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Abstract

Motivation: The use of drug combinations, termed polypharmacy, is common to treat patients

with complex diseases or co-existing conditions. However, a major consequence of polypharmacy

is a much higher risk of adverse side effects for the patient. Polypharmacy side effects emerge be-

cause of drug–drug interactions, in which activity of one drug may change, favorably or unfavor-

ably, if taken with another drug. The knowledge of drug interactions is often limited because these

complex relationships are rare, and are usually not observed in relatively small clinical testing.

Discovering polypharmacy side effects thus remains an important challenge with significant impli-

cations for patient mortality and morbidity.

Results: Here, we present Decagon, an approach for modeling polypharmacy side effects. The ap-

proach constructs a multimodal graph of protein–protein interactions, drug–protein target interac-

tions and the polypharmacy side effects, which are represented as drug–drug interactions, where

each side effect is an edge of a different type. Decagon is developed specifically to handle such

multimodal graphs with a large number of edge types. Our approach develops a new graph convo-

lutional neural network for multirelational link prediction in multimodal networks. Unlike

approaches limited to predicting simple drug–drug interaction values, Decagon can predict the

exact side effect, if any, through which a given drug combination manifests clinically. Decagon ac-

curately predicts polypharmacy side effects, outperforming baselines by up to 69%. We find that it

automatically learns representations of side effects indicative of co-occurrence of polypharmacy in

patients. Furthermore, Decagon models particularly well polypharmacy side effects that have a

strong molecular basis, while on predominantly non-molecular side effects, it achieves good per-

formance because of effective sharing of model parameters across edge types. Decagon opens up

opportunities to use large pharmacogenomic and patient population data to flag and prioritize pol-

ypharmacy side effects for follow-up analysis via formal pharmacological studies.

Availability and implementation: Source code and preprocessed datasets are at: http://snap.stan

ford.edu/decagon.

Contact: jure@cs.stanford.edu

1 Introduction

Most human diseases are caused by complex biological processes that

are resistant to the activity of any single drug (Jia et al., 2009; Han et al.,

2017). A promising strategy to combat diseases is polypharmacy, a type

of combinatorial therapy that involves a concurrent use of multiple med-

ications, also termed a drug combination (Bansal et al., 2014). A drug

combination consists of multiple drugs, each of which has generally been

used as a single effective medication in a patient population. Since drugs

in a drug combination can modulate the activity of distinct proteins,

drug combinations can improve therapeutic efficacy by overcoming the

redundancy in underlying biological processes (Sun et al., 2015). For ex-

ample, a drug combination of Venetoclax and Idasanutlin has recently

been shown to lead to superior antileukemic efficacy in the treatment of

acute myeloid leukemia (Pan et al., 2017). Here, the two drugs work in

reciprocal ways: Venetoclax inhibits antiapoptotic Bcl-2 family proteins

while Idasanutlin activates the p53 pathway, and therefore, the combin-

ation of these two drugs improves survival by simultaneously targeting

complementary mechanisms (Pan et al., 2017).

While the use of multiple drugs may be a good practice for

the treatment of many diseases (Liebler and Guengerich, 2005;
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Tatonetti et al., 2012), a major consequence of polypharmacy to a

patient is a much higher risk of side effects which are due to drug–

drug interactions. Polypharmacy side effects are difficult to identify

manually because they are rare, it is practically impossible to test all

possible pairs of drugs, and side effects are usually not observed in

relatively small clinical testing (Bansal et al., 2014; Tatonetti et al.,

2012). Furthermore, polypharmacy is recognized as an increasingly

serious problem in the health care system affecting nearly 15% of

the U.S. population (Kantor et al., 2015), and costing >$177 billion

a year in the U.S. in treating polypharmacy side effects (Ernst and

Grizzle, 2001).

In vitro experiments and clinical trials can be performed to iden-

tify drug–drug interactions (Li et al., 2016; Ryall and Tan, 2015),

but systematic combinatorial screening of drug–drug interaction

candidates remains challenging and expensive (Bansal et al., 2014).

Researchers have thus attempted to collect drug–drug interactions

from scientific literature and electronic medical records (Percha

et al., 2012; Vilar et al., 2017), and also discovered them through

network modeling, analysis of molecular target signatures (Chen

et al., 2016a; Huang et al., 2014b; Lewis et al., 2015; Sun et al.,

2015; Takeda et al., 2017), statistical association-based models and

semi-supervised learning (Chen et al., 2016b; Huang et al., 2014a;

Shi et al., 2017; Zhao et al., 2011) (see related work in Section 7).

While these approaches can be useful to derive broad rules for

describing drug interaction at the cellular level, they cannot directly

guide strategies for drug combination treatments. In particular,

these approaches characterize drug–drug interactions through scores

representing the overall probability/strength of an interaction but

cannot predict the exact type of the side effect. More precisely, for

drugs i and j these methods predict if their combination produces

any exaggerated response Sij over and beyond the additive response

expected under no interaction, regardless of the exact type or

the number of side effects. That is, their goal is to answer a question:

Sij 6¼
?

fg, where Sij is the set of all polypharmacy side effects attributed

specifically to a drug pair i, j but not to either drug alone. However,

it is much more important and useful to answer whether a pair of

drugs i, j will interact with a given side effect of type r, r2
?
Sij. Even

though identification of precise polypharmacy side effects is critical

for improved patient care, it remains a challenging task that has not

yet been studied through predictive modeling.

1.1 Present study
Here, we develop Decagon, a method for predicting side effects of

drug pairs. We model the problem by constructing a large two-layer

multimodal graph of protein–protein interactions, drug–protein inter-

actions and drug–drug interactions (i.e. side effects; Fig. 1). Each

drug–drug interaction is labeled by a different edge type, which

signifies the type of the side effect. We then develop a new multirela-

tional edge prediction model that uses the multimodal graph to pre-

dict drug–drug interactions as well as their types. Our model is a

convolutional graph neural network that operates in a multirelational

setting.

To motivate our model, we first perform exploratory analysis

leading to two important observations (Section 3). First, we find

that co-prescribed drugs (i.e. drug combinations) tend to have more

target proteins in common than random drug pairs, suggesting that

drug-target protein information contains valuable information for

drug combination modeling. Second, we find that it is important to

consider a map of protein–protein interactions in order to be able to

model characteristics of drugs with common side effects. These

observations motivate the development of Decagon to make

predictions about which drug pairs will interact and what will the

exact type of the interaction/side effect be (Section 4).

Decagon develops a new graph auto-encoder approach

(Hamilton et al., 2017a), which allows us to develop an end-to-end

trainable model for link prediction on a multimodal graph. In con-

trast, previous graph-based approaches for link prediction tasks in

biology (e.g. Chen et al. 2016b; Huang et al. 2014b; Zong et al.

2017) employ a two-stage pipeline, typically consisting of a graph

feature extraction model and a link prediction model, both of which

are trained separately. Furthermore, the crucial distinguishing char-

acteristic of Decagon is the multirelational link prediction ability

allowing us to capture the interdependence of different edge (side ef-

fect) types, and to identify which out of all possible edge types exist

between any two drug nodes in the graph. This is in sharp contrast

with approaches for simple link prediction (Trouillon et al., 2016),

which predict only existence of edges between node pairs, and is

also critical for modeling a large number of different edge/side

effect types.

We contrast Decagon’s performance with that of state-of-the-art

approaches for multirelational tensor factorization (Nickel et al.,

2011; Papalexakis et al., 2017), approaches for representation learn-

ing on graphs (Perozzi et al., 2014; Zong et al., 2017) and estab-

lished machine learning methods for link prediction, which we

adapted for the polypharmacy side effect prediction task. Decagon

outperforms alternative approaches by up to 69% and leads to a

20% average gain in predictive performance, with larger gains

achieved on side effect types that have a strong molecular basis

(Section 6). For several novel predictions we find supporting evi-

dence in the biomedical literature, suggesting that Decagon per-

forms especially well at identifying predictions that are highly likely

Drug Protein
r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interaction

Polypharmacy 
side effects

Ciprofloxacin

SimvastatinDoxycycline

Mupirocin

r2r2

r1

Node feature vector

D S

MC

Fig. 1. An example graph of polypharmacy side effects derived from genomic

and patient population data. A multimodal graph consists of protein–protein inter-

actions, drug–protein targets and drug–drug interactions encoded by 964 different

polypharmacy side effects (i.e. edge types ri, i ¼ 1; . . . ; 964). Side information is

integrated into the model in the form of additional protein and drug feature vec-

tors. Highlighted network neighbors of Ciprofloxacin (node C) indicate this drug

targets four proteins and interacts with three other drugs. The graph encodes in-

formation that Ciprofloxacin (node C) taken together with Doxycycline (node D) or

with Simvastatin (node S) increases the risk of bradycardia side effect (side effect

type r2), and its combination with Mupirocin (M) increases the risk of gastrointes-

tinal bleed side effect r1. We use the graph representation to develop Decagon, a

graph convolutional neural model of polypharmacy side effects. Decagon predicts

associations between pairs of drugs and side effects (shown in red) with the goal

of identifying side effects, which cannot be attributed to either individual drug in

the pair
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to be true positive. Taken together, this study shows, for the first

time, the ability to model side effects of drug combinations and

opens up new opportunities for development of combinatorial drug

therapies.

2 Datasets

We formulate the polypharmacy side effect identification problem

as a multirelational link prediction problem in a two-layer

multimodal graph/network of two node types: drugs and proteins.

We construct two-layer multimodal network as follows (Fig. 1).

Protein–protein interaction network describes relationships between

proteins. Drug–drug interaction network contains 964 different

types of edges (one for each side effect type) and describes which

drug pairs lead to which side effects. Lastly, drug-protein links de-

scribe the proteins targeted by a given drug.

We continue by describing the datasets used to construct the net-

work. Preprocessed versions of all datasets are available through

this study’s website: http://snap.stanford.edu/decagon.

2.1 Protein–protein and drug–protein interactions
We used the human protein–protein interaction (PPI) network com-

piled by Menche et al. (2015) and Chatr-Aryamontri et al. (2015),

integrated with additional PPI information from Szklarczyk et al.

(2017), and Rolland et al. (2014). The network contains physical

interactions experimentally documented in humans, such as meta-

bolic enzyme-coupled interactions and signaling interactions. The

network is unweighted and undirected with 19 085 proteins and

719 402 physical interactions.

We obtained relationships between proteins and drugs from the

STITCH (Search Tool for InTeractions of CHemicals) database,

which integrates various chemical and protein networks (Szklarczyk

et al., 2016). For this study, we considered only the interactions be-

tween small chemicals (i.e. drugs) and target proteins that had been

experimentally verified. There were over 8 083 600 interactions pre-

sent between 8934 proteins and 519 022 chemicals.

2.2 Drug–drug interaction and side effect data
We also pulled from databases detailing side effects of both individ-

ual drugs and drug combinations. The SIDER (Side Effect Resource)

database contains 286 399 drug-side effect associations over 1556

drugs and 5868 side effects (Kuhn et al., 2016) obtained by mining

adverse events from drug label text. We integrated it with the

OFFSIDES database, which details off-label 487 530 associations

between 1332 drugs and 10 097 side effects (Tatonetti et al., 2012).

The OFFSIDES database was generated using adverse event report-

ing systems that collect reports from doctors, patients and drug com-

panies. We eliminated side effect synonyms and used one side effect

vocabulary to construct all datasets. That preprocessing is important

as the prediction problem would be much easier if some side effects

were perfectly correlated. After combining these datasets, there is a

median of 159 side effects per drug, with the most common side

effects being nausea, vomiting, headache, diarrhoea and dermatitis.

We pulled polypharmacy side effect information from

TWOSIDES, which details 1318 side effects types across 63 473

drug combinations, which are greater than expected given the effects

of either drug in the combination individually (Tatonetti et al.,

2012). Like OFFSIDES, TWOSIDES was generated from adverse

event reporting systems. Common side effects, like hypotension and

nausea, occur in over a third of drug combinations, while others

like amnesia and muscle spasms only occur in a handful of drug

combinations. Overall, it contains 4 651 131 drug combination-side

effect associations. In this study, we focus on predicting the 964

commonly occurring types of polypharmacy side effects that each

occurred in at least 500 drug combinations.

The final network after linking entity vocabularies used by dif-

ferent databases has 645 drug and 19 085 protein nodes connected

by 715 612 protein–protein, 4 651 131 drug–drug and 18 596 drug–

protein edges.

3 Data-driven motivation for Decagon approach

Here, we make three observations about the structure of the two-

layer multimodal graph (Fig. 1) that have important implications for

the design of the Decagon model.

First, we observe that there is a wide range in how frequently cer-

tain side effects occur in drug combinations. We find that >53% of

polypharmacy side effects are known to occur in <3% of the docu-

mented drug combinations (e.g. cerebral artery embolism, lung ab-

scess, sarcoma, collagen disorder). In contrast, the more frequent

side effects, (e.g. vomiting, weight gain, nausea and anaemia), occur

an order of magnitude more often. Due to the large variation in the

number of drug pairs each side effect is associated with, there are

only a limited number of drug pairs available for independently

training models for prediction of different side effect types. As a re-

sult, polypharmacy side-effect prediction becomes a challenging

task, especially when predicting rarer side effects, and thus it is im-

portant to develop an end-to-end approach such that the model is

able to share information and learn from all side effects at once.

Second, we observe that polypharmacy side effects do not appear

independently of one another in co-prescribed drug pairs (i.e. drug

combinations), suggesting that joint modeling over multiple side

effects can aid in the prediction task. To quantify the co-occurrence

between side effects, we count the number of drug combinations in

which a given side effect co-occurs with other side effects, and then

use permutation testing with a null model of random co-occurrence.

As exemplified for hypertension and nausea in Table 1, we find that

the majority of the most common side effects are either significantly

overrepresented or underrepresented with respect to how often they

co-occur with nausea/hypertension as side effects in drug combina-

tions, at a ¼ 0:05. This observation points to the existence of mech-

anisms that may contribute to the shared pathophysiology of side

effects, similar to what has been observed in disease comorbidity

(Lee et al., 2008). For example, we find that hypertension signifi-

cantly co-occurs with anxiety but co-occurs less often with fever

than dictated by random chance (Table 1). These relationships hold

across the side effect dataset. We conclude that a prediction model

should leverage dependence between side effects and be able to re-

use the information learned about the molecular basis of one side ef-

fect to better understand the molecular basis of another side effect.

Third, we probe the relationship between proteins targeted by a

drug pair and occurrence of side effects. Let Ti represent a set of tar-

get proteins associated with drug i, we then calculate the Jaccard

similarity between target proteins of a given drug pair (i, j). We

make several observations: (i) More than 68% of drug combinations

have zero target proteins in common, suggesting it is important to

use protein–protein interaction information to ‘connect’ different

proteins targeted by different drugs. (ii) Random drug pairs have

smaller overlap in targeted proteins than co-prescribed drugs (Fig. 2,

light grey), P-value¼5e� 120, 2-sample Kolmogorov-Smirnov (KS)

test. (iii) We find that this trend is unequally observed across differ-

ent side effects. For example, high blood pressure more strongly
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appears in drug combinations with shared target proteins than,

for example, rib fracture (Fig. 2, purple). Over 150 side effects ap-

pear in combinations that differ significantly (at a ¼ 0:05 after

Bonferroni correction) from the other true drug combinations, per a

2-sample KS test, suggesting a strong molecular basis of these side

effects. Based on this findings, we conclude it is important for a

model to consider how proteins interact with each other and to be

able to model longer chains of (indirect) interactions.

4 Graph convolutional Decagon approach

We cast polypharmacy side effect modeling as a multirelational link

prediction problem on a multimodal graph encoding drug, protein

and side effect relationships (Fig. 1). More precisely, these relation-

ships are represented by a graph G ¼ V;Rð Þ with N nodes (e.g. pro-

teins, drugs) vi 2 V and labeled edges (relations) vi; r; vj

� �
, where r is

the edge type (relation type): (i) physical binding between two pro-

teins, (ii) a target relationship between a drug and a protein or (iii) a

particular type of a side effect between two drugs. As mentioned in

Section 2, we consider 964 different relation types between drugs

(i.e. side effects).

In addition, we allow for inclusion of side information in the

form of additional node features. Different nodes (drugs, proteins)

can have different number of node features, given by real-valued fea-

ture vectors x1; x2; . . . ; xN assigned to every node in the graph.

Polypharmacy side effect prediction task. The polypharmacy

side effect prediction task considers the problem of identifying asso-

ciations between drug pairs and side effects. Importantly, these asso-

ciations are limited to only those that cannot be attributed to either

drug alone. Using the graph G, the task is to predict labeled edges

between drug nodes. Given a drug pair (vi, vj), our aim is to deter-

mine how likely an edge eij ¼ vi; r; vj

� �
of type r belongs toR, mean-

ing that concurrent use of drugs vi and vj [i.e. the use of a drug

combination (vi, vj)] is associated with a polypharmacy side effect of

type r in the human patient population.

To this aim, we develop a non-linear, multi-layer convolutional

graph neural network model Decagon that operates directly on

graph G. Decagon has two main components:

• an encoder: a graph convolutional network operating on G and

producing embeddings for nodes in G (Fig. 3A; Section 4.1) and
• a decoder: a tensor factorization model using these embeddings

to model polypharmacy side effects (Fig. 3B; Section 4.2).

We proceed by describing Decagon, our approach for modeling pol-

ypharmacy side effects.

4.1 Graph convolutional encoder
We first describe the graph encoder model, which takes as input a

graph G and additional node feature vectors xi, and produces a

node d-dimensional embedding zi 2 Rd for every node (drug, pro-

tein) in the graph.

We propose an encoder model that makes efficient use of informa-

tion sharing across regions in the graph and assigns separate processing

channels for each relation type. The idea is that Decagon learns how to

transform and propagate information, captured by node feature vectors,

across the graph. Every node’s network neighborhood defines a differ-

ent neural network information propagation architecture but these

architectures then share functions/parameters that define how informa-

tion is shared and propagated. We learn convolutional operators that

propagate and transform information across different parts of the graph

and across different relation types. The model inspired by a recent class

of convolutional neural networks that operate directly on graphs

(Defferrard et al., 2016; Kipf and Welling, 2016). For a given node

Decagon performs transformation/aggregation operations on feature

vectors of its neighbors. This way Decagon only takes into account the

first-order neighborhood of a node and applies the same transformation

across all locations in the graph. Successive application of these opera-

tions then effectively convolves information across the K-th order neigh-

borhood (i.e. embedding of a node depends on all the nodes that are at

most K steps away), where K is the number of successive operations of

convolutional layers in the neural network model.

In each layer, Decagon propagates latent node feature informa-

tion across edges of the graph, while taking into account the type

(relation) of an edge (Schlichtkrull et al., 2017). A single layer of

this neural network model takes the following form:

h
kþ1ð Þ

i ¼ /
X

r

X
j2N i

r

cij
r W kð Þ

r h
kð Þ

j þ ci
rh

kð Þ
i

0
@

1
A; (1)

where h
kð Þ

i 2 Rd kð Þ is the hidden state of node vi in the k-th layer of

the neural network with d kð Þ being the dimensionality of this layer’s

Table 1. Percent co-occurrence of hypertension and nausea with the 50 most frequent side effects in drug combinations, annotated with

examples

Polypharmacy side effect S Overrepresented co-occurrence Underrepresented co-occurrence Insignificant co-occurrence

Hypertension 44% (hyperglycemia, anxiety, dizziness) 48% (fever, sepsis, dermatitis) 8% (cough, tachycardia)

Nausea 54% (diarrhea, insomnia, asthenia) 34% (edema, anemia, neutropenia) 12% (fever, dyspnea)

Note: The vast majority of side effects are either significantly overrepresented or underrepresented with respect to how often they appear in drug combinations

with nausea/hypertension, at a ¼ 0:05, after Bonferroni correction.

Fr
ac

tio
n 

of
 d

ru
g 

pa
irs

No shared 
target proteins

(0-50]% shared
target proteins

(50-100]% shared
target proteins

Co-prescribed drug pairs
(i.e., drug combinations)

Fig. 2. Jaccard similarity between target proteins for random pairs of drugs,

all drug combinations and drug combinations associated with specific side

effects. Drug pairs are stratified into three groups depending on whether

drug i and j in a given pair (i, j) do not share any target proteins, share

fewer than 50% target proteins, or share >50% target proteins (i.e. Jaccard

ðTi ;Tj Þ ¼ 0; 0 < JaccardðTi ;Tj Þ < 0:5 and 0:5 � JaccardðTi ;Tj Þ � 1, re-

spectively; Ti is a set of i’s target proteins). We observe that drugs in most

drug pairs, especially in random drug pairs (i.e. drugs not commonly co-

prescribed, dark grey) have zero shared target proteins
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representation, r is a relation type and matrix W kð Þ
r is a relation-type

specific parameter matrix. Here, / denotes an non-linear element-

wise activation function (i.e. a rectified linear unit), which trans-

forms the representations to be used in the layer of the neural model,

cij
r and ci

r are normalization constants, which we choose to be sym-

metric cij
r ¼ 1=

ffiffi
j

p
N i

rjjN
j
rj and ci

r ¼ 1=jN i
rj with N i

r denoting the set

of neighbors of node vi under relation r. Importantly note that the

sum in Equation (1) ranges only over the neighbors N i
r of a given

node i and thus the computational architecture (i.e. the neural net-

work) is different for every node. Figure 3A shows an example of a

per-layer convolutional update Equation (1) for node C from

Figure 1. And, Figure 3C then illustrates that different nodes have

different structures of neural networks (because each node’s net-

work neighborhood is different).

A deeper model can be built by chaining multiple (i.e. K) of

these layers (Fig. 3A) with appropriate activation functions. To ar-

rive at the final embedding zi 2 Rd of node vi, we compute its rep-

resentation as: zi ¼ h
Kð Þ

i : The overall encoder then takes the

following form. We stack K layers as defined in Equation (1) such

that the output of the previous layer becomes the input to the next

layer. The input to the first layer are node feature vectors,

h
0ð Þ

i ¼ xi, or unique one-hot vectors for every node in the graph if

no features are present.

4.2 Tensor factorization decoder
So far, we introduced Decagon’s encoder. The encoder maps each

node vi 2 V to a an embedding, a real-valued vector representation

zi 2 Rd, where d is the dimensionality of node representations. We

proceed by describing the decoder component of Decagon.

The goal of decoder is to reconstruct labeled edges in G by relying

on learned node embeddings and by treating each label (edge type)

differently. In particular, decoder scores a vi; r; vj

� �
-triple through a

function g whose goal is to assign a score g vi; r; vj

� �
representing how

likely it is that drugs vi and vj are interacting through a relation/side

effect type r (Fig. 3B). Using embeddings for nodes i and j returned by

Decagon’s encoder (Section 4.1) zi and zj, the decoder predicts a can-

didate edge vi; r; vj

� �
through a factorized operation:

g vi; r; vj

� �
¼

zT
i DrRDrzj if vi and vj are drugs

zT
i Mrzj if vi and vj are both proteins; or;

vi and vj are a protein and a drug

8>><
>>:

(2)

followed by the application of a sigmoid function r to compute

probability of edge vi; r; vj

� �
:

pij
r ¼ p vi; r; vj

� �
2 R

� �
¼ r g vi; r; við Þð Þ: (3)

Next, we explain Decagon’s decoder by distinguishing between the

following two cases:

1. When vi and vj are drug nodes, the decoder g in Equation (2)

assumes a global model of drug–drug interactions (i.e. R) whose

variation and importance across polypharmacy side effects are

described by side-effect-specific diagonal factors (i.e. Dr). Here, R is

a trainable parameter matrix of shape d 3 d that models global

drug–drug interactions across all possible polypharmacy side effects.

Additionally, in Decagon, every relation r representing a different

polypharmacy side effect is associated with a diagonal d 3 d matrix

Dr modeling the importance of each dimension in zi towards side

effect r. In an alternative view, this decoder can be thought of as a

tensor factorization [more specifically, a rank-d DEDICOM tensor

decomposition (Nickel et al., 2011; Trouillon et al., 2016)] of a

three-way tensor, where two modes are identically formed by the

drugs and the third mode holds polypharmacy side effects of drug

combinations. However, a distinguishing characteristic of Decagon

is the reliance on the encoder. Whereas classic tensor decomposi-

tions use node representations optimized directly in training, we

compute them in an end-to-end fashion where node embeddings are

optimized jointly together with the tensor factorization.

2. When vi and vj are not both drug nodes, the decoder g in

Equation (2) employs a bilinear form to decode edges from node

r1 Gastrointestinal bleed effect  

r2 Bradycardia effect

Drug target relation

A batch of networks for six drugs

C

CS

D

M

A CB

.

.

.

p(     , r1,      )

p(     , r2,      )

p(     , r3,      )
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                   side effects
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Fig. 3. Overview of Decagon model architecture. (A) An Decagon encoder. Shown is a per-layer update for a single graph node (a drug node representing

Ciprofloxacin based on the small example input graph in Fig. 1). Hidden state activations from neighboring nodes N c
r are gathered and then transformed for each

relation type r individually (i.e. gastrointestinal bleed, bradycardia and drug target relation). The resulting representation is accumulated in a (normalized) sum

and passed through a non-linear activation function (i.e. ReLU) to produce hidden state of node vc in the ðk þ 1Þ-th layer, hðkþ1Þ
c . This per-node update is computed

in parallel with shared parameters across the whole graph. (B) For every relation, Decagon decoder takes pairs of embeddings (e.g. hidden node representations

zc and zs representing Ciprofloxacin and Simvastatin) and produces a score for every (potential) edge in the graph. Shown is the decoder for poypharmacy side

effects relation types. (C) A batch of neural networks that compute embeddings of six drug nodes in the input graph. In Decagon, neural networks differ from

node to node but they all share the same set of relation-specific trainable parameters [i.e. the parameters of the encoder and decoder; see Equations (1) and (2)].

That is, rectangles with the same shading patterns share parameters, and thin rectangles with black and white shading pattern denote densely connected neural

layers
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embeddings. More precisely, in that case, the decoding function

g is associated with a trainable parameter matrix Mr of shape

d 3 d that models interactions between every two dimensions in

zi and zj. The predicted edge probability is then computed using

a bilinear form (Equation 2) followed by the application of a sig-

moid function (Equation 3).

The use of different edge decoders based on the type of nodes in

Equation (2) is crucial because of the following two reasons: First,

Decagon decoder can be seen as a form of effective parameter shar-

ing between different relation types. In particular, relation types

involving drug pairs use the same global drug–drug interaction

model (i.e. matrix R) containing patterns that hold true across all

drug-related relation types. We expect that this decoding parameter-

ization can alleviate overfitting on rare side effects as parameters are

shared between both rare (e.g. myringitis or nasal polyps) and fre-

quent (e.g. hypotension or anaemia) side effects. Second, we want a

high score g vi; r; vj

� �
to indicate an association between a drug com-

bination (vi, vj) and a side effect r that cannot be attributed to vi or

vj alone. To capture the polypharmacy combinatorics (Jia et al.,

2009), it is thus important that Decagon allows, through R, for a

non-zero interaction between any two dimensions in i’s and j’s

embeddings.

Taken together, the trainable parameters of Decagon model are:

(i) relation-type-specific neural network weight matrices Wr, (ii)

relation-type-specific parameter matrices Mr, (iii) a global side-

effect parameter matrix R and (iv) side-effect-specific diagonal par-

ameter matrices Dr: Decagon encoder and decoder thus forms an

end-to-end trainable model for multirelational link prediction in a

multimodal graph (Fig. 3).

Next, we shall describe how to train the Decagon approach.

In particular, we explain how to train neural network weights

and interaction parameter matrices using an end-to-end learning

technique.

4.3 Decagon model training
During model training, we optimize model parameters using the

cross-entropy loss:

Jr i; jð Þ ¼ �log pij
r � En�Pr jð Þ log 1� pin

r

� �
; (4)

to encourage the model to assign higher probabilities to observed

edges vi; r; vj

� �
than to random non-edges. As in previous study

(Mikolov et al., 2013; Trouillon et al., 2016), we estimate the model

through negative sampling. For each drug-drug edge vi; r; vj

� �
(i.e. a

positive example) in the graph, we sample a random edge vi; r; vnð Þ
(i.e. a negative example) by randomly choosing node vn. This is

achieved by replacing node vj in edge vi; r; vj

� �
with node vn that is

selected randomly according to a sampling distribution Pr (Mikolov

et al., 2013). Considering all edges, the final loss function in

Decagon is:

J ¼
X

vi ;r;vjð Þ2R
Jr i; jð Þ: (5)

Recent results have shown that modeling graph-structured data can

often be significantly improved with end-to-end learning (Defferrard

et al., 2016; Gilmer et al., 2017), thus we take an end-to-end opti-

mization approach and jointly optimize over all trainable parame-

ters and propagate loss function gradients through both Decagon’s

encoder as well as decoder.

To optimize the model we train it for a maximum of 100 epochs

(training iterations) using the Adam optimizer (Kingma and Ba, 2014)

with a learning rate of 0.001 and early stopping with a window size

of 2, i.e. we stop training if the validation loss does not decrease for

two consecutive epochs. We initialize weights using the initialization

described in Glorot and Bengio (2010) and accordingly normalize

node feature vectors. In order for the model to generalize well to un-

observed edges we apply a regular dropout (Srivastava et al., 2014) to

hidden layer units (Equation 1). In practice, we use efficient sparse

matrix multiplications, with complexity linear in the number of edges

in G, to implement Decagon model.

We use mini-batching by sampling contributions to the loss

function in Equation (5). That is, we process multiple training mini-

batches, each obtained by sampling only a fixed number of contribu-

tions from the sum over edges in Equation (5), resulting in dynamic

batches of computation graphs (Fig. 3C). By only considering a fixed

number of contributions to the loss function, we can remove respect-

ive data points that do not appear in the current mini-batch. This

serves as an effective means of regularization, and reduces the mem-

ory requirement to train the model, which is necessary so that we

can fit the full model into GPU memory (all data and code are

released on the project website).

5 Experimental setup

We view the problem of predicting polypharmacy side effects as

solving a multirelational link prediction task. Here, every drug pair

is connected through zero, one or more relation types (i.e. side effect

types) from a set of all relation types (i.e. all side effect types, see

Section 2 and Fig. 1).

For each polypharmacy side effect type, we split drug pairs asso-

ciated with that side effect into training, validation and test sets,

ensuring that the validation and test sets each include 10% of drug

pairs. For each side effect type, we use 80% of drug pairs to train a

model, and 10% of drug pairs to select model parameters. The task

is then to predict pairs of drugs that are associated with each side ef-

fect type. Note that we are extremely careful that there is informa-

tion leakage between the folds and that the cross-validation is fair.

We apply Decagon, which for every drug pair and for every side

effect type calculates a probability that a given drug pair is associated

with a given side effect. Additionally, we integrate side information,

i.e. side effects of individual drugs (Section 2), into the model in the

form of additional features xi for drug nodes i. To prevent any circu-

larity and information leakage in the evaluation, we make sure that:

(i) side effects we are predicting over are true polypharmacy side

effects (i.e. a given polypharmacy side effect is only associated with a

drug pair and not with any individual drug in the pair) and (ii) no side

effect types that we are predicting over are included in the side fea-

tures. For example, nausea is one polypharmacy side effect, and we

therefore remove all instances of nausea as a side effect for individual

drugs. We note that this is a conservative approach which allows us

to reliably estimate prediction performance.

We are not aware of any other approach developed for predict-

ing side effects of drug pairs. We thus evaluate the performance

of Decagon against the following multirelational link prediction

approaches:

• RESCAL tensor decomposition (Nickel et al., 2011): This is a

tensor factorization approach that takes a multirelational struc-

ture into account. Given Xi, a drug-drug matrix encoding associ-

ations of drugs pairs with side effect r, matrix Xi is decomposed

as: Xr ¼ ATrA
T for r ¼ 1;2; . . . ; 964, where Tr and A are model

parameters. Given drugs i and j, their association with r is pre-

dicted as: aiTraj.
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• DEDICOM tensor decomposition (Papalexakis et al., 2017):

This is a related tensor factorization approach suitable for sparse

data settings. A given drug–drug matrix Xi is decomposed as:

Xr ¼ AUrTUrA
T . Given drugs i and j, their association with r is

predicted as: aiUrTUraj.
• DeepWalk neural embeddings (Perozzi et al., 2014; Zong et al.,

2017): This approach learns d-dimensional neural features

for nodes based on a biased random walk procedure exploring

network neighborhoods of nodes. Drug pairs are represented

by concatenating learned drug feature representations and used

as input to a logistic regression classifier. For each link-type (i.e.

side effect type), we train a separate logistic regression classifier.
• Concatenated drug features: This approach constructs a feature

vector for each drug based on PCA representation of drug–target

protein interaction matrix and based on PCA representation of

side effects of individual drugs. Drug pairs are represented by

concatenating the corresponding drug feature vectors and used

as input to a gradient boosting trees classifier that then predicts

the exact side effect of a pair of drugs.

The parameter settings for every approach are determined using

a validation set with a grid search over candidate parameter values

(e.g. for gradient boosting trees, the number of trees used was varied

from 10 to 100). In case an approach is not a multirelational link

prediction method, we select parameters with best performance on

the validation set individually for each side effect type. Specifically,

Decagon uses a 2-layer neural architecture with d 1ð Þ ¼ 64, and d 2ð Þ
¼ 32 hidden units in each layer, a dropout rate of 0.1, and a mini-

batch size of 512 in all experiments.

Performance is calculated individually per side effect type using

area under the receiver-operating characteristic (AUROC), area

under the precision-recall curve (AUPRC) and average precision at

50 (AP@50). Higher values always indicate better performance.

6 Results

Decagon operates on multimodal graphs and in highly multirela-

tional settings. This flexibility makes Decagon especially suitable for

predicting side effects of pairs of drugs as we shall discuss below.

6.1 Prediction of polypharmacy side effects
We start by comparing the performance of Decagon to alternative

approaches. From results in Table 2, we see that considering

the multimodal network representation and modeling a large number

of different side effects allows Decagon to outperform other

approaches by a large margin. Across 964 side effect types, Decagon

outperforms alternative approaches by 19.7% (AUROC), 22.0%

(AUPRC) and 36.3% (AP@50). Decagon’s improvement is especially

pronounced relative to tensor factorization methods, where Decagon

surpasses tensor-based methods by up to 68.7% (AP@50). This finding

highlights a potential limitation of directly optimizing a tensor decom-

position [i.e. vanilla RESCAL and DEDICOM (Nickel et al., 2011;

Papalexakis et al., 2017)] without relying on a graph-structured convo-

lutional encoder. We also compared Decagon with two other methods

(Perozzi et al., 2014; Zong et al., 2017), which we adapted for a multi-

relational link prediction task. We observe that DeepWalk neural

embeddings and Concatenated drug features achieve a gain of 9.0%

(AUROC) and a 20.1% gain (AUPRC) over tensor-based methods.

However, these approaches employ a two-stage pipeline, consisting of

a drug feature extraction model and a link prediction model, both of

which are trained separately. Furthermore, they cannot consider inter-

dependence of different side effects that we showed to contain useful

information (Section 3). These additional modeling insights, give

Decagon a 22.0% gain over DeepWalk neural embeddings, and a

12.8% gain over Concatenated drug features in AP@50 scores.

These findings are aligned with results that predictions can often

be significantly improved by end-to-end learning and specifically

using graph auto-encoders (Hamilton et al., 2017a, b; Kipf and

Welling, 2016). In particular, tensor decomposition and neural

embedding baseline approaches allow us to quantify what percent-

age of the performance improvement is due to the embeddings (i.e.

Decagon’s encoder) and what percentage is due to the multitask

learning (i.e. Decagon’s decoder).

To better understand Decagon’s performance we stratify the

aggregated statistics in Table 2 by side effect type. Manual examin-

ation of the results and a discussion with domain experts reveals a

common property of best performing side effects in Table 3. We ob-

serve that Decagon models particularly well side effects with strong

apparent molecular underpinnings. This observation is consistent

with our expectation because Decagon’s multimodal graph (Fig. 1)

contains predominantly pharmacogenomic information. We also

observed that side effects with the worst performance tend to

be common side effects and/or have non-molecular origins with

potentially important environmental and behavioral components

(Table 3). Decagon’s competitive performance on those side effects

can be explained by effective sharing of model parameters across dif-

ferent types of side effects.

6.2 Investigation of Decagon’s novel predictions
Next, we perform a literature-based evaluation of new hits. Our

goal is to evaluate the quality of novel Decagon’s predictions about

relationships between side effects and drug pairs. To this aim, we

ask Decagon to make a prediction for every drug pair and every side

effect type in the dataset. We then use these predictions to construct

a ranked list of (drug i, side effect type r, drug j) triples, where the

Table 2. Area under ROC curve (AUROC), area under precision-re-

call curve (AUPRC) and average precision at 50 (AP@50) for poly-

pharmacy side effect prediction

Approach AUROC AUPRC AP@50

Decagon 0.872 0.832 0.803

RESCAL tensor factorization 0.693 0.613 0.476

DEDICOM tensor factorization 0.705 0.637 0.567

DeepWalk neural embeddings 0.761 0.737 0.658

Concatenated drug features 0.793 0.764 0.712

Note: Reported are average performance values for 964 side effect types.

Table 3. Side effects with the best and worst performance in

Decagon

Best performing side effects AUPRC Worst performing

side effects

AUPRC

Mumps 0.964 Bleeding 0.679

Carbuncle 0.949 Increased body temp. 0.680

Coccydynia 0.943 Emesis 0.693

Tympanic membrane perfor. 0.941 Renal disorder 0.694

Dyshidrosis 0.938 Leucopenia 0.695

Spondylosis 0.929 Diarrhea 0.705

Schizoaffective disorder 0.919 Icterus 0.707

Breast dysplasia 0.918 Nausea 0.711

Ganglion 0.909 Itch 0.712

Uterine polyp 0.908 Anaemia 0.712
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triples are ranked by predicted probability scores pij
r (Equation 3).

We then exclude from the ranked list all the known associations be-

tween drug pairs and side effects, and afterwards investigate the 10

highest ranked predictions in the list. To prevent the risk of investi-

gative bias, we do not allow any crosstalk between different stages

of the analysis. We then search biomedical literature to see if we can

find supporting evidence for these novel predictions.

Table 4 shows Decagon’s predictions and literature evidence sup-

porting these predictions. We were able to find literature evidence for

five out of 10 highest ranked predicted side effects. That is, our

method both correctly identified the drug pair as well as the side effect

type for these highest ranked predictions. This result is remarkable be-

cause the predictions were specific and the supporting evidence was

very unlikely to be found by random selection of drug pair and side ef-

fect associations. We note that the cited literature explicitly investi-

gates interactions between the predicted drug pair and the predicted

side effect. For example, Decagon signified the use Atorvastatin and

Amlodipine can lead to muscle inflammation (Table 4, 8th highest

ranked prediction). In fact, recent reports (e.g. Banakh et al., 2017)

have found injuries in muscle tissue due to presumed drug interactions

of Atorvastatin with Amlodipine. Decagon also flagged a potential as-

sociation between Pyrimethamine, an anti-microbial that, if taken

alone, is effective in the treatment of malaria, and Aliskiren, a renin

inhibitor, whose clinical trial was halted after discovered kidney com-

plications (Parving et al., 2012), suggesting an increased risk of cancer

(1st highest ranked prediction). The analysis here demonstrates the

potential of Decagon’s predictions to facilitate the translational sci-

ence and the discovery of novel (non)-efficacious drug combinations.

6.3 Exploration of Decagon’s side effect embeddings
Finally, we are interested in knowing whether Decagon meets the de-

sign goals presented in Section 3. In particular, we test if Decagon can

capture the interdependence of different side effect types revealed by

our exploratory data analysis (second observation in Section 3). To

this aim, we take diagonal matrices Dr, which specifically model the

importance of interactions for each side effect type r in Decagon’s

multirelational link prediction (Section 4.2). We extract the diagonal

from each Dr and use it as a vector representation for side effect r. We

embed these vector representations into a 2D space using t-SNE

(Maaten and Hinton, 2008) and then visualize in Figure 4.

Figure 4 reveals the existence of clustering structure in side

effects’ representations. Examining the figure, we observe that side

effects embedded close together in the 2D space tend to co-occur in

drug combinations. This observation indicates that Decagon infers

similar matrices Dr1
and Dr2

for side effects r1 and r2 that appear to-

gether in many drug combinations. For example, the top three side

effects that often appear together with uterine polyp side effect are:

uterine bleeding, breast dysplasia and postmenopausal bleeding.

Indeed, Decagon infers similar diagonal factors Dr for all three side

effects, resulting in localized projections in the 2D space (Fig. 4).

To test if the appealing pattern in Figure 4 holds true across

many side effect types we proceed as follows. We compute average

Euclidean distance between each side effect’s vector representation

and vector representations of three most frequently co-occurring

side effects. We find that co-occurring/related side effects have sig-

nificantly more similar representations (i.e. diagonal factors Dr)

than expected by chance (P-value¼1e� 34, 2-sample KS test). We

thus conclude that Decagon is able to meet the design goals of poly-

pharmacy side effect modeling. Furthermore, the analysis here indi-

cates that Decagon’s multirelational link prediction model (Section

4.2) can capture interdependence of side effects present in drug com-

bination data.

7 Related work

We review related research on computational prediction of drug

combinations, and on neural networks for graph-structured data.

7.1 Drug combination modeling
Methods in computational pharmacology aim to find associations be-

tween drugs and molecular targets, predict potential adverse drug reac-

tions and find new uses of existing drugs (Campillos et al., 2008;

Hodos et al., 2016; Li et al., 2016). In contrast to individual drugs and

single drug therapy (i.e. monotherapy) predominantly considered by

these methods, we consider drug combinations (i.e. polypharmacy).

This is important as polypharmacy is a useful strategy for combating

complex diseases (Han et al., 2017; Jia et al., 2009) with important

implications for health care system (Ernst and Grizzle, 2001).

Table 4. New polypharmacy side effect predictions given by (drug i, side effect type r, drug j) triples that were assigned the highest probabil-

ity scores by Decagon

k Polypharmacy effect r Drug i Drug j Evidence

1 Sarcoma Pyrimethamine Aliskiren Stage et al. (2015)

4 Breast disorder Tolcapone Pyrimethamine Bicker et al. (2017)

6 Renal tubular acidosis Omeprazole Amoxicillin Russo et al. (2016)

8 Muscle inflammation Atorvastatin Amlodipine Banakh et al. (2017)

9 Breast inflammation Aliskiren Tioconazole Parving et al. (2012)

Note: For each prediction, we include its rank k in the ranked list of all predictions and literature evidence supporting existence of the predicted association.

T-SNE 1

T-
S

N
E

 2

Thyroid
disease

Hypothyroid

Cholelithiasis

Uterine polyp

Postmenopausal bleeding

Fibromyalgia

Diabetes

hypogamma
globulinaemia

Viral 
encephalitis

Breast
dysplasia

Abdominal
pain

Sleep apnea

Viral meningitis
Pancreatitis

Uterine bleeding

Otitis media

Fig. 4. Visualization of side effects in Decagon. The side effects are mapped to

the 2D space using the t-SNE package (Maaten and Hinton, 2008) with learned

side effect representations [Dr ; r ¼ 1; 2; . . . ; 964, see Equation (2)] as input.

Selected side effects are uterine polyp, pancreatitis, viral meningitis and thyroid

disease. For each selected side effect, we highlight three side effects that most

often co-occur with the selected side effect in the drug combination dataset
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Traditionally, effective drug combinations have been identified

by experimentally screening all possible combinations of a pre-

defined set of drugs (Chen et al., 2016b). Given the large number

of drugs, experimental screens of pairwise combinations of drugs

pose a formidable challenge in terms of cost and time. For ex-

ample, given n drugs, there are n n� 1ð Þ=2 pairwise drug combina-

tions and many more higher-order combinations. To address the

combinatorial explosion of candidate drug combinations, compu-

tational methods were developed to identify drug pairs that poten-

tially interact, i.e. drug pairs that produce an exaggerated response

over and beyond the additive response expected under no inter-

action (Ryall and Tan, 2015). Previous research in this realm

focused on defining drug–drug interactions through the concepts

of synergy and antagonism (Lewis et al., 2015; Loewe, 1953),

quantitatively measuring dose-effect curves (Bansal et al., 2014;

Takeda et al., 2017) and determining whether or not a given drug

pair interacts according to an experiment measuring cell viability

(Chen et al., 2016a, b; Huang et al., 2014a, b; Shi et al., 2017; Sun

et al., 2015; Zitnik and Zupan, 2016). All of these approaches pre-

dict drug–drug interactions as scalar values representing the over-

all probability/strength of an interaction for a given drug pair. In

sharp contrast, our study here goes a step further and identifies

how exactly, if at all, a given drug pair manifests clinically within

a patient population. In particular, we model clinical manifesta-

tions that cannot be attributed to either drug alone and that arise

due to drug interaction (i.e. polypharmacy side effects). Whereas

previous research focused on generating pointwise interaction esti-

mates representing cell viability or a closely related outcome in an

experimental drug screen, we predict, for the first time, which, if

any, polypharmacy side effects can occur when multiples drugs are

taken together by a patient, yielding a more direct path for clinical

translation.

Although present drug–drug interaction prediction approaches

cannot be directly used for the problem studied here, we briefly

overview methodology used by these approaches. Drug–drug

interaction prediction approaches can be categorized into

classification-based and similarity-based methods. Classification-

based methods consider drug–drug interaction prediction as a bin-

ary classification problem (Chen et al., 2016b; Cheng and Zhao,

2014; Huang et al., 2014a; Shi et al., 2017; Zitnik and Zupan,

2016). These methods use known interacting drug pairs as positive

examples and other drug pairs as negative examples, and train

classification models, such as naive Bayes, logistic regression and

support vector machine. In contrast, similarity-based methods as-

sume that similar drugs may have similar interaction patterns

(Gottlieb et al., 2012; Huang et al., 2014b; Li et al., 2016, 2017;

Sun et al., 2015; Vilar et al., 2012; Zitnik and Zupan, 2015).

These methods use different kinds of drug–drug similarity meas-

ures defined on drug chemical substructures, interaction profile

fingerprints, drug side effects, off-side effects and connectivity of

molecular targets. The methods aggregate similarity measures

through clustering or label propagation in order to identify poten-

tial drug–drug interactions (Ferdousi et al., 2017; Zhang et al.,

2015, 2017). However, all these methods generate drug–drug

interaction scores and do not predict the exact polypharmacy side

effect, which is the goal of our study here.

7.2 Neural networks on graphs
Our model extends existing work in the field of neural networks on

graphs (Defferrard et al., 2016; Gilmer et al., 2017; Hamilton et al.,

2017a, b; Kipf and Welling, 2016; Schlichtkrull et al., 2017). Neural

networks on graphs enable learning over graph structures by gener-

alizing the notion of convolution operation typically applied to

image datasets to operations that can operate on arbitrary graphs.

These neural networks can also be seen as an embedding method-

ology that distills high-dimensional information about each node’s

neighborhood into a dense vector embedding without requiring

manual feature engineering. In particular, graph convolutional net-

works (Defferrard et al., 2016; Hamilton et al., 2017a; Kipf and

Welling, 2016) and message passing neural networks (Gilmer et al.,

2017) are related lines of research that allow for layer-wise learning

of node embeddings in graphs.

Although graph convolutional networks achieve state-of-the-art per-

formance on important prediction problems in social networks and

knowledge graphs, they have not yet been used for problems in compu-

tational biology. Our model extends graph convolutional networks by

incorporating support for multiple edge types, each type representing a

different side effect, and by providing a form of efficient weight sharing

for multimodal graphs with a large number of edge types.

8 Conclusion

We presented Decagon, an approach for predicting side effects of

drug pairs. Decagon is a general graph convolutional neural net-

work designed to operate on a large multimodal graph where nodes

can be connected through a large number of different relation types.

We use Decagon to, for the first time, infer a prediction model that

can identify side effects of pairs of drugs. Decagon predicts an asso-

ciation between a side effect and a co-prescribed drug pair (i.e. a

drug combination) to identify side effects that cannot be attributed

to either drug alone. The graph convolutional model achieves excel-

lent accuracy on the polypharmacy side effect prediction task,

allows us to consider nearly a thousand different side effect types

integrating molecular and patient population data, and provides

insights into clinical manifestation of drug–drug interactions.

There are several directions for future study. Our approach integra-

tes molecular protein–protein and drug–target networks together with

population-level patients’ side effect data. Other sources of biomedical

information, such as dosed concentration levels of drugs, might be rele-

vant for modeling side effects of drug pairs, and we hope to investigate

the utility of integrating them into the model. As Decagon’s graph con-

volutional model is a general approach for multirelational link predic-

tion in any multimodal network, it would be interesting to apply it to

other domains and problems, for example, finding associations between

patient outcomes and comorbid diseases, or for identifying dependen-

cies between mutant phenotypes and gene–gene interactions.
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