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ABSTRACT

Motivation: Epistasis analysis is an essential tool of classical genetics

for inferring the order of function of genes in a common pathway.

Typically, it considers single and double mutant phenotypes and for

a pair of genes observes whether a change in the first gene masks the

effects of the mutation in the second gene. Despite the recent emer-

gence of biotechnology techniques that can provide gene interaction

data on a large, possibly genomic scale, few methods are available

for quantitative epistasis analysis and epistasis-based network

reconstruction.

Results: We here propose a conceptually new probabilistic approach

to gene network inference from quantitative interaction data. The ap-

proach is founded on epistasis analysis. Its features are joint treatment

of the mutant phenotype data with a factorized model and probabil-

istic scoring of pairwise gene relationships that are inferred from the

latent gene representation. The resulting gene network is assembled

from scored pairwise relationships. In an experimental study, we show

that the proposed approach can accurately reconstruct several known

pathways and that it surpasses the accuracy of current approaches.

Availability and implementation: Source code is available at http://

github.com/biolab/red.

Contact: blaz.zupan@fri.uni-lj.si

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Epistasis analysis is a tool of classical genetics for inferring the

order of genes in pathways from mutant-based phenotypes

(Avery and Wasserman, 1992; Botstein and Maurer, 1982).

Epistasis asserts that two genes interact if the mutation in one

gene masks the effects of perturbations in the other gene. Then,

assuming a common pathway, the first masking gene would be

downstream, and the products of the second gene would regulate

the expression of the first one (Avery and Wasserman, 1992;

Cordell, 2002; Huang and Sternberg, 1995; Roth et al., 2009).

Epistasis analysis uncovers the relationship between a pair of

genes. Its logic can be further extended to uncover parallelism,

where both genes have an effect on the phenotype but where

there is no epistasis (Battle et al., 2010; Zupan et al., 2003)

(Fig. 1). Uncovered pairwise relationships in a group of genes

can give rise to a reconstruction of more complex multi-gene

networks. An enlightening demonstration of the power of epis-

tasis for assembly of gene networks is for instance a reconstruc-

tion of a four-gene cell death pathway in Caenorhabditis elegans

(Metzstein et al., 1998).

Emergent technologies from molecular biology that record

phenotypes of single and double mutants at a large, possibly

genomic scale, prompt for the development of systematic

approaches for epistasis analysis and pose the need to devise

computational tools that support gene network inference.

Approaches of mutagenesis by homologous recombination

(Collins et al., 2006; Tong et al., 2004) or RNA interference

can yield phenotype observations for thousands or even millions

of mutants (Costanzo et al., 2010). Several past studies con-

sidered mutant assays with qualitative phenotypes (Zupan
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Fig. 1. A hypothetical example of epistasis analysis with three genes, u, v

and w. Nodes in the central graph represent mutant phenotypes. The

phenotypic difference between a double knockout [e.g. Rðu"v"Þ] and a

single knockout mutant [e.g. Rðv"Þ] is represented with the length of the

corresponding dotted edge. Expected double mutant phenotypes, which

assume no interaction between genes (see also Section 2.1), are denoted

with E [e.g. Eðu"v"Þ]. A double mutant u"v" (a) has a phenotype similar

to that of a single mutant v", which indicates that v is epistatic to u. From

the activity of genes v and w (b) we conjecture that gene v partially de-

pends on gene w, i.e. v also acts through a separate pathway because their

double mutant v"w" has a phenotype that is equally similar to the sin-

gle knockout Rðw"Þ and the expected phenotype Eðv"w"Þ. The pheno-

type of double knockout u"w" (c) is close to the expected phenotype of

u"w"; Eðu"w"Þ; which may be explained by u and w acting independ-

ently in parallel pathways. Gene ordering from these three relations is

preserved in the joint network (d), which is a candidate pathway of genes

u, v and w
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et al., 2003), quantitative fitness scores (Battle et al., 2010;

Beerenwinkel et al., 2007; Drees et al., 2005; Phenix et al.,

2011, 2013; St Onge et al., 2007) or even whole-genome tran-

scriptional profiles (Hughes, 2005; Van Driessche et al., 2005).

Majority of these studies present gene networks as collections

of directly observed pairwise interactions (e.g. Phenix et al.,

2013; St Onge et al., 2007) and do not propose a generally ap-

plicable formalism to model the data. Only few general-purpose

algorithms for inference of epistatic networks have been pro-

posed. Zupan et al. (2003) introduced formal rules and inference

algorithm to infer different types of relationships between genes,

but could treat only qualitative phenotypes and could not handle

noise. These limitations were elegantly bypassed by a Bayesian

approach of Battle et al. (2010) that can handle larger data sets

with few hundred genes. This algorithm is to our knowledge also

the only modern approach to inference of epistasis networks.

Gene epistasis analysis infers interactions that stem directly

from mutant phenotypes. Its causative reasoning is different

from other network reconstruction tools that observe correl-

ations between gene profiles (e.g. Ahn et al., 2011;

Mohammadi et al., 2012) and infer relationships that are circum-

stantial (Hughes et al., 2000). Despite the growing body of quan-

titative genetic interaction data and our ability to collect such

data, computational approaches and tools to support epistasis

are at best scarce (Battle et al., 2010; Jaimovich and Friedman,

2011; Zhang and Zhao, 2013). Devising methods for inference of

gene pathways from mutant-based phenotypes and developing

related software tools remains a major challenge of computa-

tional systems biology.
We here present a new epistasis analysis-inspired computa-

tional approach to infer gene networks from a collection of

quantitative mutant phenotypes. We refer to our method as

R�ed (pronounced as r �ed, meaning ‘order’ in Slovene). Our

work was motivated by the Bayesian learning method of Battle

et al. (2010), henceforth denoted by activity pathway network

(APN), that starts from a random network and then iteratively

refines it to best match data-inferred relationships. The model

refinement in APN is carried out through a succession of local

structural changes of the evolving network. This procedure may

substantially depend on (arbitrary) initialization of network

structure, and hence requires ensembling across many runs of

the algorithm to raise accuracy of the final network.
Our approach is conceptually different from APN. We first

simultaneously infer a probabilistic model for the entire set of

pairwise relationships. Relationship probabilities serve as prefer-

ences for different types of pairwise relationships (e.g. epistasis,

parallelism and partial interdependence) used in a single-step

construction of a gene network. In contrast to APN’s local net-

work changes, R�ed applies a global procedure to infer the rela-

tionships between genes and does not require ensembling. The

probabilistic model of R�ed uses matrix completion-derived latent

data representation to account for noise and sparsity. Inference

of factorized model also includes construction of a gene-specific

data transformation to account for the differences in single

mutant backgrounds, which may affect the phenotype of

double mutants. In an experimental study, we show that both

components are necessary for inferring gene networks of high

accuracy.

2 MATERIALS AND METHODS

R�ed, the proposed gene network reconstruction algorithm (Alg. 1), con-

siders quantitative phenotype measurements over a set of single and

double mutants, provides preferential order-of-action scores of possible

pairwise relationships and assembles them in a joint gene network. The

essential steps of the algorithm are overviewed in Figure 2 and are

described in detail below.

2.1 Problem definition

In quantitative analysis of genetic interactions we typically observe pair-

wise interactions between n genes and measure mutant phenotypes, such

as the fitness of an organism or expression of a reporter gene (Reporter).

Measurements over a set of double knockout mutants are given in a

sparse matrix G 2 R
n�n and those of single knockout mutants in a

vector S 2 R
n: In these matrices, Gu;v quantifies a phenotype of double

mutant u"v" and Su denotes a phenotype of single mutant u": The

expected mutant phenotypes, which represent phenotypes of double

mutants in the absence of genetic interactions, are given by a matrix H.

We aim to reconstruct a gene network that is consistent with pairwise

gene relationships inferred from G, H and S. Inputs to network recon-

struction are preferential scores for all four modeled gene relationships

that include epistasis u! v, epistasis u v, parallelism vjju and partial

interdependence vnu (Table 1). R�ed represents the scores as P=ðP!;

P ; Pjj; PnÞ and computes them from the latent gene representation,

which is obtained in the inference of a factorized model.

Fig. 2. An overview of R�ed, a novel approach for automatic gene net-

work inference from mutant data. Inputs to the preferential order-of-

action factorized algorithm of R�ed include a matrix of double knockout

phenotypes (G), a vector of single knockout phenotypes (S) and a matrix

of expected phenotypes corresponding to the assumption of absent inter-

actions between genes (H). R�ed estimates a factorized model from G,

whose gene latent feature vectors capture the global structure of the

phenotype landscape, and learns a parametrized logistic map ), which

is a gene-dependent non-linear mapping from latent to phenotype space.

A scoring scheme is then applied to the inferred model to estimate the

probabilities of pairwise gene relationships of different types. Finally, a

multi-gene network is reconstructed, which aims to minimize the number

of violating and redundant edges
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2.2 Factorized model

To deal with noise and address possibly incomplete input data, R�ed es-

timates probabilities of gene relationships through a factorized model.

We use a Bayesian inference approach and formulate the conditional

probability of observed double mutant phenotype data, given their

latent representation, as follows:

pðGjU;V;); �2GÞ=
Yn

u=1

Yn

v=1

ðN ðGu;vjgðU
T
uVv;)u;vÞ; �

2
GÞÞ

IGu;v ;

where Nðxj�; �2Þ is a normal distribution with mean � and variance �2,

and IGu;v indicates whether the phenotypic measurement of u"v" is

available.

We assume that the observed phenotype of u"v" is governed by the

latent features associated with both genes u and v. To learn the latent

features of u and v, we factorize double mutant phenotype data (G) into a

product of two low-dimensional latent matrix factors Uk�n and Vk�n.

Their column vectors, Uu and Vv, represent k-dimensional u-specific

and v-specific gene latent feature vectors, respectively. Instead of using

linear latent Gaussian model of gene interactions, we pass the dot product

UT
uVv through a parametrized logistic function g. Thus, the model of

interaction between genes u and v is represented by the factorized par-

ameter gðUT
uVv;)u;vÞ. In the factorization, gene interactions depend on

each other, as they overlap and share parameters. For instance, given

genes u, v and w, their factorized parameters gðUT
uVv;)u;vÞ and gðUT

uVw

;)u;wÞ share a common gene latent feature vector Uu.

Parametrized logistic function g is given by

gðx; ð1Þ;  ð2Þ;  ð3ÞÞ=
 ð3Þ

1+ ð1Þexp ð� ð2ÞxÞ

and bounds the range of factorized parameters by modeling saturation of

the Reporter. Here, parameter  ð3Þ represents the limiting value of the

output past that gðx; ð1Þ;  ð2Þ;  ð3ÞÞ cannot grow and  ð1Þ represents the

number of times that UT
uVv must grow to reach the value of  ð3Þ: If  ð2Þ is

positive, g is increasing in x, otherwise g is a decreasing function. Note

that gðx; 1; 1; 1Þ corresponds to the well-known sigmoid function. For

every double mutant u"v", we represent its logistic function parameters

in a triple )u;v=ð)
ð1Þ
u;v;)

ð2Þ
u;v;)

ð3Þ
u;vÞ and define ) to hold the parametrized

logistic function representation over all possible double mutants:

)=ð)ð1Þ;)ð2Þ;)ð3ÞÞ. We reduce the complexity of this factorized

model in Section 2.3 by replacing dense parametrization of ) (one par-

ameter set for every factorized parameter, j)j=3n2Þ with gene-dependent

parametrization (one parameter set for every gene, j)j=3n).

We use a Gaussian prior centered at 1 for logistic function paramet-

rization ) over given phenotypic measurements:

pð)j�2)Þ=
Y3

i=1

Yn

u=1

Yn

v=1

ðN ð)ðiÞu;vj1; �
2
)IÞÞ

IGu;v :

For gene latent feature vectors in U and V we assume zero-mean

Gaussian priors to avoid overfitting:

pðUj�2UÞ=
Yn

u=1

NðUuj0; �
2
UIÞ; pðVj�

2
VÞ=

Yn

v=1

NðVvj0; �
2
VIÞ:

Through Bayesian inference we derive the posterior probability of gene

latent vectors and logistic function parametrization given the available

double mutants phenotypes:

pðU;V;)jG; �2G; �
2
U; �

2
V; �

2
)Þ / pðGjU;V;); �2GÞpðUj�

2
UÞ

pðVj�2VÞpð)j�
2
)Þ:

ð1Þ

We select the factorized model according to the maximum a posteriori

(MAP) estimation by maximizing the log-posterior of Equation (1) over

latent feature matrices and logistic function parametrization. The meas-

urement noise variance (�2G) and prior variances (�2U; �
2
V and �2)) are kept

fixed. This is equivalent to minimizing the following objective function

(see Supplementary Material for a detailed derivation of a MAP estima-

tor), which is a sum of squared errors with quadratic regularization terms:

LðG;U;V;)Þ=
1

2

Xn

u=1

Xn

v=1

IGu;vðGu;v � gðUT
uVv;)u;vÞÞ

2

+
�U
2

Xn

u=1

UT
uUu+

�V
2

Xn

v=1

VT
v Vv

+
�)
2

X3

i=1

Xn

u=1

Xn

v=1

IGu;vð)
ðiÞ
u;v � 1Þ2;

ð2Þ

where �U=�
2
G=�

2
U; �V=�

2
G=�

2
V and �)=�

2
G=�

2
).

Because ), U and V are unknown, the function L is not convex. In

particular, L is convex in either U or V but not in both factors together,

which is a known result from matrix factorization studies (Koren et al.,

2009; Lee and Seung, 2000). In our study, L is further coupled by the

parametrization of ). Thus, it is unrealistic to expect an algorithm to

solve the optimization problem defined by L in the sense of finding

global minimum. We thus estimate latent features and logistic function

parameters by finding a localminimumof the objective functionL through

Table 1. Probabilistic scoring of gene-gene relationships

Gene–gene relationship Network structure Preferential order-of-action score

u and v in a linear pathway, v downstream, gene v is

epistatic to gene u

P!u;v=
2

1+exp ðjĜu;v�Sv jÞ

u and v in a linear pathway, u downstream, gene u is

epistatic to gene v

P u;v=
2

1+exp ðjĜu;v�Su jÞ

u and v affect the reporter separately Pjju;v=
2

1+exp ðjĜu;v�Hu;v jÞ

u and v are partially interdependent, each has also a

path to the reporter that is independent of the other

Pn
u;v=

2

1+expðjĜu;v�
1
2ðHu;v+maxðSu;SvÞÞjÞ

Given genes u and v, the table shows all four pairwise relationships and their corresponding network structures. These relationships have already been considered by Battle

et al. (2010) but are here studied with probabilistic scoring functions. See main text for explanation of preferential order-of-action scores.
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application of gradient descent. Derivatives ofLwith respect to gene latent

features and logistic parameters are given by the following equations:

@L

@Uu
=
Xn

v=1

hðu; vÞVvg
0ðUT

uVv;)u;vÞ+�UUu; ð3Þ

@L

@Vv
=
Xn

u=1

hðu; vÞUug
0ðUT

uVv;)u;vÞ+�VVv; ð4Þ

@L

@)ð1Þu;v
=�

hðu; vÞ)ð3Þu;vexp ð)
ð2Þ
u;vU

T
uVvÞ

ðexp ð)ð2Þu;vU
T
uVvÞ+)ð1Þu;vÞ

2
+tðu; v; 1Þ; ð5Þ

@L

@)ð2Þu;v
=

hðu; vÞ)ð1Þu;v)
ð3Þ
u;vU

T
uVvexp ð)

ð2Þ
u;vU

T
uVvÞ

ðexp ð)ð2Þu;vU
T
uVvÞ+)ð1Þu;vÞ

2
+tðu; v; 2Þ; ð6Þ

@L

@)ð3Þu;v
=

hðu; vÞ

1+)ð1Þu;vexp ð�)
ð2Þ
u;vU

T
uVvÞ

+tðu; v; 3Þ; ð7Þ

where for convenience of notation, hðu; vÞ is substituted for

hðu; vÞ=IGu;vðgðU
T
uVv;)u;vÞ �Gu;vÞ, penalty term tðu; v; iÞ stands for

tðu; v; iÞ=�)I
G
u;vð)

ðiÞ
u;v � 1Þ and g0ðx;)u;vÞ is logistic function derivative

with respect to x. Efficiency in training R�ed model comes from finding

point estimates of model unknowns instead of inferring the full posterior

distribution over them.

2.3 Gene-dependent weighting

We further reduce complexity of the model described in the previous

section by combining evidence from multiple phenotypic measurements

through their latent representation. We replace entrywise (double-

mutant-phenotype-dependent) logistic function parametrization ) with

gene-dependent parametrization that is given by )ðiÞu;v  
1

n�1

P
w)
ðiÞ
u;w for

i=1, 2, 3. This reduces the number of parameters in ) that have to be

learned from 3n2 to 3n. Intuitively, measurements that involve gene u are

not independent from each other but are rather governed by the gene

pathways in which u participates. Gene-dependent parametrization of )
represents a method of regularization allowing us to remove penalty

terms in Equations (5)–(7).

Derivatives of) use only available phenotypic measurements owing to

the application of an indicator function [cf. Equations (5)–(7)]. We relax

this limitation by considering current estimates of G when computing the

derivatives of ). These estimates are given by Ĝu;v=gðUT
uVv;)u;vÞ;

where U and V are latent matrix factors from the previous iteration of

gradient descent (Step 3c in Alg. 1).

2.4 Preferential order-of-action scoring of gene pairs

Probabilities of gene–gene relationships in P are computed from the

inferred phenotypes given by Ĝ=gðUTV;)Þ, with the rules outlined in

Table 1. Estimated probabilities in P approach 1 when inferred pheno-

typic values in Ĝ are close to the phenotypes, which would be expected if

a certain network structure (!;  ; jj; n) existed between genes, and

they slowly vanish when the inferred values deviate from the values ex-

pected by a certain type of relationship.

For instance, an epistatic genetic interaction u v is inferred when the

trait Ĝu;v of the double mutant u"v" is similar to the single mutant u"

phenotype Su and the two single mutant phenotypes are different

(Su 6� Sv). This brings jĜu;v � Suj close to 0 and, consequently, P u;v
close to 1. With different single mutant phenotypes, the expected

phenotype Hu;v of the double mutant that assumes no genetic inter-

action is different from both single mutant phenotypes

(Su 6� Sv ) Sv 6� Hu;v ^ Su 6� Hu;v), bringing Pjju;v and Pn
u;v close to 0.

Likewise, the phenotype of v" would be different from the phenotype

of the double mutant, bringing P!u;v close to 0.

Cases with less pronounced differences between phenotypes would lead

to smaller differences in relationship probabilities. Preferential order-of-

action scores generalize the epistasis analysis framework by Avery and

Wasserman (1992), wherein the signal and the genes under study were

strictly on or off with no intermediate levels of activity. An appealing

feature of scores in P is that they have a direct probabilistic

interpretation.

2.5 Multi-gene network inference

Given probabilistic scores of gene–gene network structures in P from

Section 2.4, we reconstruct a detailed multi-gene network that is consist-

ent with the inferred relationship probabilities and contains a minimum

number of violating and redundant edges. Examples of inferred networks

are given in Figures 4–7. A network is a weighted directed graph with

genes as vertices and directed edges that determine the order of action. A

designated vertex represents the observed quantitative trait. A directed

edge from u to v is violating (Fig. 3a) if there is evidence in P for both

u! v and u v (e.g. P!u;v � P u;v). A directed edge from u to v is redun-

dant (Fig. 3b) if there is evidence in P that some intermediate gene exists

between u and v. That is, u and v are not adjacent in a genetic network but

rather u indirectly affects v, i.e. P!u;v captures the extent to which strict

weak ordering of u and v holds.

Network inference procedure assigns a level to every gene in a manner

that if there is strong evidence in P that gene u is placed upstream of gene

v, that is, if v is epistatic to u, then levelðuÞ4levelðvÞ: In the case of

stronger evidence of parallelism or partial interdependence between u

and v the levelðuÞ � levelðvÞ: Several genes can be assigned the same

level, but a designated vertex corresponding to a phenotype of interest

is the only vertex placed on the lowest level.

Inference of a genetic network involves two phases. In the first phase

we perform an approximate topological sort through construction of a

directed weighted graph. Given genes u and v and the inferred epistasis

relationships between them, the direction and weight of a between-level

edge are determined by the maximum of the values P!u;v (edge u! v) and

P u;v (edge u  v). Given a parallelism or partial interdependence rela-

tionship between u and v, a within-level edge is determined by the max-

imum of the values Pjju;v (no edge between u and v) and Pn
u;v (edge u! v).

This graph may contain directed cycles, and finding an exact topological

ordering of its vertices with the minimal set of violating edges is a known

NP-hard problem (Charbit et al., 2007; Eades et al., 1993). Thus, we pro-

ceed in the following way. We select a vertex with no incoming between-

(a) (b)

Fig. 3. Illustration of violating (a) and redundant (b) edges (in gray) in a

pathway with four genes. Edge y1 ! v1 is violating because there is evi-

dence that v1 is placed upstream of y1 (v1 ! w1 and w1 ! y1) but also

that y1 is upstream of v1 (y1 ! v1). Edge u2 ! w2 is redundant because

there is evidence of an intermediate gene v2: Similarly, edge u2 ! y2 is

redundant because of two intervening genes, v2 and w2
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level edges, assign that vertex to the currently top-most level and recurse on

the graph with that vertex removed. We also look for vertices with no

outgoing between-level edges and assign them to the currently lowest

level. If in some step multiple vertices have no incoming or outgoing be-

tween-level edges, they are assigned the same level. It can happen that all

vertices have incoming and outgoing between-level edges. In this case, we

select the vertex with the highest differential between weighted incoming

between-level degree and weighted outgoing between-level degree.

Alg. 1:R�ed, the proposed approach for gene network inference by scoring

relationships from a factorized model of interactions.

Input:

� sparse matrix of double mutant phenotypes G 2 R
n�n,

� typical interaction values H 2 R
n�n,

� measured phenotypes of single mutants S 2 R
n,

� parameters �U; �V, rates � and �, and rank k.

Output:

� preferential order-of-action score matrices P,

� completed matrix Ĝ,

� gene-dependent logistic function parametrization ),

� inferred gene network for a gene subset of interest.

1. Initialize U�Nð0; IÞk�n and V�Nð0; IÞk�n:

2. Initialize )ðiÞ as 1n�n for i=1; 2; 3:

3. Repeat until convergence:

a. Compute @L
@U and @L

@V with Equation (3) and (4), respectively.

b. Update U U� � @L@U and V V� � @L@V :

c. Compute @L
@)ðiÞ

for i=1, 2, 3 using Equations (5)–(7), respect-

ively. Substitute hðu; vÞ therein with hðu; vÞ=

gðUT
uVv;)u;vÞ � Xu;v, where Xu;v=Gu;v if IGu;v=1 and Xu;v=

Ĝu;v otherwise. Here, Ĝu;v is computed using the latent matrix

factors from the previous iteration.

d. Update )ðiÞ  )ðiÞ � � @L
@)ðiÞ

for i=1, 2, 3.

e. Set gene-dependent weights )ðiÞu;v  
1

n�1

X

w

)ðiÞu;w for i=1, 2,

3 and 8u; v.

4. Compute preferential order-of-action scores Pi
u;v for

i 2 f!; ; jj;ng and 8u; v using Equations from Table 1.

5. Normalize Pi
u;v  Pi

u;v=
X

j

Pj
u;v for i 2 f!; ; jj;ng and 8u; v:

6. Compute Ĝu;v=gðUT
uVv;)u;vÞ:

7. Given a gene subset of interest, infer a network (Section 2.5).

In the second phase of gene network inference we retain within-level

edges and those edges that link adjacent levels and are directed down-

ward. The latter procedure eliminates violating edges. As a final step, we

remove redundant edges according to their definition above.

3 DATA AND EXPERIMENTAL SETUP

We assess the accuracy of R�ed by applying our inference ap-

proach to the datasets of Jonikas et al. (2009) and Surma et al.

(2013) and compare results to known or partially known net-

works. Experiments that use data from Jonikas et al. closely

follow the setup by Battle et al. and use the same datasets and
reference pathways.

3.1 Mutant phenotype data

Jonikas et al. (2009) measured unfolded protein response (UPR)

levels in single and double mutants to systematically characterize

functional interdependence of yeast genes with roles in endoplas-
mic reticulum (ER) folding. The dataset contains 444 genes that

caused high UPR reporter inductions. The interaction data in-

clude phenotypes of 42 240 distinct double mutants (matrix G)
corresponding to 43% of all possible double mutants. Jonikas

et al. also computed typical (i.e. expected) values of genetic

interactions for every double mutant (matrix H). They con-

sidered multiplicative neutrality function (Mani et al., 2008)
and computed it using reporter levels of pairs of single mutants,

modified by a Hill function to account for the saturation of the

reporter signal.
Surma et al. (2013) considered 741 genes and observed the

growth phenotype (colony size) for all pairs of double mutants.
In total, after filtering out unreliable measurements, their dataset

comprises 251 383 double mutant fitness scores. We computed

single mutant scores by averaging across all scores of double
mutants that included mutations of the corresponding genes.

We considered multiplicative model to calculate the expected

fitness of a double mutant in the absence of a genetic interaction.

3.2 Gene pathways

We compare gene networks inferred by R�ed to a number of

known or partially known cellular pathways that include genes
whose perturbations are measured by Jonikas et al.:

� The N-linked glycosylation pathway consisting of 10 genes
whose true ordering is known (Helenius and Aebi, 2004),

� The ER-associated degradation (ERAD) pathway for which

many functional interdependencies between its member

genes are known,

� Tail-anchored (TA) protein biogenesis machinery consisting
of TA proteins important for transmembrane trafficking

and the recently discovered GET pathway (Bozkurt et al.,

2009; Schuldiner et al., 2008; Stefanovic and Hegde, 2007).

We also compare R�ed’s networks to well-characterized cellular

pathways of phospholipid biosynthesis whose gene mutants are
measured by Surma et al. and that include the following:

� The Kennedy pathway involved in the synthesis of phospha-
tidylethanolamine and phosphatidylcholine (PC), and

� The phosphatidylserine to PC conversion pathway.

3.3 Experimental setup

In the first part of the experiments, we use mutant phenotype
data to qualitatively evaluate the reconstruction of five gene

pathways from Section 3.2. In the second part of the experi-

ments, we evaluate the accuracy of gene ordering through
three different setups. In the first two setups, the data-inferred

gene ordering was compared with the known pathways. In the

third setup, we use cross-validation to estimate the accuracy of
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prediction of gene interaction scores with the following

experiments:

1. Battle et al. (2010) provided 168 test gene pairs (v, u) from

common KEGG pathways (Kanehisa et al., 2008). For 21

gene pairs v is known to be upstream of u, and for 147

gene pairs v is not known to be upstream of u. Given a

gene pair, R�ed predicted the probability of epistasis as

P!u;v=ðP
!
u;v+P u;vÞ, and the accuracy of predictions on

entire set of 168 gene pairs.

2. Using the setup from Battle et al. we evaluate the accur-

acy of prediction of direct edges u! v in the N-linked

glycosylation pathway (Fig. 4) based on the model-esti-

mated probability of epistasis P!u;v.

3. We estimate the accuracy when predicting that two genes

are in epistasis, that is, u! v or v! u. Note that in the

literature this relationship is also referred to as an alleviat-

ing interaction, where the phenotype of a double mutant is

less severe than expected from the phenotypes of the cor-

responding singlemutants (Jonikas et al., 2009;Mani et al.,

2008). For the data from Jonikas et al. this means that the

double-mutant cell responds to ER stress surprisingly

better than how the ER stress would typically bemitigated.

The data for this experiment were preprocessed according

to the procedure described by Battle et al. A positive set

included gene pairs (u, v) with significant alleviating genetic

interactions, for which the observed phenotype (inter-

action score) was negative with a magnitude greater than

jGu;v �max ðSu;SvÞÞj (see St Onge et al., 2007). It was fur-

ther required that the double-mutant phenotype data con-

tained a sufficient number of observations that included u"

or v", such that the geometric mean of suchmeasurements

for u and for vwas at least 180. There are 2723 gene pairs in

the data of Jonikas et al. that match these criteria. In each

test run, we form a test set with a random selection of 5%

of the positive gene pairs and a negative set of equal size of

gene pairs that fail to satisfy the selection criteria. We

remove the test data from the interaction score matrix G,

and predict whether a test gene pair is alleviating using the

probability that u and v occur together in a linear pathway,

i.e. P!u;v+P u;v. We report an averaged accuracy across 10

different test runs.

We characterize the accuracy of predictions through the area

under the receiver-operating characteristic curve (AUC), with

a baseline of 0.5 (random networks) and a perfect score of 1.0

(inferred networks that are identical to gold standard—known

networks).

We compare R�ed, our network inference approach, with a

recently published Bayesian approach by Battle et al. They de-

veloped preference scoring functions over all possible pairwise

gene relationships and applied annealed importance sampling to

reconstruct high scoring multi-gene networks. Their method

(referred here as APN) was shown to be superior to a number

of other approaches that can infer networks from gene inter-

action data by Jonikas et al. These other approaches include

baseline techniques such as Pearson correlation of genetic inter-

action profiles and raw interaction values as well as more sophis-

ticated techniques such as Gaussian process regression (GP;

Williams and Rasmussen, 1996), a method that uses the correl-

ation of observed interaction profiles, the diffusion kernel

method (DK; Qi et al., 2008) and GenePath (Zupan et al.,

2003). For brevity, we therefore focus on comparing our

method with APN, which was run with default parameters as

chosen by Battle et al. for the dataset of Jonikas et al., but we

also report the accuracies achieved by GP and DK.

Two essential components of R�ed are latent representation of

gene interactions and their transformation through the logistic

function. To test the extent to which the performance of R�ed

depends on these two components we also run experiments

where the algorithm infers probabilities and makes predictions

from raw (not factorized) phenotypes, and where the latent rep-

resentation is used without logistic transformation. We refer to

these two approaches as RAW and MF, respectively.

In all experiments with data from Jonikas et al., the param-

eters of R�ed are set as �U=�V=1� 10�4; �=0:1; �=0:1;
k=100. The same parameters are used on data from Surma

et al. with the exception of �=1� 10�3 and k=50, which

were selected to minimize the normalized root mean square

error of Ĝ. This choice of regularization parameters and learning

rates is common (cf. Min and Lee, 2005; Pedregosa et al., 2011).

We also show (see Supplementary Material; Supplementary Fig.

S4) that the performance of R�ed does not critically depend on

the rank of factorization k. R�ed’s optimization by gradient des-

cent is terminated when the Frobenius distance between G and Ĝ

over known values fails to decrease between the two consecutive

iterations of optimization.

4 RESULTS AND DISCUSSION

4.1 Reconstruction of a known gene pathway from

data by Jonikas et al. (2009)

We analyzed the ability of R�ed to reconstruct the known

N-linked glycosylation pathway. Figure 4 shows the inferred net-

work next to the known pathway as reported by Helenius and

Fig. 4. Gene network of the N-linked glycosylation pathway inferred by R�ed. For reference, we show the true ordering of this pathway (Helenius and

Aebi, 2004) as adapted from Battle et al. (2010). The inferred gene network reflects many correct gene placements
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Aebi (2004). Genes CWH41, DIE2 and ALG8 are correctly

placed such that they are dependent on the other genes. Also,

ALG12 is placed upstream of ALG9, which is also upstream of

ALG3. OST3 is correctly placed downstream, but OST5 is in-

correctly placed, likely because double-mutant data with the

other ALG genes were not available. Surprisingly, R�ed correctly

placed CWH41, a gene that encodes glucosidase I, an integral

membrane protein of the ER involved in sensing ER stress

(Romero et al., 1997), at the beginning of the pathway despite

mild downstream effects observed in CWH41mutants. Note that

the interaction profile of CWH41 is only moderately correlated

with those of ALG genes, and thus, CWH41 was not clustered

together with them (Jonikas et al., 2009). We hence conclude that

R�ed inference of the N-linked glycans synthesis pathway was

successful with a network that closely resembles that reported

in the literature.

4.2 Reconstruction of known gene pathways from

data by Surma et al. (2013)

We applied R�ed to mutant data by Surma et al. to reconstruct

two thoroughly studied pathways of phospholipid biosynthesis.

R�ed’s ordering of genes in the phosphatidylserine to PC conver-

sion pathway is fully consistent with the reference pathway

(Fig. 5a). In the Kennedy pathway, R�ed correctly placed PCT1

upstream of CPT1 and CKI1 upstream of CPT1 with high con-

fidence (Fig. 5b), but it misplaced gene pair PCT1 and CKI1

likely owing to the ambiguity in the data. However, as R�ed per-

forms global reasoning by combining evidence from all measure-

ments, it handled the data uncertainty by assigning PCT1 !

CKI1 structure the lowest score in the reconstruction of the

Kennedy pathway.

4.3 Reconstruction of partially known gene pathways

Jonikas et al. (2009) identified several pathways that are import-

ant for ER protein folding. Of these, the pathways for ERAD

and TA protein insertion were considered in Battle et al. (2010).

R�ed-inferred networks for these two pathways are shown in

Figures 6 and 7. The solid edges in these figures are those

inferred by our algorithm, while the dotted edges indicate gene

interactions reported in the literature (Battle et al., 2010;

Carvalho et al., 2006; Clerc et al., 2009; Jonikas et al., 2009;

Kim et al., 2005; Nakatsukasa and Brodsky, 2008).
The ordering of inferred networks is entirely consistent with

the partially known gene pathways. For instance, in the network

for the ERAD pathway (Fig. 6), the upstream placement of

MNL1 to YOS9 is consistent with existing data showing that

MNL1 generates the sugar species recognized by YOS9 (Clerc

et al., 2009). Also, MNL1, YOS9, DER1 and USA1 are placed

upstream of HRD3 and HRD1, which is compatible with data

showing that degradation of certain substrates requires all six

components (Carvalho et al., 2006; Kim et al., 2005;

Nakatsukasa and Brodsky, 2008). For the TA protein insertion

pathway, R�ed inferred a network (Fig. 7) that placed the poorly

characterized protein SGT2 upstream of the TA protein biogen-

esis machinery components according to its function in the inser-

tion of TA proteins into membranes (Battle et al., 2010).

Similarly, positive results of network inference are also re-

ported in (Battle et al., 2010). Their method inferred a number

Fig. 7. Gene network inferred by R�ed that represents the likely ordering

of genes belonging to the TA protein biogenesis machinery (solid edges).

Known relationships between genes are denoted by dotted edges. Note

that the predicted ordering strongly reflects known interdependencies

between genes

(a) (b)

Fig. 5. Gene networks of the phosphatidylserine to PC conversion path-

way (a) and the Kennedy pathway (b) as inferred by R�ed. For reference,

we show the true orderings in both pathways adapted from Surma et al.

(2013). R�ed correctly and with high confidence (P40:80) inferred all

three pairwise gene relationships of the PC conversion pathway. It also

correctly predicted two out of three gene relationships of the Kennedy

pathway with the wrong prediction (PCT1! CKI1) being assigned a low

confidence (P=0:25)

Fig. 6. The ERAD pathway predicted by R�ed is shown by solid edges. Placement of genes in the inferred network is consistent with known inter-

dependencies (dotted edges)
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of candidate networks of which the best-scored were shown to be

partially consistent with known gene interdependencies. In con-

trast, for each pathway, R�ed inferred a single network that is
entirely consistent with known gene relationships.

4.4 Quantitative analysis of gene ordering

Table 2 reports the accuracies of gene ordering prediction ob-

tained by four different algorithms, R�ed, APN and two simpli-

fied variants of R�ed. In comparison with APN, R�ed performs
substantially better in predicting the edges of the KEGG path-

ways and slightly better in predicting the edges of the N-linked

glycosylation pathway (Supplementary Figs S1 and S2).
The poor performance of the simplified variants of R�ed (RAW

and MF) indicates that R�ed’s latent representation inferred from

the factorized model, the non-linear logistic map and gene-

dependent weighting are the essential components of R�ed.
Without any of these, R�ed would not be able to achieve the

resulting accuracy.

4.5 Prediction of alleviating genetic interactions

Given the training and separate test datasets, we predict whether

an interaction is alleviating (see Section 3.3). Table 3 shows that
R�ed performs substantially better than APN (P50.001). R�ed

also outperforms standard two-factor matrix factorization

(MF) by a large margin, which is an indicator that transform-
ation via a logistic map is essential to the performance of our

algorithm. We compare these results with those obtained by GP

(Williams and Rasmussen, 1996) using squared exponential auto-
correlation model constructed from the genetic interaction pro-

files, and with the interactions predicted with the DK (Qi et al.,

2008). R�ed achieves significantly higher accuracy than GP

(P50.01) and DK (P50.001), although the difference with GP

is small and may be worthy of further study. Note that RAW, a

R�ed variant without factorization, is not applicable for this ex-

periment, as it does not generalize across gene interaction scores.

We have observed that the probabilities of alleviating gene

pairs predicted by R�ed are well correlated to the strength of

alleviating interactions (Spearman r=� 0:704; P 51� 10�100;

Supplementary Fig. S3). R�ed scores gene pairs with stronger

alleviating effects (negative interaction values with greater mag-

nitude) higher than those that interact moderately.

5 CONCLUSION

R�ed is a conceptually new approach for inference of gene net-

works from quantitative genetic interaction data. It implements a

probabilistic epistasis analysis and assembles pairwise relation-

ships into gene networks. In our experiments, R�ed was able to

reconstruct several known and partially known pathways with

accuracy above that of the state-of-the-art approaches. R�ed out-

performs APN, the state-of-the-art method by Battle et al.

(2010), both in accuracy and speed, with CPU runtime of only

a few minutes compared with APN’s 30 min for an inference of a

single full network in an ensemble of 500 networks. We also

show that R�ed’s power of generalization comes from its two

key components, a factorized model with latent representation

of gene interactions and a gene-dependent logistic map of inter-

action scores.

Our evaluation in this article was computational and thus

limited to datasets for which several gene pathways or at least

partial gene orderings were available (Battle et al., 2010; Jonikas

et al., 2009). R�ed can efficiently handle similar datasets as well as

much larger ones, such as that from the recent yeast experiments

by Costanzo et al. (2010). These are also the datasets for which

we foresee future applications of R�ed and which will require

subsequent verification of inferred networks in the wet lab.
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