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Abstract 

Deep Learning (DL) models typically require large-scale, balanced training data to be robust, 

generalizable, and effective in the context of healthcare. This has been a major issue for developing 

DL models for the coronavirus-disease 2019 (COVID-19) pandemic where data are highly class 

imbalanced. Conventional approaches in DL use cross-entropy loss (CEL) which often suffers 

from poor margin classification. We show that contrastive loss (CL) improves the performance of 

CEL especially in imbalanced electronic health records (EHR) data for COVID-19 analyses. We 

use a diverse EHR data set to predict three outcomes: mortality, intubation, and intensive care unit 

(ICU) transfer in hospitalized COVID-19 patients over multiple time windows. To compare the 

performance of CEL and CL, models are tested on the full data set and a restricted data set. CL 

models consistently outperform CEL models with differences ranging from 0.04 to 0.15 for 

AUPRC and 0.05 to 0.1 for AUROC.  
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INTRODUCTION 

 

As of May 2021, coronavirus-disease 2019 (COVID-19) has resulted in over 3.4 million reported 

deaths with over 580,000 occurring in the United States and over 53,000 in New York State 1. 

Hospital resources such as medication supply and hospital beds quickly became constrained2, 3. 

Due to the novelty of the COVID-19 pandemic, there is a dearth of relevant data available for 

research purposes, so electronic health records (EHR) became a valuable tool to study and 

characterize COVID-19 patients. EHR have already been used in biomedical research for disease 

and patient clustering, patient trajectory modeling, disease prediction, and clinical decision 

support, among others4. Recent studies discovered important findings to better understand 

COVID-19 through EHR-based analyses5-11. 

 

Machine learning (ML) is useful to examine resource allocation and risk stratification of patients, 

and ML models were successfully used to identify high-risk COVID-19 patients12-21.  

For temporal data modeling and prediction of patient outcomes in particular, deep learning (DL)22 

holds promise over traditional ML techniques that require manual engineering of informative 

patient features23-25. Heterogeneous graph networks are a powerful DL based graph representation 

technique that have successfully been utilized in EHR-related studies26, 27. These models have a 

graphical structure that captures the underlying relationships between disparate medical concepts 

such as diagnoses and lab tests28. Further, these graph convolutional models can be endowed with 

an attention mechanism29 to automatically identify how important local neighbors in the graph are 

to a given medical concept30. Attention models such as RETAIN provide a detailed interpretation 

of results and maintain high prediction accuracy by using reverse-time attention mechanisms to 

consolidate past visits31. 

 

There are, however, substantial concerns about the limited generalizability of these models in 

COVID-19 (and in general) as they often underperform in external validation32, 33. Poor 

generalization of the models is normally due to underspecification34. The underlying aspects of 

EHR data may also limit model effectiveness35. Healthcare data sets often have inadequate sample 

sizes in terms of both small hospitals and rare disease populations and exhibit high class imbalance 

for key outcomes of interest, such as in rare events, as in the case with COVID-19. Several 

strategies have been utilized to mitigate these data and modeling challenges including up- and 

down- sampling, pre-training, transfer learning, and federated learning, but each has its limitations 

for use in EHR research36. Other than these methods, the role of loss function has yet to be 

thoroughly investigated in the context of COVID-19 EHR work, which is the focus of this work. 

DL models often use cross-entropy loss (CEL) function, but CEL has been shown to potentially 

have poor classification margins, making the model less generalizable 37. Recently, supervised 

contrastive loss (CL) has been proposed to improve the classification performance of CEL 37. This 

original CL algorithm used sets of one anchor, many positives, and many negatives to maximize 

the similarities within the same class. In 37, it was shown that CL is more general than triplet and 

N-pairs losses because for any anchor, all positive pairs including the augmentation of the anchor 

are used for the loss. In addition, CL has a temperature parameter (𝜏) in loss that has shown to 

improve learning. Triplet and N-pairs losses are special cases of supervised CL loss. When one 

positive and one negative pair are used, CL simplifies to triplet loss 38, 39. When positive cases 

differ from anchor (i.e., excluding augmentations), more than one negative, and no 𝜏 are used, CL 

becomes equavialent to N-pairs loss 40, 41. 
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Though CL has already been applied to learn visual representations of medical images from paired 

images and text42, 43, it has not yet been used for EHR data and COVID-19 in particular. Here, we 

modify a CL-based architecture from its original formulation for EHR tasks. In the original work, 

CL was used for representation learning and CEL was used for the downstream classification. 

While we still utilize CL for patient representation learning, we explicitly incorporate classification 

objective into our CL loss function. This additional term behaves similar to CEL and maximizes 

the similarities between patient representation (obtained from sequential models) and outcome 

representation (obtained from heterogeneous relational models)44. 

 

In this study, we compare different sequential models (RETAIN and RNN) models utilizing CEL 

and our developed CL in predicting critical outcomes of COVID-19 mortality, ICU transfers, and 

intubation for patients admitted to a large and diverse patient population from five hospitals within 

the Mount Sinai Health System in New York. Models are tested on a full data set and a restricted 

data set with severe class imbalance to better elucidate the impacts of these loss functions on model 

performance. Results are evaluated within the framework of three dimensions: predictive power, 

patient clustering, and feature importance. 

 

Our main contributions can be summarized as: 

1. We propose a novel deep learning framework for EHR data by adding a contrastive 

regularizer to CEL to improve the performance of prediction tasks. 

2. We quantitatively examine the performance of CL for predicting critical events for 

COVID-19 patients. 

3. We show the superior performance of CL framework compared to CEL and traditional ML 

algorithms, especially when data outcomes are more imbalanced.  

4. We provide interpretability of these models that shows how feature importance become 

more clinically relevant using CL on data sets with imbalanced outcomes.  

 

 

 

MATERIALS AND METHODS 

 

Clinical Data and Cohort 

We obtained Electrical Health Records (EHR) of COVID-19 patients from five hospitals within 

the Mount Sinai Healthcare System (MSHS). The collected EHR data contain the following 

information: COVID-19 status, demographics (age, gender, and race), 55 relevant laboratory test 

results (listed in Supplementary Table 2), vital signs, specifically heart rate, respiration rate, pulse 

oximetry, blood pressure (diastolic and systolic), temperature, height, weight, and 12 

comorbidities (atrial fibrillation, asthma, coronary artery disease, cancer, chronic kidney disease, 

chronic obstructive pulmonary disease, diabetes mellitus, heart failure, hypertension, stroke, 

alcoholism, and liver disease). In addition, we collected information on clinically-relevant 

outcomes of COVID-19: mortality, discharge, ICU transfer, and intubation. Lab tests and vital 

signs were measured at multiple time points along the hospital course. In our models, 

demographics features are used as static features. 
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Data Pre-processing 

We pre-process the vital signs, lab test, and static features by considering the values between 0.5 

and 99.5 percentile to remove any inaccurate measurement. For any numerical data, we normalize 

the data by calculating the standard score (z-score). For categorical data, we use one-hot encoding 

representation. Numerical data with missing values are included with zeros 45. 

 

The initial feature input for vital signs at every time step is the vector 𝑋𝑣 ∈ 𝑅8 representing the 

eight features (Figure 1A). Blood pressure is represented as two features: systolic and diastolic. 

Similar to vital signs, the initial feature input for lab tests is the vector 𝑋𝑙 ∈ 𝑅55 representing the 

55 features at each time step. If there are more than one vital sign or lab test for each patient, we 

average the values of the corresponding time step. We concatenate the vital sign vector and lab 

test vector to form the vector 𝑋𝑖 ∈ 𝑅63 as the input at every time step -- the subscripts 𝑣 and 𝑙 are 

dropped for simplicity. 

 

Static features consist of demographics (age, gender, and race) and disease comorbidity 

information, which are detailed in Supplementary Table 2. For Age, we record the normalized 

numerical value. We represent the Gender feature as a 2 dimensional (male and female) one-hot 

vector. We use a 5 dimensional one-hot vector to represent the different groups for Race (African 

American, White, Asian, Other and Unknown). We represent disease comorbidity as a 12 

dimensional one-hot vector. We concatenate all the demographic and disease comorbidity features 

into the vector 𝑋𝑑 ∈ 𝑅20. 

 

Time Sequence Modeling 

To model EHR data as a time sequence, we use a previously developed interpretable predictive 

model named RETAIN31. This model is designed specifically to add feature explainability in terms 

of feature importance score on time sequence data.  

 

For the RETAIN model, we present each patient for 𝑛 time steps as in Choi et al.31: 

 

𝐶𝑝,𝑠𝑒𝑞 = ∑ 𝑖𝛽𝑖 . 𝑣𝑖 

𝑛

𝑖=1
. # (1)  

 

where 𝑖 denotes the time step, 𝑛 is total number of time steps, 𝛼𝑖 ∈ 𝑅1 is the attention vector of 

weights, 𝛽𝑖 ∈ 𝑅𝑙 ×1 is the attention weight for each feature,  𝑣𝑖 = 𝑊𝑝𝑋𝑖 is a linear projection of the 

𝑚 dimensional input feature, 𝑋𝑖 ∈ 𝑅𝑚 using projection matrix 𝑊𝑝 ∈ 𝑅𝑙 ×𝑚. 

 

As another baseline architecture, we utilize a RNN model's 𝐶𝑝,𝑠𝑒𝑞 with the original input feature 

vector 𝑋𝑖: 

 

𝐶𝑝,𝑠𝑒𝑞 = 𝑅𝑁𝑁(𝑋𝑖) . # (2)  
 

We concatenate the static features vector 𝐶𝑝,𝑠𝑡𝑎𝑡𝑖𝑐 with the output of sequential models 𝐶𝑝,𝑠𝑒𝑞 as 

illustrated in Figure 1A to get the final patient embedding 𝐶𝑝 = 𝐶𝑝,𝑠𝑒𝑞 +  𝐶𝑝,𝑠𝑡𝑎𝑡𝑖𝑐 . 
 

Our RNN architecture is based on long-short term memory (LSTM).  
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Heterogeneous Relation Modelling 

Instead of treating the outcomes as labels, we model them as a directed heterogeneous bipartite 

graph as illustrated in Figure 1B. We create a triple relationship between patient, outcome, and 

event, where the outcome is the relation (or edge) between patient node 𝑝 and event node 𝑒. Patient 

nodes with the same outcome relations are connected to the same event node. Since we are 

predicting binary outcomes, we have two event nodes representing positive and negative labels. 

Modeling the data as a bipartite graph provides both label information as well as event and clinical 

characteristic similarities. 

 

Since the patient and event are two different node types, we use the heterogeneous relational model 

TransE44 to project patient and event node types and their outcome relationships into a shared 

latent space. The TransE model aims to relate different type of nodes by their relationship type and 

represents the relationship type (outcome) as a translation vector between the two node types. This 

relation is expressed as: 

 

�̂�𝑒 = 𝛿(𝑋𝑒𝑊𝑒 + 𝑏𝑒) 
𝐶𝑒 = �̂�𝑒 −  𝑅𝑜 , # (3)  

 

 

where 𝑋𝑒 is the binary outcome representation, 𝑊𝑒 ∈ 𝑅2×𝑙 are learnable projection parameters for 

latent dimension 𝑙, 𝑏𝑒 ∈ 𝑅𝑙  are bias parameters, and 𝛿 is a non-linear activation function. We use 

a two dimensional vector 𝑋𝑒 ∈ (0,1)2 to represent positive or negative outcomes. �̂�𝑒 is the latent 

representation of outcomes, 𝐶𝑒 is translated representation from �̂�𝑒 in the projection space by the 

learnable translation relational vector 𝑅𝑜, which is the relation vectors representing outcome 

relation that connects patients to positive event and negative event nodes, respectively.  

After the projection, we apply similarity comparisons between these two representations (𝐶𝑝  and 

𝐶𝑒) in the shared latent space. 

 

Loss Function Delineation 

After the assembly of the bipartite relational graph, we aim to predict the binary outcome of a 

patient by maximizing the similarity between the binary outcome latent representation and patient 

representation. The bipartite relational graph also considers the similarities within patient latent 

representations that connect to the same outcome. Therefore, the objective function is expressed 

as: 

 

𝐿 = 𝑃 (𝑁𝑐(𝑢)|𝐶𝑝(𝑢))  , # (4)  

 

 

where 𝑢 is the patient node of interest in training sample, 𝐶𝑝(𝑢) is the latent representation of 

patient node 𝑢. 𝑁𝑐(𝑢) is the patient node's neighboring nodes which consist of binary outcome 

node representation 𝐶𝑒 and similar patient nodes representations 𝐶𝑝. In Eq. (4), we optimize the 

proximity between the representations of center patient node and its neighboring nodes. 
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The similarity between these latent representations is represented as an inner-product, and we 

directly apply noise contrastive estimation (NCE) loss to capture the condition probability in Eq. 

(4)46.  

 

ℒ = − ∑ [∑ log 𝜎(𝑐𝑖.  𝑢⃗⃗⃗ ⃗) + 
𝑐𝑖∈𝑁𝑐(𝑢)

∑ 𝐸𝑐𝑗~𝑃𝑣(𝑐𝑗) log 𝜎(−𝑐𝑗  .  𝑢⃗⃗⃗ ⃗)
𝐾

𝑗=1
] ,

𝑢∈𝑉
# (5)  

 

 

 

where 𝑉 is the training patients data set, 𝑐𝑖 is the latent representation vector of 𝑗-th context node 

in 𝑁𝑐(𝑢),  𝑢⃗⃗⃗ ⃗ is the center node latent representation. 𝐾 is the number of negative samples, 𝑃𝑣(𝑐𝑗) 

is the negative sampling distribution. 𝑐𝑗 .  𝑢⃗⃗⃗ ⃗ are the co-occurrence positive representation pairs, and 

𝑐𝑗  .  𝑢⃗⃗⃗ ⃗ are the negative sampling pairs. The non-linear function 𝜎(𝑥) =
1

1+𝑒𝑥𝑝𝑒𝑥𝑝 (−𝑥) 
 captures the 

similarity score between the representation pairs. 

 

We rewrite the objective function in Eq. (5) in our own notations as follows: 

 

ℒ

= − ∑ [

log 𝜎 (𝐶𝑒(𝑢) . 𝐶𝑝(𝑢)) + log 𝜎 (−𝐶𝑒
∗(𝑢). 𝐶𝑝(𝑢)) +

∑ log 𝜎 (𝐶𝑝(𝑗). 𝐶𝑝(𝑢)) + ∑ 𝐸
𝐶𝑝

∗(𝑗)~𝑃𝑣(𝐶𝑝
∗(𝑗))

log 𝜎 (−𝐶𝑝
∗(𝑗). 𝐶𝑝(𝑢))

𝐾

𝑗=1
  

𝑐𝑝(𝑗)∈𝑁𝑐(𝑢)

]
𝑢∈𝑉

, #(6)  

 

 

where 𝐶𝑒 is the projected latent representation of the binary outcome node that connects to a given 

patient representation 𝐶𝑝, and the inner product between 𝐶𝑒 and 𝐶𝑝measures the similarity between 

these two representations. superscripts ∗ shows the opposite outcome node of 𝐶𝑒  and does not 

connect to the patient of interest 𝑢. 𝐶𝑝(𝑗) is the similar context patient node representations that 

connects to the same outcome node as the patient node 𝑢. 𝐶𝑝
∗(𝑗) are the context patient node 

representations that connects to the opposite outcome node as the patient node. 

 

The first two terms in Eq. (6) capture the label information between outcome with the patient node, 

so they function as cross-entropy loss. In the Supplementary Materials, we prove the lemma that 

the first two terms in Eq. (6) are equivalent to the cross-entropy loss in general and therefore the 

improvements are primarily due to CL inter-pateint terms. The last two terms provide additional 

information of similar patients that connect to the same outcome, and dissimilar patient 

information that connect to the other outcome. 

 

We set a weight factor 𝛼 to weigh the importance of the last two parts of Eq.(6) that captures 

similar patient information, which is the main improvement due to CL. Our final objective function 

is as follows: 

 

 

𝐿 = 𝐿𝑒𝑝 + 𝐿𝑒𝑝
∗ + 𝛼(𝐿𝑝𝑝 + 𝐿𝑝𝑝

∗ ) 
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ℒ𝑒𝑝 = − ∑ log 𝜎 (𝐶𝑒(𝑢) . 𝐶𝑝(𝑢))
𝑢∈𝑉

 

 

ℒ𝑒𝑝
∗ = − ∑ log 𝜎 (−𝐶𝑒

∗(𝑢) . 𝐶𝑝(𝑢))
𝑢∈𝑉

 

  
 

ℒ𝑝𝑝 = − ∑ ∑ log 𝜎(𝐶𝑝(𝑗). 𝐶𝑝(𝑢))  
𝑐𝑝(𝑗)∈𝑁𝑐(𝑢)𝑢∈𝑉

 

   
 

ℒ𝑝𝑝
∗ = − ∑ ∑ 𝐸𝐶𝑝

∗(𝑗)~𝑃𝑣(𝐶𝑝
∗(𝑗)) log 𝜎 (−𝐶𝑝

∗(𝑗). 𝐶𝑝(𝑢))
𝐾

𝑗=1𝑢∈𝑉
 . # (7)  

 

 

 

In this work, we use the optimal 𝛼 = 0.8 that achieved the best performance for all models and 

tasks. We describe the experiments for exploring different values of 𝛼 in Supplementary Table 1. 

 

After minimizing the CL from Eq. (7), we obtain learned latent representation for events 𝐶𝑒, which 

are used to predict the probability of the events as follows: 

 

𝑃 (𝐶𝑝(𝑢)) = 𝜎 (𝐶𝑒(𝑢) . 𝐶𝑝(𝑢)) , # (8)  

 

 

where 𝑌𝑒 represents the logit prediction for positive outcomes (mortality, intubation, and ICU 

transfer). 

 

 

 

Feature Importance Scoring 

The linear projection matrix 𝑊𝑝from the RETAIN model allows to interpret variable importance 

at each time step. Our goal is to predict the probability of the outcome given a center patient 

representation. We can write this probability the same as Eq. (8). 

 

We can combine Eq. (1), Eq. (3) and Eq. (8) to derive the similarity score as follows: 

 

𝑃 (𝑌𝑒|𝐶𝑝(𝑢)) ∝ (𝑊𝑒𝑋𝑒 + 𝑏𝑒 − 𝑅𝑜)𝑇 (∑ 𝑖𝛽𝑖 ⊙ 𝑊𝑝𝑋𝑖

𝑛

𝑖=1
) =

∑ (𝑖𝛽𝑖 ⊙ (𝑋𝑒
𝑇𝑊𝑒

𝑇 + 𝑏𝑒
𝑇 − 𝑅𝑜

𝑇)𝑊𝑝)𝑋𝑖

𝑛

𝑖=1
 .  

 

 

 

The contribution score for a specific feature 𝑘 at time step 𝑖 for input sample is derived as: 
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𝜔(𝑌𝑒 , 𝑋𝑖,𝑘) =  (𝑖𝛽𝑖 ⊙ (𝑋𝑒
𝑇𝑊𝑒

𝑇 + 𝑏𝑒
𝑇 − 𝑅𝑜

𝑇)𝑊𝑝)𝑋𝑖,𝑘 . # (9)  
 

 

This is the similarity score between the positive outcome latent representation and patient latent 

representation for a RETAIN model with CL loss. The larger values of 𝜔 indicates that the feature 

𝑘 has a large contribution towards the prediction result. 

 

For interpretability of a RETAIN model with CEL, we directly compute the importance score in a 

similar manner as in Choi et al.31: 

 

𝜔(𝑦𝑚, 𝑥𝑖,𝑘) = 𝑖𝑊𝑐(𝛽𝑖 ⊙ 𝑊𝑝) 𝑋𝑖,𝑘 , # (10)  

 

 

where 𝑦𝑚 is the label for 𝑚-th sample. 

 

Baselines 

In this work, we are evaluating the performance of CL using two time sequence models 

(RETAIN+CL and RNN+CL). As baseline models, we use the CEL with the same time sequence 

models (RETAIN+CE and RNN+CE) to evaluate the potential improvements of CL. 

 

As reference and comparison with the CL, the objective function for CEL is as follows: 

 

𝐿𝐶𝐸𝐿 = −
1

𝑁
∑

𝑁

𝑚=1

(𝑦𝑚 𝑙𝑜𝑔 𝑙𝑜𝑔 (�̂�𝑚)  + (1 − 𝑦𝑚) 𝑙𝑜𝑔 𝑙𝑜𝑔 (1 − �̂�𝑚) ) , # (11)  

 

 

where the logit output for the 𝑚-th sample is:  

 

�̂�𝑚 = 𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑐𝐶𝑝 + 𝐵𝑐) , # (12) where 𝐶𝑝 is the latent patient representation, 𝑊𝑒 ∈ 𝑅2 ×𝑙 and 

𝐵𝑐 ∈ 𝑅2  are the binary projection and bias parameters. 

 

We also compare the performance of the sequential models with respect to four traditional ML 

algorithms: logistic regression (LG), random forest (RF), support vector machine (SVM); 

XGBoost (XGB) 47. 

 

 

 

Experiment Design 

We perform three prediction tasks: mortality, ICU transfer, and intubation. We train our models 

on predicting events for two-time frames: 24 and 48 hours before the occurrence of a binary 

outcome. Longitudinal data (lab tests and vital signs) are binned within windows of 6 hours and 

averaged if there are more than one measurement per window. The time binning representation is 

illustrated in Figure 1C. In the training phase, for each positive outcome, we utilize the exact time 

of an event to generate time frames for the experiments. For patients that did not have these 
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outcome events, we needed a representative frame of reference to align against. Therefore, we 

compute the mean and standard deviation for the length of time that elapsed from admission for 

all the affiliated outcomes independently. For patients without an event, we randomly pick a time 

to use as a reference end point using a Gaussian distribution with the mean and standard deviation 

obtained from the positive training data. This procedure is shown in Figure 1D. 

 

We also perform the comparisons of outcomes for both full sample and in artificial scenarios of 

more extreme imbalance (i.e., restricted sample) to determine the extent of performance 

differences between the two loss functions. In terms of generating the samples for any prediction 

using CEL, we find that a minimum of 5% positive labels is required to detect both negatives and 

positives. Therefore, we choose any positive labels percentage to be greater than 5%. For the 

experiments with full sample, we use all available data where the percentages of positive labels is 

23% mortality, 17% ICU transfer, and 10% intubation. For the experiments with restricted 

sample, we perform down-sampling to reduce the percentage of positive labels by randomly 

removing a percentage of positive labels. The percentages of positive labels in the down sampled 

data set are 7% mortality,  7% ICU transfer, and 5% intubation. In the restricted sample, the 

percentage of each positive label is less than half of the original positive label percentage.  

 

 

Training details 

 

In the training stage, after picking a patient node 𝑢, we select the binary outcome node that 

connects to 𝑢. Then we uniformly pick 𝑚 similar patient nodes that also connect to this outcome 

node, and we use these samples as positive training pairs. For negative sampling, we first pick the 

binary outcome node that does not connect to the patient node 𝑢, and we then uniformly pick 𝑞 

similar patient nodes that connect to this outcome node. We utilize these samples as the negative 

training pairs. In this work, we use 𝑚 = 2  and 𝑞 = 1 to prioritize the positive samples. 

 

For validation purposes, we perform 10-fold cross validation for the patient of interest and record 

the mean evaluation values across 10 folds to determine the performance of CL model against the 

CE model. 

 

All models and data sets are evaluated using the following metrics: area under the receiver-

operating characteristic (AUROC), area under the precision, and recall curve (AUPRC). It is 

important to note that AUPRC is a more reliable metric for imbalanced samples because that takes 

into account NPV and PPV48. 

 

Results 

 

Model Comparison and Evaluation of Predictive Performance 

We first evaluate the results between loss functions using all data (i.e., full sample) for all three 

tasks, namely mortality, ICU transfer, and intubation prediction. The ROC and PR curves for these 

cross validated results are shown in Fig.2,3(A-C) and metrics are tabulated in Table 1. For 

mortality prediction (23% positive label percentage), we observe that the AUROC and AUPRC 

scores are similar between CEL and CL. For RETAIN model, under 24h prediction time frame, 

the AUROC and AUPRC scores are 0.92 ± 0.01, 0.82 ± 0.02 for CEL and 0.92 ± 0.01, 0.84 ±
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0.02 for CL. These results indicate that two loss models achieve similar performance when we 

have relatively more balanced label ratios. For intubation prediction, the positive label percentage 

is 10.7 %, which is less than half of the mortality labels. We observe relatively larger performance 

increases of 0.03 ± 0.02 for AUROC score and 0.09 ± 0.02 for AUPRC in CL compared to CEL 

for the RETAIN model. For ICU transfer prediction (17% positive label percentage) using 

RETAIN, we observe that the AUROC, AUPRC performance of CL is around 0.84 ± 0.01, 0.60 ±
0.02 which are slightly higher than CEL performance of 0.81 ± 0.01, 0.57 ± 0.02.  

 

To further evaluate the above trends, we conducted an additional experiment to assess how CEL 

and CL functions perform on the same tasks with more imbalanced outcome ratios. This scenario 

may be the case in smaller hospital cohorts and for other outcomes. We perform random down-

sampling on positive labels (i.e., restricted sample): for mortality, intubation, and ICU transfer 

prediction tasks, we randomly down-sampled the positive labels to 7%, 5%, and  7%, respectively. 

The ROC and PR curves are shown in Fig.2,3(E-F) and the performance metrics are recorded in 

Table 2. The results of the experiment consistently show lower performance using CEL compared 

to CL. For RETAIN model under 24h time frame, AUROC and AUPRC values are higher for CL 

than CEL for all outcomes. For instance, the AUROC increases from 0.80±0.02 (CEL) to 

0.88±0.02 (CL) and AUPRC increases from 0.35±0.03 (CEL) to 0.45±0.02 (CL) for intubation 

prediction These finding show that under cases with extremely unbalanced label data, models 

using CL perform better than using CEL. 

 

Our results show that CEL and CL have competitive performance in the full data set but we 

generally find that for all tasks in restricted data set, models with CEL have lower performance 

compared to CL (Table 2). Other than the 24-hour time frame, we also perform the same exact 

analysis for the 48-hour time frame, which shows consistent trends. Finally, we use the RNN as 

the baseline model other than RETAIN model for all the predictions described earlier and our 

conclusions hold true (see Table 2). 

 

We have also provided the results of using traditional ML algorithms in both tables. Our results 

generally show the superiority of DL with respect to these baselines.  

 

Identification of Important Clinical Features 

We assess the ability of CEL and CL functions in our models to identify relevant features of 

interest in full and restricted data sets. Specifically, we performed feature importance score 

calculations for the RETAIN model on predicting mortality as a representative case. 

 

First, we generated the feature importance scores comparing two models (RETAIN-CL against 

RETAIN-CEL) over the 24-hour time frame for the full data set for mortality prediction. Fig. 5A 

and B shows the normalized feature importance heat maps for CL and CEL with the columns 

representing four 6-hour windows. These heat maps display similar importance scores in terms of 

key features and their magnitudes. RETAIN identified lab tests and vital sign features that are 

considered important by both loss models: pulse oximetry (0.26 for CEL, 0.21 for CL); aspartate 

aminotransferase (0.69 for CEL, 0.72 for CL); blood urea nitrogen (0.12 for CEL, 0.12 for CL); 

lactate (0.24 for CEL, 0.23 for CL); lactate dehydrogenase (0.28 for CEL, 0.3 for CL). All these 

parameters indicate important aspects of an ill COVID-19 patient. 

 

Jo
urn

al 
Pre-

pro
of



11 

 

We then generate feature importance scores using two loss functions for mortality prediction in 

the restricted data set (i.e., down-sampling the positive label to 7%) for the RETAIN model. We 

assess how the variable importance score changes under these different conditions for different 

loss functions. The corresponding heat map is plotted in Fig. 5C and D. We observe that using CL 

can still capture the highly scored features identified in the full data set (i.e., weigh similar key 

features). On the other hand, CEL fails to capture some important features. Of particular interest, 

the importance of pulse oximetry is no longer prioritized in the restricted sample using CL 

(importance value is 0.09 for CEL comparing to 0.35 for CL). Also, blood urea nitrogen, lactate 

have lower importance values of 0.02, 0.09 for CEL compared to 0.15, 0.36 for CL. These findings 

reaffirm our hypothesis with CL are more robust when the outcome labels are highly imbalanced. 

 

Visualizing Patient Embeddings 

Finally, we generated 2D t-SNE projections to compare patient embedding representations for 

RETAIN models between the CL and CEL in predicting all three medical events within 24-hour 

intervals and the results are shown in Fig. 4. The first two columns show patient embeddings using 

the full sample data set, and the last two columns show embeddings for the restricted data set. Blue 

dots represent positive labels and red dots represent negative labels. Models with both loss 

functions show clear clustering of positive and negative labels in the full data sets. However, when 

the data set is restricted (i.e., lowered positive labels), the model with CEL consistently show less 

clear patterns and poorer clustering of patients for all outcomes. In contrast, the RETAIN model 

with CL maintains its ability to group patients by their clinical outcomes. 

 

DISCUSSION AND CONCLUSION 

In this work, we develop a new DL model based on the CL for predicting three critical events 

(mortality, intubation, and ICU transfer) for COVID-19 patients using EHR data. Most DL-based 

EHR analyses utilize CEL as part of modeling. To the best of our knowledge, this is one of the 

first studies to demonstrate the utility of CL in EHR predictive analyses. We demonstrate the 

benefit of CL in multiple tasks with imbalanced outcome labels, which is particularly pertinent in 

the context of COVID-19. We compare the performance of different sequential architectures (RNN 

and RETAIN) for both CL and the conventional CEL model under two-time window horizons.  

We also compare the performance of our developed framework with respect to traditional ML 

baselines. We conduct further experiments for each outcome in a restricted data set of even more 

imbalanced outcomes and show the benefit of CL is even more pronounced via three separate 

experimental tasks, namely predictive performance, feature importance, and clustering. 

 

The observed improvements in predictions come from the specific form of CL, which does not 

only maximize the similarity between patient and outcome embedding representations, but also 

maximizes the similarities between patient representations related to a specific outcome. However, 

CEL mainly focuses on maximizing the similarity between patient and outcome one-hot 

representations. Therefore, CL tends to maximize the margins between classes better than CEL. 

The better margin classification ability of CL lead to higher performance for imbalanced data, for 

which the classification is difficult due to poor margin classification of CEL in addition to 

differences in data distributions for each class.  

 

Our study contains several limitations which need to be addressed. First, we only compare CL to 

one other loss function, although it is widely used. Second, we only assess two sequential modeling 

Jo
urn

al 
Pre-

pro
of



12 

 

techniques. Another main limitation of our study is excluding several laboratory values due to high 

levels of missingness, which may impact some of our interpretations. Furthermore, we utilize a 

specific time sequence modeling representation. Lastly, our work focuses only on one disease use-

case. For future studies, other modeling architecture can be assessed to evaluate the 

generalizability of our CL approach. Also, additional analysis is required to understand feature 

importance differences between the loss functions and to determine if our CL methodology is 

applicable to other healthcare data sets. We also plan to assess performance of this strategy for 

predictive tasks in other diseases such as acute kidney injury. Another important investigation will 

be long-term predictions other than 24 and 48 hours windows studied in this work for longer-term 

critical events. We believe this work represents an effective demonstration of the power of using 

CL for machine learning work for predictive tasks using EHRs.  

 

Table 1: Binary Outcome Prediction Performance on Different Models using Full Sample Data 

(positive label percentage: 23% for mortality, 10% for intubation, 17% for ICU transfer). CEL: 

cross-entropy loss; CL: contrastive loss; LG: logistic regression, RF: random forest, SVM: 

support vector machine; XGB: XGBoost. All predictions are calculated from 10-fold cross 

validation, for which we record the mean value and standard deviation as confident intervals 

across folds. Bold values represent best model performance per event. 

 

Time 

Window 
Event Model Type AUROC AUPRC 

 

 

 

 

 

 

 

 

 

 

 

24h 

 

 

Mortality 

 

 

LG 
0.85(0.02) 0.65(0.01) 

RF 
0.82(0.02) 0.63(0.01) 

SVM 
0.79(0.02) 0.61(0.02) 

XGB 
0.83(0.02) 0.65(0.02) 

RNN+CE 
0.91(0.01) 0.82(0.01) 

RETAIN+CE 
0.92(0.01) 0.82(0.02) 

RNN+CL 
0.91(0.02) 0.83(0.01) 

RETAIN+CL 
0.92(0.01) 0.84(0.02) 

 

Intubation 

 

 

 

 

 

LG 
0.82(0.01) 0.47(0.02) 

RF 
0.81(0.01) 0.46(0.01) 

SVM 
0.76(0.02) 0.42(0.01) 

XGB 
0.78(0.02) 0.46(0.01) 
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RNN+CE 
0.83(0.02) 0.49(0.02) 

RETAIN+CE 
0.85(0.02) 0.48(0.02) 

RNN+CL 
0.91(0.02) 0.56(0.02) 

RETAIN+CL 
0.91(0.02) 0.56(0.03) 

 

ICU Transfer 

 

 

 

 

 

LG 
0.81(0.01) 0.52(0.01) 

RF 
0.82(0.02) 0.55(0.01) 

SVM 
0.79(0.01) 0.52(0.01) 

XGB 
0.78(0.02) 0.55(0.01) 

RNN+CE 
0.83(0.01) 0.57(0.02) 

RETAIN+CE 
0.81(0.02) 0.57(0.02) 

RNN+CL 
0.86(0.01) 0.62(0.02) 

RETAIN+CL 
0.85(0.01) 0.59(0.02) 

 

 

 

 

 

 

 

 

      48h 

Mortality 

LG 
0.85(0.01) 0.64(0.02) 

RF 
0.81(0.01) 0.61(0.02) 

SVM 
0.81(0.01) 0.63(0.01) 

XGB 
0.88(0.01) 0.69(0.01) 

RNN+CE 
0.90(0.02) 0.82(0.02) 

RETAIN+CE 
0.92(0.01) 0.83(0.01 

RNN+CL 
0.92(0.02) 0.82(0.01) 

RETAIN+CL 
0.93(0.01) 0.84(0.01) 

 

Intubation 

 

 

 

 

LG 
0.79(0.01) 0.45(0.02) 

RF 
0.77(0.02) 0.44(0.01) 

SVM 
0.73(0.01) 0.39(0.01) 
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 XGB 
0.82(0.01) 0.49(0.02) 

RNN+CE 
0.69(0.04) 0.40(0.03) 

RETAIN+CE 
0.78(0.03) 0.39(0.03) 

RNN+CL 
0.86(0.03) 0.54(0.02) 

RETAIN+CL 
0.93(0.01) 0.51(0.03) 

 

ICU Transfer 

 

 

 

 

 

LG 
0.79(0.02) 0.50(0.01) 

RF 
0.81(0.01) 0.54(0.01) 

SVM 
0.77(0.02) 0.49(0.02) 

XGB 
0.81(0.01) 0.57(0.02) 

RNN+CE 
0.80(0.01) 0.54(0.02) 

RETAIN+CE 
0.81(0.02) 0.52(0.02) 

RNN+CL 
0.83(0.02) 0.60(0.02) 

RETAIN+CL 
0.83(0.01) 0.59(0.02) 

 

 

Table 2: Binary Outcome Prediction Performance on Different Models using Restricted Sample 

Data (positive label percentage: 7% for mortality, 5% for intubation, 7% for ICU transfer). CE: 

cross-entropy loss; CL: contrastive loss LG: logistic regression, RF: random forest, SVM: 

support vector machine; XGB: XGBoost. All predictions are calculated from 10-fold cross 

validation, for which we record the mean value and standard deviation as confident intervals 

across folds. Bold values represent best model performance per event. 

Time 

Window 
Event Model Type AUROC AUPRC 

 

 

 

 

 

 

Mortality 

 

 

LG 
0.78(0.02) 0.51(0.02) 

RF 
0.61(0.02) 0.24(0.03) 

SVM 
0.60(0.02) 0.22(0.02) 

XGB 
0.65(0.02) 0.25(0.01) 

RNN+CE 
0.83(0.03) 0.53(0.05) 
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24h 

RETAIN+CE 
0.86(0.02) 0.50(0.05) 

RNN+CL 
0.91(0.03) 0.62(0.04) 

RETAIN+CL 
0.91(0.01) 0.59(0.05) 

 

Intubation 

 

 

 

 

 

LG 
0.76(0.02) 0.33(0.02) 

RF 
0.75(0.01) 0.34(0.01) 

SVM 
0.75(0.02) 0.32(0.02) 

XGB 
0.77(0.02) 0.39(0.02) 

RNN+CE 
0.79(0.03) 0.35(0.03) 

RETAIN+CE 
0.80(0.02) 0.35(0.03) 

RNN+CL 
0.88(0.02) 0.48(0.03) 

RETAIN+CL 
0.88(0.02) 0.45(0.02) 

ICU Transfer 

 

 

 

 

 

LG 
0.77(0.01) 0.39(0.02) 

RF 
0.74(0.01) 0.36(0.02) 

SVM 
0.76(0.02) 0.38(0.01) 

XGB 
0.78(0.02) 0.36(0.01) 

RNN+CE 
0.78(0.01) 0.41(0.02) 

RETAIN+CE 
0.76(0.03) 0.43(0.04) 

RNN+CL 
0.86(0.02) 0.53(0.03) 

RETAIN+CL 
0.85(0.02) 0.51(0.03) 

 

 

 

 

 

Mortality 

 

LG 
0.77(0.02) 0.33(0.02) 

RF 
0.57(0.02) 0.12(0.02) 

SVM 
0.62(0.02) 0.19(0.03) 

XGB 
0.69(0.02) 0.29(0.02) 
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48h 

 RNN+CE 
0.85(0.03) 0.55(0.04) 

RETAIN+CE 
0.90(0.03) 0.53(0.03) 

RNN+CL 
0.92(0.03) 0.63(0.04) 

RETAIN+CL 
0.91(0.02) 0.64(0.04) 

 

Intubation 

 

 

 

 

 

LG 
0.79(0.01) 0.36(0.02) 

RF 
0.78(0.02) 0.35(0.01) 

SVM 
0.79(0.01) 0.34(0.01) 

XGB 
0.82(0.02) 0.40(0.01) 

RNN+CE 
0.70(0.03) 0.34(0.04) 

RETAIN+CE 
0.74(0.02) 0.31(0.03) 

RNN+CL 
0.83(0.02) 0.44(0.02) 

RETAIN+CL 
0.85(0.02) 0.44(0.03) 

ICU Transfer 

 

 

 

 

 

LG 
0.79(0.02) 0.41(0.01) 

RF 
0.75(0.01) 0.35(0.01) 

SVM 
0.77(0.01) 0.37(0.02) 

XGB 
0.79(0.01) 0.41(0.02) 

RNN+CE 
0.72(0.04) 0.38(0.03) 

RETAIN+CE 
0.75(0.04) 0.43(0.04) 

RNN+CL 
0.82(0.01) 0.51(0.02) 

RETAIN+CL 
0.82(0.02) 0.50(0.03) 

 

 

 

EXPERIMENTAL PROCEDURE 

Resource Availability 

Lead Contact 
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Any further information, question or request should be sent to Benjamin S. Glicksberg 

(benjamin.glicksberg@mssm.edu) 

 

Materials Availability 

Our study did not involve any physical materials.  

 

Data and Code Availability 

Our data is not available due to institutional review board (IRB) rules for privacy protection. For 

reproducibility, our code is available at https://github.com/Tingyiwanyan/CL_covid and runs 

with TensorFlow 1.15.  
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Figure Captions 

 

Figure 1: Data and modeling schemas. A) Architecture with Contrastive Loss. Electronic health 

record (EHR) data are modeled to create patient and event embedding representations which are 

fed into our contrastive loss (CL) equation. B) Representation Space. CL simultaneously pushes 

positive patients and event embeddings (i.e., concordant with respect to the outcome of the patient 

of interest, respectively) away from negative ones. C) Time Binning. Schematic to visualize how 

we model time sequence. We have two outcome windows (i.e., 24- and 48-hours prior to event) 

and bin data by 6-hour chunks. D): Selection of Event Timing for Null Outcomes. For patients that 

do not experience the outcome of interest, we generate a data-driven event time to align against as 

in C. We compute the mean and standard deviation for the length of time that elapsed from 

admission for all patients with the affiliated outcomes independently. For patients without an 

event, we randomly pick a time to use as a reference end point using a Gaussian distribution with 

the mean and standard deviation obtained from the positive training data. 

 

Figure 2: Receiver Operator Curves for All Predictive Tasks in a 24-hour Time Frame. 

Performance is assessed for both contrastive loss (CL) and cross-entropy loss (CEL) for both RNN 

and RETAIN modeling strategies. A) Mortality with full data set (23% positive labels); B) 

Intubation with full data set (11% positive labels); C) ICU transfer with full data set (17% positive 

labels); D) Mortality with restricted data set (7% positive labels); E) Intubation with restricted data 

set (5% positive labels); F: ICU transfer with restricted data set (7% positive labels). 

 

Figure 3: Precision-Recall (PR) Curves for All Event Predictions a 24-hour Time Frame. 

Performance is assessed for both contrastive loss (CL) and cross-entropy loss (CEL) for both RNN 

and RETAIN modeling strategies. A) Mortality with full data set (23% positive labels); B) 

Intubation with full data set (11% positive labels); C): ICU transfer with full data set (17% positive 

labels); D): Mortality with restricted data set (7% positive labels); E Intubation with restricted data 

set (5% positive labels); F: ICU transfer with restricted data set (7% positive labels). 

 

Figure 4: t-SNE Latent Embedding Comparisons for All Event Prediction within 24-hour Time 

Frame Using RETAIN. Blue dots represent positive labels and red dots represent negative labels. 

The plot is organized by outcome per row namely 1st: mortality, 2nd: intubation, and 3rd: ICU 
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transfer. The first and third columns represent contrastive loss (CL) plots and the second and forth 

represent cross-entropy loss (CEL).  A) Mortality prediction with CL for the full data set (23% 

positive labels); B) Mortality prediction with CL for the full data set; C) Mortality prediction with 

CL for the restricted data set (7% Positive Labels); D) Mortality prediction with CEL for the 

restricted data set. E) Intubation prediction with CL for the full data set (10% positive labels); F) 

Intubation prediction with CEL for the full data set; G) Intubation prediction with CL for the 

restricted data set (5% positive labels); H) Intubation prediction with CEL for the restricted data 

set. I) ICU transfer prediction with CL for the full data set (17% positive labels); J) ICU transfer 

prediction with CEL for the full data set; K) ICU transfer prediction with CL for the restricted data 

set (7% positive labels); L) ICU transfer prediction with CEL for the restricted data set. 
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Highlights 

●  Contrastive loss consistently improves performance compared to cross-entropy loss 

●  For imbalanced outcome data, only contrastive loss model maintains proper clustering 

●  Contrastive loss better identifies relevant features 

 

In Brief 

Deep learning models applied on EHR data often utilize cross-entropy loss (CEL) as the primary 

optimization function. But CEL may not be suitable for real-world scenarios with imbalanced data. 

We develop a learning framework that incorporates both CEL and contrastive loss (CL) to tackle 

this issue. Our framework achieves better predictive performance and feature interpretability, 

particularly for imbalanced data. 

 

Bigger Picture 

The abundance of health data provides exceptional opportunities for machine learning analyses to 

improve care in terms of enhanced screening, diagnosis, and prognosis. One such data type is 

electronic health records, which generally consist of demographics, diagnoses, laboratory tests, 

vital signs, medications, and clinical notes. While deep learning has emerged as a powerful 

analysis tool to process large-scale data by extracting useful patterns, creating robust and 

generalizable models with such data is notoriously challenging due to scale, complexity, and 

outcome imbalance. In this work, we develop and refine a new model architecture based on the 

recently proposed contrastive deep learning. As a relevant use case, we demonstrate the power of 

this framework for predicting critical events in COVID-19 patients as well as an enhanced ability 

to identify important features. Our work shows promise for datasets with high missingness and 

outcome imbalance that normally hinders performance. 
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