. e12382 (2010).
15. O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman and D. Botstein, Proceedings of the

National Academy of Sciences 100, 8348 (2003).
16. S. Mostafavi, D. Ray, D. Warde-Farley, C. Grouios and Q. Morris, Genome Biology 9, p. S4

(2008).
17. S. Mostafavi and Q. Morris, Bioinformatics 26, 1759 (2010).
18. G. R. Lanckriet, T. De Bie, N. Cristianini, M. I. Jordan and W. S. Noble, Bioinformatics 20,

2626 (2004).
19. S. Yu, T. Falck, A. Daemen, L.-C. Tranchevent, J. A. Suykens, B. De Moor and Y. Moreau,

BMC Bioinformatics 11, p. 309 (2010).
20. L. Peña-Castillo, M. Tasan, C. L. Myers, H. Lee, T. Joshi, C. Zhang, Y. Guan, M. Leone,

A. Pagnani, W. K. Kim et al., Genome Biology 9, p. S2 (2008).
21. W. T. Clark and P. Radivojac, Bioinformatics 29, i53 (2013).
22. A. Parikh, E. R. Miranda, M. Katoh-Kurasawa, D. Fuller, G. Rot, L. Zagar, T. Curk, R. Sucgang,

R. Chen, B. Zupan, W. F. Loomis, A. Kuspa and G. Shaulsky, Genome Biology 11, p. R35 (2010).

