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Adverse events from medications1–4 are undesirable experi-
ences associated with pharmacotherapy that accounted 
for over 110,000 deaths in the United States alone in 2019. 

Despite urgent implications5–7, it remains largely unknown how a 
nationwide pandemic (such as COVID-19)8–14 can influence patient 
safety and what inequalities in diverse patient populations can be 
exacerbated more than expected had the pandemic not occurred. 
Furthermore, intricate dependencies between the pandemic’s char-
acteristics, drugs’ mechanisms of action and patient demograph-
ics15,16 present a unique challenge for understanding patient safety 
during a public health emergency. Addressing this challenge can 
inform drug prescription, improve patient safety by identifying 
individuals at high risk for adverse events, and enable comparison 
between various health emergencies to unveil the disruptive nature 
of a public health crisis and inform health policy. To this end, algo-
rithmic approaches are needed to unveil how patient safety has 
changed with the onset of the pandemic and to compare patient 
safety to its pre-pandemic levels across patient groups and the entire 
range of approved drugs and adverse drug events. Previous stud-
ies on adverse events have focused on laboratory environments, 
molecular characterization of drugs and target proteins and limited 
clinical trial observations17–19. Studies of patient safety during a pan-
demic are restricted to a very limited set of drugs and adverse reac-
tions and are stifled by the small number of adverse event reports 
and narrow time ranges20. Also, such narrowly focused analyses can 
be confounded by historical biases in adverse event reporting and 
by mixing population groups that differ in their relative risks for 
clinical events.

In this Article, we develop an algorithmic approach to systemati-
cally investigate adverse events associated with medication use and 
how they change during a pandemic. Although we conduct analyses 
in the context of COVID-19—a threatening global pandemic21,22—
our approach can generalize to other nationwide public health 
emergencies. Using a patient safety dataset of 1,425,371 adverse 
event reports spanning seven years (January 2013 to September 
2020) and involving 2,821 drugs and 7,761 adverse events, our 
approach reveals previously unknown impacts of the pandemic 

on patient safety and identifies variation of adverse events across 
patient groups. By disentangling confounders (such as temporal 
biases in the reporting of adverse events), our approach can detect 
gender- and age-related variations in adverse events and identify 
patient groups at higher or lower risk for adverse events during the 
pandemic relative to time before the pandemic.

Our algorithmic approach led to several key findings. We found 
substantial variation in adverse drug events before and during the 
pandemic. Among 64 adverse events identified by our approach, 
we found that 54 are reported more often during the pandemic, 
even though adverse event reporting decreased by 4.4% overall. 
Furthermore, we found that pre-pandemic gender differences are 
exacerbated during the pandemic. Women suffer from more adverse 
events than men relative to pre-pandemic levels, across all age 
groups. We also find relevant clinical differences in adverse event 
outcomes across age groups. For example, reporting the frequencies 
of adverse effects such as anxiety and insomnia were disproportion-
ately increased in women and the elderly, indicating they consti-
tute at-risk patient groups. Taken together, these analyses unveil 
risk-altering adverse events that can inform drug prescription and 
public health policy, and enable comparison of this pandemic to 
other health emergencies. Finally, we present a comprehensive cata-
log of adverse events and their associations. This resource can help 
discover relationships between drugs and safety events, especially  
in cases of rare events and effects within population subgroups  
that differ in their risks of specific clinical outcomes and may be 
disproportionately affected by preventable inequities.

Results
Overview of the approach. We examined 1,425,371 adverse event 
reports involving 2,821 distinct types of adverse event and span-
ning 7,761 drugs from the US Food and Drug Administration 
(FDA) Adverse Event Reporting System (FAERS) dataset, collected 
between January 2013 and September 2020. The FAERS data-
set stores anonymized, manually reviewed adverse event reports 
received by the FDA. We used the dataset to identify adverse events 
significantly associated with the pandemic, pinpoint clinically  
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relevant drugs strongly connected with adverse drug events,  
and identify disparities in the distribution of adverse events across 
gender and age.

To this end, we developed an approach that identifies clini-
cally meaningful adverse events that satisfy the following criteria:  
(1) the reporting frequency of an adverse event changed significantly 
between 2019 and 2020, (2) the change cannot be explained by its 
trend in previous years (2013 to 2019) and (3) the adverse drug reac-
tion can be attributed to a specific medication. In line with the three 
criteria, our approach has three key components (Fig. 1a). First, the 
approach estimates the reporting odds ratio of every adverse event 
to identify those whose incidence has shifted considerably during 
the pandemic (Fig. 1b and Methods, equation (2)). Among these 
adverse events, the approach then detects those whose change in 
reporting frequency cannot be explained by the expected upward 
or downward reporting trajectory had the pandemic not occurred.  
Existing signal detection methods (such as proportional reporting 
ratio, reporting odds ratio and Bayesian methods) in pharmaco-
vigilance evaluate the strength of association between a drug and 
an adverse event23 and cannot reliably estimate whether the inci-
dence of an adverse drug reaction is consistent with its temporal 
trend. By contrast, to quantify deviations from expected trajecto-
ries in the reporting frequency during the pandemic, we define the 
‘pandemic adverse event association index’ (PAEAI; equation (3) 
in the Methods). We calculate the PAEAI index for every adverse 
event and keep those adverse events with positive PAEAI values 
(Fig. 1c), meaning that their incidence in 2020 substantially devi-
ates from predictions obtained by temporal trend analysis. Finally, 
our approach identifies adverse events that have considerable asso-
ciations with specific medications (Fig. 1d; equation (4) in the 
Methods) while ensuring that the reporting frequencies of the iden-
tified drug–adverse event pairs have considerably changed during 
the pandemic (equation (5) in the Methods).

Taken together, these three components constitute an algorith-
mic approach that can be used to analyze any patient cohort formed 
in a population, extract associations between drugs and adverse 
events, and quantify differential reporting patterns to identify high-
risk demographic groups.

Variation of adverse events before and during the pandemic. 
We find that most adverse events identified by our approach have 
increased reporting frequencies during the pandemic, despite a 
4.4% decrease in the total number of reports submitted by health-
care professionals, from 220,920 in 2019 to 211,152 reports in 2020. 
Confirming the validity of our approach, the model detects five 
adverse events directly related to COVID-19, including coronavirus 
infection, coronavirus test positive, COVID-19, suspected COVID-
19 and COVID-19 pneumonia (all P < 10−37, two-tailed Fisher’s exact 
test), which we exclude from the rest of our analyses. The approach 
detects 64 unique adverse events whose incidence changed during 
the pandemic in the overall population: 54 have increased reporting 
frequency during the pandemic and only 10 decreased in frequency 
(Supplementary Data 1). We refer to adverse drug reactions whose 
reporting frequency has disproportionately increased with the pan-
demic onset as ‘enriched adverse events’. Conversely, adverse events 
with a significant decrease in reporting are referred to as ‘purified 
adverse events’. Among the 54 enriched adverse events, delusion has 
the most significant association with the pandemic, with the largest 
PAEAI score of 1.95. The number of reports involving premature 
delivery as a drug side effect increased by 73.4%, despite studies 
from the United States and Europe finding a decrease in the overall 
incidence of preterm births as a disease during the pandemic24,25. 
Similarly, the incidence of bladder cancers as adverse drug reactions 
increased by 147%, despite an overall decrease in cancer diagno-
ses after the onset of the pandemic9. The frequency of hallucination 
side effects increased by 138% during the pandemic, which could be 

related to reports linking paranoia about COVID-19 to hallucina-
tions as well as long-term neurological impacts of the disease itself26. 
Our approach also detects large increases for severe side effects such 
as respiratory failure and cardiac arrest. The domination of adverse 
events with increased frequency is consistently observed in most 
demographics across sex and age. For example, in patients over 65 
years old, 18 out of 19 identified adverse events are enriched and 
only one is purified (Supplementary Fig. 1).

Variation of adverse drug events across gender. Although our 
approach detected 38 adverse events that increased in frequency 
in women (Supplementary Data 2), only 16 enriched adverse 
events were detected in men (Supplementary Table 1 and Fig. 2a). 
This finding is consistent with the over-representation of women 
in the dataset (62.0% reports from female patients and 38.0% 
from male patients, excluding reports with unknown sex). Even 
after accounting for gender differences in the dataset, there are 
still 48.5 enriched adverse events per million female patients, and 
only 33.0 adverse events per million male patients. Furthermore, 
32 of the 38 side effects are enriched only in women, while only 
10 out of 16 are enriched only in men (Fig. 3a). The model iden-
tifies six adverse events enriched in both women and men. For 
example, respiratory arrest has a similar PAEAI in male patients 
(PAEAI = 0.80) as in female patients (PAEAI = 0.74), suggesting 
that the pandemic has a comparable influence on the incidence 
of respiratory arrest in both men and women. In contrast, confu-
sional state has a higher PAEAI in women (PAEAI = 0.94) than in 
men (PAEAI = 0.26), suggesting that changes brought on by the 
pandemic exert a greater influence on women.

Variation of gender proportion in enriched adverse events. We 
determined the proportion of female patients in each of 54 side 
effects enriched in the overall population and compared the pro-
portions before and during the pandemic (Fig. 2b). We excluded 
premature delivery, for which all patients are female. We find that 
the proportion of female patients increased in 40 out of 53 adverse 
events during the pandemic. The two adverse events with the larg-
est increases are reduced visual acuity, where the proportion of 
women increased from 53.8% to 75.2%, and neuroleptic malignant 
syndrome, where the proportion of female patients increased from 
18.4% to 39.0%. We find that the proportion of women in drug-
related anxiety reports increased from 67.8% to 72.3%, suggesting 
that women report anxiety as a side effect at higher rates during 
the pandemic than men. We observe an increase in the proportion 
of female reports for side effects associated with anxiety disorders 
(insomnia, dyspnea (shortness of breath) and dizziness), but a 
decrease in side effects commonly associated with psychosis disor-
ders (delusion, hallucinations and dementia).

Our analyses identified 13 adverse events for which the propor-
tion of female patients has decreased but the proportion of male 
patients increased (Supplementary Fig. 7 and Supplementary 
Section 2). For example, the proportion of hypogammaglobu-
linemia reports with female patients dropped steeply from 70.6% 
to 41.2% during the pandemic, despite an eightfold increase in the 
total number of reports for hypogammaglobulinemia. As patients 
with hypogammaglobulinemia are immunocompromised and at 
higher risk for COVID-19, these findings warrant investigation 
into why the incidence of hypogammaglobulinemia decreased 
in women (Supplementary Fig. 11), despite an overall increase in 
reporting and how that relates to undiagnosed cases.

Variation of adverse drug events across age groups. Stratification 
of patients by age groups (Fig. 3b) revealed one enriched adverse 
event in young patients (Supplementary Table 2), 35 in adults 
(Supplementary Data 3) and 18 in elderly patients (Supplementary 
Table 3). After accounting for the differences in each patient 
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Fig. 1 | algorithms for the population-scale analysis of patient drug safety. a, Our algorithmic approach detects drug safety signals associated with 
the pandemic by leveraging a large-scale dataset of adverse event (AE) reports on drugs and their associated adverse reactions. In the overall patient 
population, it identifies 64 significant types of adverse event, out of 7,761. b, Disproportionality estimation. Adverse events with P < 0.05 (Bonferroni-
corrected) and whose 95% CI of the reporting odds ratio (ROR) does not cross 1 are retained. c, Analysis of AE reporting trajectories identifies adverse 
events with a large gap between the expected and observed reporting. Shown are trajectories of cardiac arrest (left; PAEAI = 1.05; R2 = 0.49; keep) and 
palpitations (right; PAEAI = −0.54; R2 = 0.81; drop). d, Drug interference filters adverse events that are not consistently associated with at least one 
medication and also requires that drug–adverse event pair has a clear association with the pandemic (scenario 3). e,f, Demographic information before 
(e) and during (f) the pandemic. The lengths of bars are proportional to the number of adverse event reports. Shown are adverse drug reactions with 
PAEAI > 0.8 enriched in women. The total number of reports during the pandemic increased by 28.1% relative to pre-pandemic in women and only by  
7.7% in men, implying an increased gender disparity. The difference between lengths of input and output streams in women or men are due to reports  
with unknown age. AR(2), second-order autoregressive model (Methods).
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cohort’s size, there are 68.8 side effects per million adults with 
increased reporting frequency during the pandemic, compared to 
27.8 adverse reactions per million young patients and 58.9 adverse 
events per million elderly patients. The one side effect enriched  
in young patients, pyrexia (PAEAI = 1.08), is similarly enriched  

during the pandemic in adults (PAEAI = 1.22), but is not signifi-
cantly impacted in the elderly (PAEAI < 0).

Twenty-eight out of the 35 enriched adverse events in adults are 
unique to adults (not associated with young or elderly patients). 
For example, drug-related jaw pain has increased incidence in adult 
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Fig. 2 | Distribution of identified adverse events. a, Identified adverse drug reactions across demographic groups and human organs. Listed are the 
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patients during the pandemic (PAEAI = 1.61), but not in young or 
elderly patients. Six adverse drug reactions are enriched in both 
adult and elderly patients (cardiac arrest, rectal hemorrhage, neu-
ropathy peripheral, acute kidney injury, gastrointestinal hemor-
rhage and neoplasm progression). Although most have similar 
PAEAI scores in both cohorts, acute kidney injury has a PAEAI 
of 1.28 in adults, but 0.81 in elderly patients, suggesting an age-
related difference in the pandemic’s impact on drug-related kid-
ney injury. Twelve adverse events are uniquely enriched in elderly 
patients, including five mental health-related events (hallucination, 
delusion, aggression, abnormal behavior and dementia). This find-
ing is in contrast with earlier surveys27 that showed lower rates of 
overall anxiety-, depression- and stress-related diseases in elderly 
compared to younger age groups and suggests that drug-induced 
psychiatric effects may warrant alternate healthcare interventions.

Distribution of adverse events across human organs. We grouped 
54 adverse events enriched in the overall population into 19 cat-
egories based on the System Organ Classification (SOC28; Fig. 2a).  
Nervous and vascular systems events were the most common 
(Supplementary Fig. 2), with nine and seven adverse events, respec-
tively, suggesting that the incidences of these two adverse event 
classes are more influenced by the changes brought on by the 
pandemic. This finding could be related to evidence suggesting 
COVID-19 can have a considerable impact on the vasculature and 
can increase the risk for developing neurologic disorders29.

Among ten purified adverse events, four are associated with 
the urinary system while two are blood-related adverse events 
(Supplementary Fig. 3). Although the incidence decreased in 
reports submitted by healthcare professionals, we find that five out 
of ten adverse events (infective pulmonary exacerbation of cystic 
fibrosis, chronic kidney disease, osteonecrosis of jaw, renal injury 
and nausea) have more self-reported cases during the pandemic 
relative to pre-pandemic levels (Supplementary Figs. 8 and 9).

Our approach identified 38 adverse events enriched in female 
patients and distributed across 14 SOC classes, with the most com-
mon classes being nervous, musculoskeletal, vascular and respira-
tory disorders (Supplementary Figs. 2 and 3). In male patients, 16 
enriched adverse events spread across seven SOC classes, with the 
most common being vascular and psychiatric disorders. Blood and 
immune system side effects were enriched in men but not women. 
By contrast, side effects in nine SOC classes that were over-repre-
sented in women but not men include metabolism, musculoskeletal, 
skin, infections and pregnancy-related disorders. Although psychi-
atric adverse events were enriched in both men and women, there 
were four psychiatric side effects in men and only two in women—
hallucination is enriched in both, anxiety is over-represented in 
females but not in males, while alcoholism, delusion and dementia 
are only enriched in male patients.

Psychiatric adverse events were enriched in the elderly, with five 
enriched adverse events, compared to only one in adults, lending 
further support to our finding that the elderly may be differentially 
susceptible to psychiatric side effects of medications. In particular, 
hallucination, delusion, abnormal behavior, aggression and demen-
tia are enriched in the elderly but not adults, while anxiety is only 
enriched in adults. Moreover, in the elderly, we observe one eye- 
and one ear-related adverse event (vitreous floaters and hypoacusis, 
respectively), but do not detect either in adults. Across sex and age 
cohorts as well as in the overall population, vascular-related side 
effects are enriched, suggesting it is a class of adverse drug reactions 
whose incidence is changed by the pandemic.

The gender gap in adverse events increased during the pandemic. 
We investigated gender disparities among the enriched adverse 
events and whether any pre-existing gender gaps have changed dur-
ing the pandemic. In the overall population, gender disparities were 

observed in all 53 adverse events before the pandemic, and we find 
that those gender differences are exacerbated during the pandemic 
in 41 out of 53 adverse events (Fig. 3c).

For example, 330 more female patients reported drug-related 
pneumonia before the pandemic than male patients. During the pan-
demic, the gap nearly tripled to 919 reports. The gender gaps nor-
malized by population size are shown in Supplementary Figs. 4–6.  
Similarly, there were 877 more reports of female patients experi-
encing urinary tract infections (UTIs) than male patients before 
the pandemic, which is consistent with anatomical and clinical evi-
dence that women are more susceptible to UTIs30. The gender gap 
for this increased to 1,223 reports during the pandemic. In contrast, 
hallucination showed almost no gender difference (15 cases) before 
the pandemic. Yet, after the pandemic, male patients reported hal-
lucination more often than women with a large gap of 243 cases. 
Among the 41 adverse events with an increased gender gap,  
33 adverse events involve more female patients than male patients 
during the pandemic (Fig. 3c).

After stratifying adverse event reports by patients’ age, we 
observe a similar increase in pre-existing gender differences for 
adults and the elderly. Among 35 adverse events enriched in adults 
during the pandemic, 24 have a notable gender difference (10 are 
only found in reports with unknown sex; excluding premature 
delivery). Of those, 21 adverse events showed an increased gender 
gap with onset of the pandemic. Among those 21 drug reactions, 18 
involved larger incidence in women than men during the pandemic 
(Fig. 4a) (Fig. 5 is adjusted for population size). In elderly patients 
(Fig. 4b; Supplementary Fig. 6 is adjusted for population size), gen-
der differences existed in 14 out of 18 enriched adverse events (four 
are only observed in reports with unknown sex). The gender differ-
ences increased in 13 out of 14 drug reactions during the pandemic. 
The gender differences in UTIs increased during the pandemic in 
the elderly but not in adult patients, concordant with evidence that 
postmenopausal women are most at risk for UTIs as a disease and 
suggesting they are similarly at risk for drug-related UTIs30.

Gender differences and drug–adverse effect associations. To 
examine the drug safety landscape across the axis of gender differ-
ences, we constructed a network of drug–adverse event associations 
that were significantly enriched in women (Fig. 5a) and men (Fig. 5b)  
during the pandemic. Adverse event can be described as either a 
disease (indication) or a side effect in a report and we accounted 
for such confounders when calculating drug–adverse event associa-
tions (Supplementary Data 10 and 11).

A cluster that includes anxiety and closely associated side effects 
(such as dizziness) is found only in the female network; one poten-
tial reason is the underlying prevalence differences across sexes. 
For example, women have consistently higher prevalence rates of 
anxiety induced by medications, which is further exacerbated by the 
pandemic. The female proportion in patients who have anxiety as an 
adverse drug reaction is 67.8% before the pandemic and increased to 
72.3% during the pandemic (Fig. 2b). Studies on anxiety as an indi-
cation found that women are more likely to have reported a mental 
health disturbance during the pandemic31. Our results suggest that 
the pandemic has also exacerbated the gender gap for anxiety as 
a drug-related side effect. The comparison of drugs present across 
both female and male networks is hindered by a lack of information 
on total drug usage in the dataset. However, two drugs whose on-
label use is for erectile dysfunction—sildenafil and tadalafil—are 
both located within the center of the female-specific cluster. Despite 
a majority of usage being in men, both drugs are found only in the 
female cluster. Both have off-label uses for treating sexual dysfunc-
tion in women, highlighting our method’s ability to detect potential 
adverse events of off-label drug usage.

Network topological features of enriched drug–adverse event 
networks are shared between men and women, such as the cluster 
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of hemotoxicity-associated drugs and the cluster of hemorrhage-
related side effects associated with rivaroxaban. In both networks, 
cardiac and respiratory arrest are associated with a similar cluster 
of nervous system-related drugs, including common benzodiazap-
ines and opioids such as fentanyl, oxycodone, methadone and dia-
morphine. Many of these drugs are known to be highly addictive, 
and this sheds light on how the COVID-19 pandemic has impacted 
ongoing substance abuse32.

We separately analyzed associations with remdesivir as the first 
treatment for COVID-19 with emergency approval33. Remdesivir 
was present in both male and female networks with an associa-
tion to cardiac arrest. In our differential analysis of adverse events 
in patients using remdesivir, we observe that female patients have 
a higher incidence of hypoxia (Supplementary Section 4), hypo-
tension and renal impairment, while male patients have a higher 
incidence of respiratory failure. These adverse events have been 
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reported in remdesivir clinical trials34,35, but are very rare (cardiac 
arrest, 1/155 patients; renal impairment, 4/53; hypotension, 4/53; 
respiratory failure, 2/53)36 and the trials fail to provide any differ-
ential drug effects for distinct patient subsets. The revealed asso-
ciation with hypoxia (reporting odds ratio = 7.05; 95% confidence 

interval (CI) = [5.45, 9.12]; P < 10−36, two-tailed Fisher’s exact test) 
is not mentioned in the literature. The detection of remdesivir-asso-
ciated adverse events highlights the importance of population-scale 
patient safety datasets to detect rare adverse events and unexpect-
edly high-risk demographic subgroups. As more clinical treatments 
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and vaccines receive emergency use authorization, rapid detection 
of rare adverse events and stratifying at-risk populations will be 
critical to patient safety.

Discussion
Although our approach can effectively identify relationships between 
adverse events and medications, as well as flag at-risk patient groups 
during a nationwide pandemic, further research is necessary to pin-
point the driving factors that changed the patient safety landscape 
so drastically with the onset of the pandemic, including altered 
drug usage37, limited access to healthcare resources38 and changes in 
human behavior (such as less physical activity39). Future pharmaco-
epidemiologic studies can identify informative resources to identify 
underlying risk factors across gender and age groups40. Patient-level 
data such as healthcare claims41 and electronic medical records42 can 
be used to examine the impact of the pandemic on adverse events 
with finer granularity.

There is an important limitation to consider in interpreting our 
findings. The patient safety dataset comprises voluntarily submit-
ted reports that are not necessarily representative of the prevalence 
rates of adverse drug events43. However, we mitigate reporting 
confounders by accounting for two kinds of bias—limited health-
care access and over-reporting due to COVID-19—and show that 
our results cannot be attributed to those biases (Supplementary 
Section 3, Supplementary Figs. 10–12, Supplementary Table 4 and 
Supplementary Data 7). Furthermore, the pandemic has probably 
affected reporting rates, which can vary across adverse events44. The 
total number of adverse event reports decreased in 2020 relative 
to 2019; nevertheless, we find that adverse events whose reporting 
frequencies have changed relative to pre-pandemic levels tend to 
be reported considerably more often than expected based on his-
torical data. This observation, together with abundant research on 
clinically relevant insights extracted from patient safety datasets45,46, 
strengthens confidence in our key findings.

Our algorithmic approach can identify differential reporting 
patterns in patient cohorts formed as a function of gender, age, 
adverse events and drugs. With additional information on medical 
and non-medical patient characteristics such as race and ethnicity, 
this approach is suitable for use in systematic safety surveillance 
to pinpoint individuals at high risk for safety events based on risk-
altering interactions. We also present a comprehensive resource of 
adverse drug effects and drug–event associations for use in phar-
macoepidemiology and public health policy to inform medication 
use in diverse populations. This resource can guide more focused 
pharmacological and clinical studies to understand the biological 
mechanisms and societal impacts of identified adverse event asso-
ciations. We expect this algorithmic approach to enable compari-
son of the COVID-19 pandemic to other health emergencies (like 
the nationwide opioid crisis in the United States and emergencies 
resulting from hurricanes and wildfires) and to help unveil the dis-
ruptive nature public health crises can have on patient safety.

Methods
The description of the methodology is structured as follows. We start by describing 
the datasets and their processing and then introduce our algorithmic approach for 
constructing population-specific models of patient safety.

Datasets. Population-scale patient safety dataset. The adverse event reports used 
in this work are from the FDA Adverse Event Reporting System (FAERS; https://
fis.fda.gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html), a primary 
source of post-marketing pharmacovigilance. The reports in FAERS mainly contain 
demographic information (such as age and sex, but no personal identifiers), 
drugs (drug substances) and adverse events (preferred terms in MedDRA). We 
investigated 10,443,476 reports, involving 19,193 adverse events and 3,624 drugs, 
reported between January 2013 and September 2020. We connected descriptors of 
adverse events in each report with MedDRA ID preferred terms (Supplementary 
Section 5) and mapped them to human organ systems through the MedDRA 
ontology (Supplementary Section 6). Further, we mapped descriptors of drugs 

to DrugBank IDs and grouped them into categories based on the Anatomical 
Therapeutic Chemical (ATC) classification system (Supplementary Section 7). For 
reports with the same case number, we kept only the latest report. We restricted 
our analysis to adverse events that occurred in the United States (6,351,817 reports) 
to avoid countrywise biases as well as those biases caused by different national 
surveillance systems. The World Health Organization (WHO) declared a pandemic 
on 11 March 2020. At the time of writing, the latest available safety reports were 
submitted on 30 September 2020. We thus focused on reports submitted from  
11 March 2020 to 30 September 2020 and the same period in previous years  
(from 2013 to 2019), leading to 3,709,531 reports.

FDA reporter qualifications. FAERS submissions are voluntarily made by reporters, 
who send the reports to the FDA directly or through drug manufacturers. The 
reporters include healthcare professionals (physicians, pharmacists, nurses, dentists 
and so on) and non-professionals (lawyers and customers). The distribution of 
reporters was found to be as follows: physicians (594,787, 16.0%), pharmacists 
(282,323, 7.6%), other healthcare professionals (548,261, 14.8%), lawyers 
(113,744, 3.1%), customers (2,045,491, 55.1%) and unknown (124,925, 3.37%). 
Non-healthcare professional reporters lack the domain knowledge to distinguish 
between true adverse events caused by the drug from indications or unrelated 
symptoms, or could be over-reporting as a result of panic arising from the 
pandemic, making these reports more likely to contain false adverse drug  
reactions that could confound our results. To avoid such confounding, in our 
main analysis we focused on reports submitted by healthcare professionals 
(1,425,371 reports). The demographic distribution of the patients is provided in 
Supplementary Section 8. However, we used all reports submitted by reporters  
with any qualifications (3,709,531 reports) to investigate the distribution 
of reporters in some further analyses (Supplementary Figs. 8–10 and 13, 
Supplementary Table 5 and Supplementary Data 9). Moreover, we compared the 
results from only using healthcare professional-submitted reports to using all 
reports (Supplementary Data 8).

Population-scale adverse event model of patient safety. Overview of the approach. 
Our approach leverages multimodal information—including drugs, adverse events 
and demographics (for example, gender and age)—from adverse event reports to 
identify drug side effects that are significantly associated with the pandemic and 
to detect inequalities among demographic subpopulations. The approach has three 
components. First, we employ disproportionality estimation to identify adverse 
drug reactions that are significantly associated with the pandemic. Second, we 
track the trajectory of each adverse event between 2013 and 2019 and quantify 
its expected incidence proportion in 2020. We remove any adverse event whose 
change in reporting frequency during the pandemic can be explained by its 
temporal trend. Finally, we keep only the adverse events that are significantly 
associated with at least one drug and where the drug–adverse event pairs are 
significantly associated with the pandemic.

Next, we take the overall population (Supplementary Data 1) as an example 
to introduce the pipeline of our proposed framework. Our model can be flexibly 
generalized to any demographic subpopulation (Supplementary Tables 1–3 and 
Supplementary Data 2 and 3) by adjusting the input reports. We start with the 
notation and mathematical representation of the dataset, and then describe details 
of the three components.

Notation and representation of adverse event data. We denote the FAERS dataset 
as X  where each element xi represents a single patient safety report. We use D 
and S to denote the set of all drugs and adverse events appearing in the FAERS 
dataset, respectively. We regard each report as a tuple including a set of drugs 
Di, a set of adverse events Si, patient’s age ai, sex gi and weight wi, reporter’s 
qualification qi, severity vector bi and reporting date ti. In other words, we have 
xi = (Di ,Si , ai, gi, wi, qi, bi , ti). The patient may take several medications at the 
same time and have multiple adverse drug events. Thus, each report contains 
a drug set Di that is a subset of D, and each drug dj ∈ Di is represented by its 
DrugBank ID (string). Similarly, the adverse events set Si ⊆ S contains one 
or more drug side effects and each sh ∈ Si is represented by its MedDRA ID 
(string). The patient’s age (in years) ai is represented by an integer, biological 
sex is denoted by gi ∈ {1, 2}, where 1 denotes male and 2 denotes female, and the 
weight (in kilograms) wi is represented by a real number. The reporter’s healthcare 
qualification qi ∈ {1, 2, 3, 4, 5} falls in one of the five categories of physicians, 
pharmacists, other professionals, lawyers and customers (denoted by 1 to 5). The 
severity vector bi is a binary vector with six elements, where 1 denotes severity and 
0 denotes not, corresponding to six outcomes (death, life-threatening condition, 
hospitalization, disability, congenital anomaly and other medical conditions) of 
the patient. We represent the reporting date ti by the number of days between the 
date when the report is submitted and a defined calibration date (we set it as 1 
January 2000). All the introduced components are used for analysis. For instance, 
we leverage all the available information (such as demographic data, severity and 
submitting date) for patient matching47–49 in the drug interference analysis.

We denote the set of reports submitted in year k as Xk, where 
k ∈ {2013, …, 2020}. The union of every year’s reports is equal to the whole FAERS 
dataset: 

∪2020
k=2013 Xk = X . In contrast to most traditional post-marketing studies, 
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which only pay attention to specific or few medications and reactions1, our 
research is conducted in a more complex context, involving the time dimension of 
patient safety data and investigating a large number of drugs and adverse events.

To organize this complex multimodal information we define logical conditions, 
allowing us to form a cohort of reports as a function of drugs, adverse events and 
submitting time. A logical predicate L consists of a sequence of atomic formulas 
(drug dj, adverse event sh and year k), which are connected with the following 
logical connectives: negation (‘not’ or ¬), logical conjunction (‘and’ or ∧), logical 
disjunction (‘or’ or ∨), existential quantification (∃) and universal quantification 
(∀). We use ‘⋅’ to denote free/unbound variables. As an example, a logical predicate 
L = (¬dj, sh, ⋅) denotes the following conjunctive connection: ‘Report describes a 
patient who does not take drug dj and Report indicates occurrence of adverse event 
sh and Report is submitted anytime in 2013–2020 time window’. We define f(L) as 
a function of L that selects all adverse event reports that satisfy logical predicate L. 
We formulate the value of f as

f(dj, sh, k) = f({AE report|L(AE report(dj, sh, k))}) = N, (1)

where N represents the number of adverse event (AE) reports that satisfy the 
atomic formulas of drug dj, adverse event sh and submission time k connected 
by logical conjunction. Let us look at an example: f(pimavanserin, urinary tract 
infection, 2020) = 117 selects a set of reports for which the following holds: ‘A 
patient received pimavanserin treatment and later experienced unwanted side 
effect of urinary tract infection, and this adverse drug reaction was submitted  
to the FDA in 2020 (11 March to 30 September).’ In this particular case, there  
are 117 patients in the FAERS who meet the above requirements.

Our approach uses adverse event data X  and identifies adverse events 
S

′
⊆ S where each drug side effect s′h ∈ S

′ has a significantly different reporting 
pattern during the pandemic than would have been expected had the pandemic 
not occurred. To that end, we define three reporting odds ratios (RORs50,51): 
β(sh) measures the association between adverse event sh and the pandemic 
(Supplementary Data 4); γ(dj, sh) quantifies the connection between drug dj and 
adverse event sh (Supplementary Data 5); δ(dj, sh) estimates the association between 
a drug–adverse event pair (dj, sh) and the pandemic (Supplementary Data 6).

Step 1 Disproportionality estimation. We conduct the disproportionality 
estimation52,53 on each adverse event to examine the association between the 
adverse event and pandemic (11 March to 30 September 2020) in contrast to before 
the pandemic (11 March to 30 September 2019). Although disproportionality 
analysis is an established approach for pharmacovigilance to generate hypotheses 
on possible causal relations between drugs and adverse effects54,55, we here use it 
in a different way that quantifies the association between adverse events and their 
submission periods. For each sh ∈ S, we define β(sh) to measure the strength of 
association between sh and the pandemic by comparing the reporting frequency 
during the pandemic with the frequency before the pandemic. Taking sh as input, 
we calculate β(sh) as

β(sh) =

f(·, sh, 2020)f(·, ¬sh, 2019)
f(·, sh, 2019)f(·, ¬sh, 2020)

, (2)

where f(⋅, sh, 2020) and f(⋅, sh, 2019) represent the number of reports involving 
sh in 11 March to 30 September in 2020 and 2019, respectively; f(⋅, ¬sh, 2020) 
and f(⋅, ¬sh, 2019) denote the number of reports that do not contain sh in 
11 March to 30 September in 2020 and 2019, respectively. As shown in 
Supplementary Data 4, we quantify the upper and lower 95% CI of β(sh) by 
eln(β(sh))±1.96

√
1/f(·, sh , 2020)+1/f(·,¬sh , 2020)+1/f(·, sh , 2019)+1/f(·,¬sh , 2019). This 

calculation does not limit the medications listed in the reports.
We calculate significance values using Fisher’s exact test followed by the 

Bonferroni correction for multiple hypothesis testing. We keep only adverse events 
that pass both the significance test (adjusted P < 0.05) and the ROR criterion. 
For β(sh), the ROR-based selection criterion is that the lower 95% CI is greater 
than 1 for adverse events that are reported more frequently during the pandemic 
(enriched or over-represented), or that the upper 95% CI is less than 1 for adverse 
events that are reported less often during the pandemic (purified or under-
represented). Unlike previous studies that mainly focused on drug responses with 
higher ROR (such as ROR > 1)20, our model can detect both enriched (β(sh) > 1) 
and purified (β(sh) < 1) adverse events.

Step 2 Adverse event reporting trajectories. The reporting trajectory of an adverse 
event refers to the changing trend of adverse event incidence proportion, indicated 
by its temporal/historical data. For example, if the reporting frequency of a certain 
adverse drug reaction has continually increased from 2013 to 2019, it would be 
expected to also grow from 2019 to 2020, and we cannot attribute its increased 
incidence to the pandemic. We develop the PAEAI index to measure whether an 
adverse event’s incidence conforms to its predicted trajectory.

We regard 11 March to 30 September in 2020 as the pandemic period 
and the same interval in previous years (2013 to 2019) as the non-pandemic 
periods. For sh that pass the twofold criterion in the previous step, we build 
a trajectory vector v(sh) = [vh,2013, vh,2014, …, vh,2020]. Element vh,k represents the 
proportion of reports related to sh in all reports submitted in year k. For example, 

of the 211,152 reports submitted during the pandemic period, 6,130 involve 
hallucination, which means the proportion of hallucination during the pandemic 
is 2.9% = 6,130/211,152. Inspired by the powerful temporal feature capture ability 
of autoregressive methods56, we train a second-order autoregressive regression 
(AR(2); Supplementary Figs. 14 and 15) model for each adverse event by fitting its 
historical values [vh,2013, vh,2014, …, vh,2019]. The regression models trained on different 
adverse events do not share parameters. The optimized model is then used to 
predict the proportion of sh in each year. The predictions [v′h,2015, v′h,2016, …, v′h,2020] 
are from 2015 to 2020 since the two-order AR model needs the first two data 
points (in 2013 and 2014) as initial inputs. On top of the difference between 
observation and prediction, we define the PAEAI of sh as

PAEAI(sh) = log |r2020(sh)|
1
5
∑2019

k=2015 |rk(sh)|
, (3)

where rk(sh) denotes the standardized residual in year k in the regression model 

of sh, which is calculated through rk(sh) = ek(sh)/
√( 1

6
)∑2020

k=2015 e2k(sh). The 
ek(sh) = v′h,k − vh,k denotes the residual of sh in year k (from 2015 to 2020).

In summary, the PAEAI index measures the ratio of the average standardized 
residual during the pandemic relative to the non-pandemic period (Supplementary 
Section 1). A positive PAEAI indicates the reporting frequency of sh has changed 
during the pandemic more than would have been expected had the pandemic not 
occurred. It suggests that the change in the reporting frequency of adverse event sh 
is associated with the pandemic and cannot be explained by temporal trends based 
on historic data. A negative PAEAI indicates that the change during the pandemic 
does not exceed expected normal fluctuations of the sh’s trajectory. A higher value 
of PAEAI indicates more substantial changes in the reporting frequency of sh. As 
PAEAI uses the logarithm function, a small difference in PAEAI reflects a rather 
large change during the pandemic relative to pre-pandemic levels. In the next step 
of the approach we only consider sh with positive PAEAI.

Step 3 Drug interference. Next, we reduce the confounding effects of multiple drug 
associations. Traditional pharmacosurveillance typically focuses on how adverse 
events are connected to a specific medication57. However, our approach is able to 
discover multiple drugs that may explain a change in reporting frequency during 
the pandemic. We consider two types of interference from drugs:
•	 The adverse event co-occurs with a certain drug but their association may not 

be significant.
•	 The association between an adverse event and the pandemic can be attributed 

to multiple drugs; however, none of the formed drug–adverse event pairs are 
significantly associated with the pandemic.

•	 Accordingly, we consider two criteria to prevent drug interference. First, the 
adverse event (such as a urinary tract infection) should be significantly associ-
ated with the therapy of at least one drug (like pimavanserin). Second, the 
formed drug–adverse event pair (such as pimavanserin–urinary tract infec-
tion) should be significantly associated with the pandemic.

To eliminate the first type of interference, for a certain adverse event sh that 
has passed the selection in the first two steps of our approach, we go through all 
the drugs that co-occurred with it in adverse event reports during the pandemic 
(that is, X2020). We use Nsh to denote the set of found drugs for sh. We only check 
associations between sh and dj ∈ Nsh during the pandemic (for simplification, we 
omit the subscript of the year). For a specific drug dj ∈ Nsh, we regard the reports 
where the drug is involved as positive samples (Xdj), and the remaining reports  
as negative samples (X¬dj). All positive samples are included in test group Tdj.  
To keep the comparison fair, we select a subset from negative samples as control 
group Cdj where the patients are similar to the ones from Tdj (that is, Tdj = Xdj 
and Cdj ∈ X¬dj)52,58. The reports in Cdj are selected through a nearest-neighbor 
propensity score matching model58, which measures the similarity between a 
report (a patient) from negative samples with a report from positive samples as a 
function of the patient characteristics. Based on the available information, we build 
a characteristic factor zi = [ai, gi, wi, qi, bi,1, …, bi,6, ti] for each report, including the 
patient’s age, sex, weight, the qualification of the reporter, severity vector (bi,1 to bi,6 
are the six elements in bi) and the submission date. For each report in test group 
Cdj, we select 10 reports that have the highest propensity scores into the control 
group52, which makes |Cdj | = 10|Tdj |. The propensity scores are measured by the 
cosine similarity among characteristic factors. Afterwards, based on Cdj and Tdj, we 
define γ(dj, sh) for each sh and all its co-occurring drugs dj ∈ Nsh by

γ(dj, sh) =

f(dj, sh, 2020)f(¬dj, ¬sh, 2020)
f(dj, ¬sh, 2020)f(¬dj, sh, 2020)

, (4)

where f(dj, sh, 2020) represents the quantity of reports with a certain 
drug dj and the specific drug reaction sh; f(dj, ¬sh, 2020) is the number of 
reports with dj but not sh; f(¬dj, sh, 2020) is the number of reports with 
sh but not dj; f(¬dj, ¬sh, 2020) is the number of reports without dj and 
without sh. We quantify the upper and lower 95% CI of γ(dj, sh) using 
eln(γ(dj , sh))±1.96

√
1/f(dj , sh , 2020)+1/f(dj ,¬sh , 2020)+1/f(¬dj , sh , 2020)+1/f(¬dj ,¬sh , 2020) 

(Supplementary Data 5).
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We set the criteria for significance to be that the 95% CI of γ(dj, sh) does not 
cross 1 and the P value corrected by the Bonferroni method is smaller than 0.05. To 
this end, for each sh we have a drug set N ′

sh that is a subset of Nsh, where each drug 
dj ∈ N

′
sh is significantly associated with sh.

To address the second type of interference from drug associations, we 
assess whether each drug–adverse event pair is significantly associated with the 
pandemic. We only consider the sh that are significantly associated with at least one 
drug (that is, N ′

sh ̸= ∅). We then define δ(dj, sh) as denoting the odds ratio of pair 
(dj, sh) (where dj ∈ N

′
sh) during the pandemic:

δ(dj, sh) =

f(dj, sh, 2020)f(¬dj, ¬sh, 2019)
f(dj, sh, 2019)f(¬dj, ¬sh, 2020)

, (5)

where f(dj, sh, 2020) and f(dj, sh, 2019) denote the number of reports that  
contain the drug–adverse event pair of interest in 2020 and 2019, respectively;  
f(¬dj, ¬sh, 2020) and f(¬dj, ¬sh, 2019) denote the number of reports that  
do not contain the (dj, sh) pair in 2020 and 2019, respectively. Through 

eln(δ(dj , sh))±1.96
√

1/f(dj , sh , 2020)+1/f(¬dj ,¬sh , 2020)+1/f(dj , sh , 2019)+1/f(¬dj ,¬sh , 2019), 
we calculate the upper/lower 95% CI of δ(dj, sh) (Supplementary Data 6). The 
criterion of significance is the same as the previous stage (that is, 95% CI of δ(dj, sh) 
does not cross 1 and Bonferroni-adjusted P < 0.05). Thus, for sh, we have a set of 
drugs, denoted by N̂sh and N̂sh ⊆ N

′
sh, where each drug dj ∈ N̂sh satisfies the 

criterion that the drug–adverse event pair (dj, sh) is significantly associated with the 
pandemic. Any adverse event s′h with N̂sh ̸= ∅ satisfies the criterion that its change 
in reporting frequency can be attributed to at least one medication, and the drug–
adverse event pair is significantly associated with the pandemic.

In summary, each adverse event s′h identified by our approach has multiple 
defined metrics. The β (along with 95% CI and adjusted P value) detects the 
reporting frequency during the pandemic, which is above (over-represented) 
or under (under-represented) what we expected (‘Step 1 Disproportionality 
estimation’). The PAEAI describes whether the change in reporting frequency in 
2020 cannot be explained by the adverse event’s temporal trend from 2013 to 2019 
(‘Step 2 Adverse event reporting trajectories’). Each s′h has one or more γ and δ 
(and corresponding 95% CIs and adjusted P values) to ensure that the change to 
reporting frequency during the pandemic is not affected by drug interference.

Statistics and reproducibility. Hypothesis testing is carried out using two-tailed 
Fisher’s exact test. Bonferroni correction is used to correct for multiple hypothesis 
testing. We calculate the ROR to measure the effect size and report upper and 
lower 95% confidence intervals (CIs). We reject a null hypothesis when the 
adjusted P value is smaller than 0.05 and the 95% CI range does not cross 1. We 
use bootstrapping to estimate error bars in the PAEAI index calculation. We ensure 
the reproducibility of our analysis by clearly presenting the proposed method and 
provide publicly accessible code and data.

Data availability
All data used in this paper, including the raw and processed adverse event report 
dataset, adverse event ontology, drug ontology and the results of our analyses, are 
shared with the research community via the project website at https://zitniklab.
hms.harvard.edu/projects/patient-safety. The raw adverse event reports are 
obtained from the FDA Adverse Event Reporting System (FAERS): https://fis.fda.
gov/extensions/FPD-QDE-FAERS/FPD-QDE-FAERS.html. The raw adverse event 
ontology data from MedDRA are available at https://www.meddra.org/, which 
requires subscription. The raw drug mapping data from DrugBank are available 
at https://go.drugbank.com/releases/latest. All data supporting the findings of this 
study are also available in Harvard Dataverse repository59: https://doi.org/10.7910/
DVN/G9SHDA. All Supplementary data (1–11) are available with this manuscript. 
Source data are provided with this paper.

Code availability
Python implementation of the methodology developed and used in the study is 
available at https://zitniklab.hms.harvard.edu/projects/patient-safety. The code 
to reproduce all results, documentation and examples of usage, are available at 
figshare60 (https://doi.org/10.6084/m9.figshare.15088161.v1) and also on GitHub 
(https://github.com/mims-harvard/patient-safety).
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