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Abstract

Interpreting time series models is uniquely challenging because it requires iden-
tifying both the location of time series signals that drive model predictions and
their matching to an interpretable temporal pattern. While explainers from other
modalities can be applied to time series, their inductive biases do not transfer well
to the inherently challenging interpretation of time series. We present TIMEX,
a time series consistency model for training explainers. TIMEX trains an inter-
pretable surrogate to mimic the behavior of a pretrained time series model. It
addresses the issue of model faithfulness by introducing model behavior consis-
tency, a novel formulation that preserves relations in the latent space induced by
the pretrained model with relations in the latent space induced by TIMEX. TIMEX
provides discrete attribution maps and, unlike existing interpretability methods, it
learns a latent space of explanations that can be used in various ways, such as to
provide landmarks to visually aggregate similar explanations and easily recognize
temporal patterns. We evaluate TIMEX on eight synthetic and real-world datasets
and compare its performance against state-of-the-art interpretability methods. We
also conduct case studies using physiological time series. Quantitative evaluations
demonstrate that TIMEX achieves the highest or second-highest performance in
every metric compared to baselines across all datasets. Through case studies, we
show that the novel components of TIMEX show potential for training faithful,
interpretable models that capture the behavior of pretrained time series models.

1 Introduction

Prevailing time series models are high-capacity pre-trained neural networks [1, 2], which are often
seen as black boxes due to their internal complexity and lack of interpretability [3]. However, practical
use requires techniques for auditing and interrogating these models to rationalize their predictions.
Interpreting time series models poses a distinct set of challenges due to the need to achieve two
goals: pinpointing the specific location of time series signals that influence the model’s predictions
and aligning those signals with interpretable temporal patterns [4]. While explainers designed for
other modalities can be adapted to time series, their inherent biases can miss important structures
in time series, and their reliance on isolated visual interpretability does not translate effectively to
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the time series where data are less immediately interpretable. The dynamic nature and multi-scale
dependencies within time series data require temporal interpretability techniques.

Research in model understanding and inter-
pretability developed post-hoc explainers that
treat pretrained models as black boxes and do
not need access to internal model parameters, ac-
tivations, and gradients. Recent research, how-
ever, shows that such post-hoc methods suffer
from a lack of faithfulness and stability, among Input time series
other issues [5, 6, [7]]. A model can also be un- 1
derstood by investigating what parts of the input
it attends to through attention mapping [8} 9} [10]
and measuring the impact of modifying individ-
ual computational steps within a model [[L1} [12]].
Another major line of inquiry investigates inter-
nal mechanisms by asking what information the |
model contains [13} (14 [13]. For example, it has  Identify what signals
been.ff)und that even when a lang}lage model is glﬁ;; gf;; ::: iﬁd @ D [j
conditioned to output falsehoods, it may include

a hidden state that represents the true answer in-
ternally [16]. The gap between external failure
modes and internal states can only be identified
by probing model internals. Such representation
probing has been used to characterize the behaviors of language models, but leveraging these strate-
gies to understand time series models has yet to be attempted. These lines of inquiry drive the
development of in-hoc explainers [[17, 1819} 20} 21} 22] that build inherent interpretability into the
model through architectural modifications [18} |19} 23| 20, [21]] or regularization [[17, 22]. However,
no in-hoc explainers have been developed for time series data. While explainers designed for other
modalities can be adapted to time series, their inherent biases do not translate effectively to the
uninterpretable nature of time series data. They can miss important structures in time series.
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latent space
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!
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Figure 1: TIMEX learns a latent space of expla-
nations and landmarks to summarize groups of
informative temporal patterns in time series.

Explaining time series models is challenging for many reasons. First, unlike imaging or text datasets,
large time series data are not visually interpretable. Next, time series often exhibit dense informative
features, unlike more explored modalities such as imaging, where informative features are often
sparse. In time series datasets, timestep-to-timestep transitions can be negligible, and temporal
patterns only show up when looking at time segments and long-term trends. In contrast, in language
datasets, word-to-word transitions are informative for language modeling and understanding. Further,
time series interpretability involves understanding the dynamics of the model and identifying trends or
patterns. Another critical issue with applying prior methods is that they treat all time steps as separate
features, ignoring potential time dependencies and contextual information; we need explanations
that are temporally connected and visually digestible. While understanding predictions of individual
samples is valuable, the ability to establish connections between explanations of various samples (for
example, in an appropriate latent space) could help alleviate these challenges.

Present work. We present TIMEX, a novel time series surrogate explainer that produces interpretable
attribution masks as explanations over time series inputs (Figure[I)). (D A key contribution of TIMEX
is the introduction of model behavior consistency, a novel formulation that ensures the preservation of
relationships in the latent space induced by the pretrained model, as well as the latent space induced
by TIMEX. @ In addition to achieving model behavior consistency, TIMEX offers interpretable
attribution maps, which are valuable tools for interpreting the model’s predictions, generated using
discrete straight-through estimators (STEs), a type of gradient estimator that enables end-to-end
training of TIMEX models. (3) Unlike existing interpretability methods, TIMEX goes further by
learning a latent space of explanations. By incorporating model behavior consistency and leveraging a
latent space of explanations, TIMEX provides discrete attribution maps and enables visual aggregation
of similar explanations and the recognition of temporal patterns. () We test our approach on eight
synthetic and real-world time series datasets, including datasets with carefully processed ground-truth
explanations to quantitatively benchmark it and compare it to general explainers, state-of-the-art
time series explainers, and in-hoc explainers. TIMEX is athhttps://github.com/mims-harvard/
TimeX
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2 Related work

Model understanding and interpretability. As deep learning models grow in size and complexity,
so does the need to help users understand the model’s behavior. The vast majority of explainable Al
research (XAI) [24] has focused on natural language processing (NLP) [25} 126} 27]] and computer
vision (CV) [28, 29 30]. Commonly used techniques, such as Integrated Gradients [31] and Shapley
Additive Explanations (SHAP) [3l], and their variants have originated from these domains and gained
popularity. XAl has gained significant interest in NLP and CV due to the inherent interpretability
of the data. However, this familiarity can introduce confirmation bias [32]]. Recent research has
expanded to other data modalities, including graphs [33, 6] and time series [34} 35], as outlined
below. The literature primarily focuses on post-hoc explainability, where explanations are provided
for a trained and frozen model’s behavior [36} 37]]. However, saliency maps, a popular approach
[38l 131}, 39]], have pitfalls when generated post-hoc: they are surprisingly fragile [5], and lack
sensitivity to their explained models [40]]. Surrogate-based approaches have also been proposed
[41 142, |43]], but these simplified surrogate models fall short compared to the original predictor
they aim to explain. Unlike post-hoc explainability, in-hoc methods aim for inherently interpretable
models. This can be accomplished by modifying the model’s architecture [20]], training procedure
using jointly-trained explainers [44], adversarial training [45] 146} 47, 48], regularization techniques
[L7, 22], or refactorization of the latent space [49, [50]. However, such models often struggle to
achieve state-of-the-art predictive performance, and to date, these methods have seen limited use for
time series.

Beyond instance-based explanations. Several methods have been proposed to provide users with
information on model behavior beyond generating instance-based saliency maps explaining individual
predictions. Prototype models strive to offer a representative sample or region in the latent space
[51L152]]. Such methods are inherently interpretable, as predictions are directly tied to patterns in
the feature space. Further, explainability through human-interpretable exemplars has been gaining
popularity. Concept-based methods decompose model predictions into human-interpretable concepts.
Many works rely on annotated datasets with hand-picked concepts (e.g., “stripes” in an image of a
zebra). Relying on access to a priori defined concepts, concept bottleneck models learn a layer that
attributes each neuron to one concept [23]]. This limitation has spurred research in concept discovery
by composing existing concepts [53} 54] or grounding detected objects to natural language [S5]].
However, the CV focus of these approaches limits their applicability to other domains like time series.

Time series explainability. In contrast to other modalities, time series often have multiple variables,
and their discriminative information is spread over many timesteps. Building on these challenges,
recent works have begun exploring XAl for time series [56} 157, 158 159} 160, 61}, 134, |62]]. Many
methods modify saliency maps [35, 163} 58] or surrogate methods [59, 164]] to work with time series
data. Two representative methods are WinIT [65] and Dynamask [58]. WinlT learns saliency
maps with temporal feature importances, while Dynamask regularizes saliency maps to include
temporal smoothing. However, these methods rely on perturbing timesteps [63]], causing them to lack
faithfulness. Common perturbation choices in CV, like masking with zeros, make less sense for time
series [56]. Perturbed time series may be out-of-distribution for the model due to shifts in shape [66]],
resulting in unfaithful explanations akin to adversarial perturbation [[67]].

3 Problem formulation

Notation. Given is a time series dataset D = (X,)) = {(x;,v:)|¢ = 1,..., N} where x; are
input samples and y; are labels associated to each sample. Each sample x; € RT*? is said to
have T time steps and d sensors. A feature is defined as a time-sensor pair, where the time ¢ and
sensor k for input x; is x;[t, k]. Without loss of generality, we consider univariate (d = 1) and
multivariate (d > 1) settings. Each y; € {1,2, ..., C} belongs to one of C classes. A classifier model
consists of an encoder G and predictor F. The encoder GG produces an embedding of input x;, i.e.,
G(x;) = z; € R, while the predictor produces some prediction from the embedding in the form of
alogit, i.e., F(G(x;)) = §; € [0,1] where argmax; g;[j] € {1, ..., C} is the predicted label.

The latent space induced by G is defined as Z, e.g., G : X — Z. We will refer to F'(G(+)) as the
reference model while G is the reference encoder and F' is the reference predictor. An explanation is
defined as a continuous map of the features that conveys the relative importance of each feature for
the prediction. The explanation for sample x; is given as an attribution map F(x;) € RT*? where
for any times ¢1, t5 and sensors ky, ko, E(X;[t1, k1]) > E(x;[t2, ko)) implies that x;[t1, k1] is a more
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Figure 2: Overview of TIMEX approach.

important feature for the task than x;[to, k2]. Finally, we define an occlusion procedure whereby a
function 2 generates an mask M, for a sample x from the explanation F(x), e.g., Q(F(x)) = Mx.
This mask is applied to z to derive a masked version of the input x™* through an operation ©, e.g.,
My ® x = x™. When describing TIMEX, we generally refer to ® as an element-wise multiplication.

3.1 Self-supervised model behavior consistency

TIMEX creates an inherently-interpretable surrogate model for pretrained time series models. The
surrogate model produces explanations by optimizing two main objectives: interpretability and
faithfulness to model behavior. First, TIMEX generates interpretable explanations via an attribution
map FE(x;) that identifies succinct, connected regions of input important for the prediction. To
ensure faithfulness to the reference model, we introduce a novel objective for training TIMEX:
model behavior consistency (MBC). With MBC, a TIMEX model learns to mimic internal layers and
predictions of the reference model, yielding a high-fidelity time series explainer. MBC is defined as:

Definition 3.1 (Model Behavior Consistency (MBC)). Explanation E and explanation encoder G¥
are consistent with pretrained model G and predictor F on dataset D if the following is satisfied:

* Consistent reference encoder: Relationship between z; = G(x;) and zj = (/(x;) in the space of
reference encoder is preserved by the explainer, z” = G”(x}") and 2]’ = G”(x}"), where x}* =

Q(E(x;)) © x; and X7* = Q(E(x;)) © x;, through distance functions on the reference encoder’s

and explainer’s latent spaces Dz and D=, respectively, such that: Dz (z;,2;) ~ Dy (27, 2F)

z » “y
for samples x;,x; € D.
* Consistent reference predlctor Relationship between reference predictor g; = F'(z;) and latent
explanation predictor 7 = FE(zF) is preserved, §; ~ §F for every sample x; € D.

Our central formulation is defined as realizing the MBC between a reference model and an inter-
pretable TIMEX model:

Problem statement 3.1 (TIMEX). Given pretrained time series encoder G and predictor F' that are
trained on a time series dataset D, TIMEX provides explanations F(x;) for every sample x; € D in
the form of interpretable attribution maps. These explanations satisfy model behavior consistency
through the latent space of explanations Z¥ generated by the explanation encoder G*.

TIMEX is designed to counter several challenges in interpreting time series models. First, TIMEX
avoids the pitfall known as the occlusion problem [68]]. Occlusion occurs when some features in an
input x; are perturbed in an effort that the predictor forgets those features. Since it is well-known
that occlusion can produce out-of-distribution samples [69], this can cause unpredictable shifts in
the behavior of a fixed, pretrained model [70, [71,[72]]. In contrast, TIMEX avoids directly masking
input samples to G. TIMEX trains an interpretable surrogate G* to match the behavior of G. Second,
MBC is designed to improve the faithfulness of TIMEX to (. By learning to mimic multiple states of
F(G(-)) using the MBC objective, TIMEX learns highly-faithful explanations, unlike many post hoc
explainers that provide no explicit optimization of faithfulness. Finally, TIMEX’s explanations are
driven by learning a latent explanation space, offering richer interpretability data.
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4 TiMEX method

We now present TIMEX, an approach to train an interpretable surrogate model to provide explanations
for a pretrained time series model. TIMEX learns explanations through a consistency learning
objective where an explanation generator H” and explanation encoder G¥ are trained to match
intermediate feature spaces and the predicted label space. We will break down TIMEX in the
following sections by components: H L the explanation generator, GE, the explanation encoder, and
the training objective of G¥ (HE(-)), followed by a discussion of practical considerations of TIMEX.
An overview of TIMEX is depicted in Figure[2]

4.1 Explanation generation

Generating an explanation involves producing an explanation map E(x) where if E(x[t1, k1]) >
E(x[ta, k2]), then feature x[tq, k1] is considered as more important for the prediction than x[ts, ko]
Explanation generation is performed through an explanation generator H% : X — [0,1]7%4, where
H¥(x) = p. We learn p based on a procedure proposed by [50]], but we adapt their procedure for
time series. Intuitively, p parameterizes a Bernoulli at each time-sensor pair, and the mask My is
sampled from this Bernoulli distribution during training, i.e., Mx ~ Pp(Mx|X) = ][, , Bern(p¢ k).
This parameterization is directly interpretable as attribution scores: a low p; j means that time-sensor
pair (¢, k) has a low probability of being masked-in. Thus, p is also the explanation for x;, i.e.,
E(x) = p.

The generation of p is regularized through a divergence with Bernoulli distributions Bern(r), where
r is a user-chosen hyperparameter. As in [50]], denote the desired distribution of p as Q(My) =
[1(; 1) Bern(r). Then the objective becomes:

. 1—
() = BLDr (B (M Q)N = P puslog P2 + (1 pis)tog 7205 ()

The sampling of My ~ Pp(Mx|X) is performed via the Gumbel-Softmax trick [73 [74]], which is a
differentiable approximation of categorical sampling. Importantly, M x is stochastically generated,
which, as discussed in [50} [75], regularizes the model to learn robust explanations.

To generate interpretable attribution masks, TIMEX optimizes for the connectedness of predicted

distributions:
d

1 T-1
Len(P) = 7~ kZ ; V(e = Pryie)? @)

=1

The generator of explanations H ¥ learns directly on input time series samples X’ to return p. We
build a transformer encoder-decoder structure for H ¥, using an autoregressive transformer decoder
and a sigmoid activation to output probabilities for each time-sensor pair.

4.2 Explanation encoding

We now describe how to embed explanations with the explanation encoder G Intuitively, G¥ learns
on the masked distribution of X', which can be denoted as X™. Motivated by the occlusion problem,
we avoid directly applying the masks onto the pretrained, frozen GG, as X™ and X" are fundamentally
different distributions. Therefore, we copy the weights of G into G¥ and fine-tune G¥ on X™.

Discretizing attribution masks. When passing inputs to G¥, it is important for the end-to-end
optimization to completely ignore regions identified as unimportant by H”. Therefore, we use a
straight-through estimator (STE) [73] to obtain a discrete mask My € {0,1}7*4. Introduced by
[76], STEs utilize a surrogate function to approximate the gradient of a non-differentiable operation
used in the forward pass, such as binary thresholding.

Applying masks to time series samples. We use two types of masking procedures: attention
masking and direct-value masking. First, we employ differentiable attention masking through a
multiplicative operation proposed by Nguyen et al. [77]. When attention masking does not apply,
we use a direct-value masking procedure based on architecture choice or multivariate inputs. We
approximate a baseline distribution: By = [], , NV (s, o?.), where py;, and o7, are the mean and



variance over time-sensor pairs. Masking is then performed through a multiplicative replacement as:
=My ©x;)+ (1 — My) ®b, where b ~ By.

Justification for discrete masking. It is essential that masks My are discrete instead of continuous.
Previous works have considered masking techniques [78 49, 50] with continuous masks since
applying such masks is differentiable with element-wise multiplication. However, continuous masking
has a distinctly different interpretation: it uses a continuous deformation of the input towards a
baseline value. While such an approach is reasonable for data modalities with discrete structures,
such as sequences of tokens (as in [78,49]) or nodes in graphs [50], such deformation may result
in a change of the shape of time series data, which is known to be important for prediction [66].
As a toy example, consider an input time series x; where the predictive pattern is driven by feature
X;[t1, k1] is larger than all other features. Suppose My is continuous. In that case, it is possible that
for a less important feature x;[to, ko], Mx[t1, k1] < Mx[ta, ko] while (Mx[t1, k1] © x;[t1, k1]) >
(Mx[ta, ko] ® x;[ta, k2]), thereby preserving the predictive pattern. At the same time, the mask
indicates that x;[t2, k] is more important than x;[t, k1]. If a surrogate model is trained on My ® x;,
My may violate the ordinality expected by an attribution map as defined in Section[3| Discrete
masking alleviates this issue by forcing My to be binary, removing the possibility of confounds
created by continuous masking. Therefore, discrete masking is necessary when learning interpretable
masks on continuous time series.

4.3 Model behavior consistency

The challenge lies in training GF(H* (‘)E) to faithfully represent F'(G(-)). We approach this by
considering the latent spaces of G and G*. If G considers x; and x; to be similar in Z, we expect
that a faithful G¥ would encode x? and xj" similarly. However, directly aligning GG and GF is not
optimal due to potential differences in the geometry of the explanation embedding space compared to
the full input latent space. To address this, we introduce model behavior consistency (MBC). This
novel self-supervised objective trains the explainer model to mimic the behavior of the original model
without strict alignment between the spaces. Denote the latent space induced by G and G as Z and
Z¥, respectively. The MBC objective is thus defined as:

Lype(Z, 2" N2 Z Z (Dz(zi,2;) — D= (2], 27))?, 3)

2i,2€Z 2 2P e ZF

where Dz and D& are distance functions on the reference model’s latent space and the explanation
encoder’s latent space, respectively, and IV is the size of the minibatch, thereby making N2 equal to
the number of pairs on which Lypc is optimized. This objective encourages distances to be similar
across both spaces, encouraging Z¥ to retain a similar local topology to Z without performing a
direct alignment. This is closely related to cycle-consistency loss, specifically cross-modal cycle-
consistency loss as [79]. We use cosine similarity for Dz and D 4= throughout experiments in this
study, but any distance can be defined on each respective space.

In addition to MBC, we use a label consistency (LC) objective to optimize TIMEX. We train a
predictor F¥ on Z¥ to output logits consistent with those output by F. We use a Jensen-Shannon
Divergence (Djs) between the logits of both predictors:

£e(2,2%) = Y Y (Dis(F()||F(2)) — Dis(FP(aE)|[FE(aF)))" (&)

2:,2;€% P 2P P

Our total loss function on Z ¥ can then be defined as a combination of losses: £,z = Lypc+ALcLic.

Consistency learning justification. MBC offers three critical benefits for explainability. () MBC
enables consistency optimization across two latent spaces Z and Z¥ without requiring that both x;
and x™ be encoded by the same model, allowing the learning of E on a separate model F¥ (G (.)) #
F(G(-)). This avoids the out-of-distribution problems induced by directly masking inputs to G. 2
MBC comprehensively represents model behavior for explainer optimization. This is in contrast
to perturbation explanations [38] [80} [58]] which seek a label-preserving perturbation P on F(G(-))
where F'(G(P(x;))) ~ F(G(x;)). By using G(x;) and F/(G(x;)) to capture the behavior of the
reference model, MBC’s objective is richer than a simple label-preserving objective. (3) While
MBC is stronger than label matchmg alone, it is more flexible than direct alignment. An alignment
objective, which enforces z; ~ zZ, inhibits GE from learning important features of explanations not



represented in Z. The nuance and novelty of MBC are in learning a latent space that is faithful to
model behavior while being flexible enough to encode rich relational structure about explanations
that can be exploited to learn additional features such as landmark explanations. Further discussion
of the utility of MBC is in Appendix

4.4 Learning explanation landmarks and training TIMEX models

Leveraging the latent space, TIMEX generates landmark explanations z” € R%:. Such landmarks
are desirable as they allow users to compare similar explanation patterns across samples used by the
predictor. Landmarks are learned by a landmark consistency loss, and their optimization is detached
from the gradients of the explanations so as not to harm explanation quality. Denote the landmark
matrix as L € R™L%%= where ny, corresponds to the number of landmarks (a user-chosen value) and
d., is the dimensionality of Z¥. For each sample explanation embedding zZ, we use Gumbel-Softmax
STE (GS) to stochastically match zZ to the nearest landmark in the embedding space. Denote the
vector of similarities to each z” as s(z”, L). Then the assimilation A is described as:

A(zF; L) = GS(softmax(s(sg(z’),L)))L, )
where sg denotes the stop-grad function. The objective for learning landmarks is then
Lypc(Z, A(ZF; L)), optimizing the consistency between the assimilated prototypes and the refer-
ence model’s latent space. Landmarks are initialized as a random sample of explanation embeddings
from Z¥ and are updated via gradient descent. After learning landmarks, we can measure the quality
of each landmark by the number of z” embeddings closest to it in latent space. We filter out any
landmarks not sufficiently close to any samples (described in Appendix [B).

TIMEX training. The overall loss function for TIMEX has four components: £ = Lypc + AcLic +
Ag(Lm + AconLeon), Where Arc, Ag, Aeon € R are weights for the label consistency loss, total
explanation loss, and connective explanation loss, respectively. TIMEX can be optimized end-to-end,
requiring little hyperparameter choices from the user. The user must also choose the r parameter
for the explanation regularization. Explanation performance is stable across choices of 7 (as found
in [50])), so we set r = 0.5 to remain consistent throughout experiments. A lower r value may be
provided if the underlying predictive signal is sparse; this hyperparameter is analyzed in Appendix
In total, TIMEX optimizes HY, G¥, and F¥.

5 Experimental setup

Datasets. We design four synthetic datasets with known ground-truth explanations: FreqShapes,
SeqComb-UV, SeqComb-MYV, and LowVar. Datasets are designed to capture diverse temporal
dynamics in both univariate and multivariate settings. We employ four datasets from real-world
time series classification tasks: ECG [81] - ECG arrhythmia detection; PAM [82]] - human activity
recognition; Epilepsy [83] - EEG seizure detection; and Boiler [84] - mechanical fault detection.
We define ground-truth explanations for ECG as QRS intervals based on known regions of ECG
signals where arrhythmias can be detected. The R, P, and T wave intervals are extracted following
[85]. Dataset details are given in Appendix[C.I]and

Baselines. We evaluate the method against five explainability baselines. As a general explainer, we
use integrated gradients (IG) [31]]; for recent time series-specific explainers, we use Dynamask [58]],
and WinlIT [86]; for an explainer that uses contrastive learning, we use CoRTX [87]; and for an
in-hoc explainer which has been demonstrated for time series, we use SGT + Grad [17]].

Evaluation. We consider two approaches. Ground-truth explanations: Generated explanations are
compared to ground-truth explanations, i.e., known predictive signals in each input time series sample
when interpreting a strong predictor, following established setups [6]. We use the area under precision
(AUP) and area under recall (AUR) curves to evaluate the quality of explanations [58]]. We also use
the explanation AUPRC, which combines the results of AUP and AUR. For all metrics, higher values
are better. Definitions of metrics are in Appendix [C.4] Feature importance under occlusion: We
occlude the bottom p-percentile of features as identified by the explainer and measure the change in
prediction AUROC (Sec.[.2). The most essential features a strong explainer identifies should retain
prediction performance under occlusion when p is high. To control for potential misinterpretations,
we include a random explainer reference. Our experiments use transformers [88] with time-based
positional encoding. Hyperparameters and compute details are given in Appendix [C]



FreqShapes SeqComb-UV

Method AUPRC AUP AUR AUPRC AUP AUR

1G 0.75164+0.0032  0.6912+0.0028  0.59754+0.0020 | 0.5760+0.0022  0.815740.0023  0.2868+0.0023
Dynamask 0.22014+0.0013  0.295240.0037  0.5037+0.0015 | 0.44214+0.0016  0.878240.0039  0.1029+0.0007
WinIT 0.507140.0021 0.5546+£0.0026  0.455740.0016 | 0.4568+0.0017  0.7872+0.0027  0.225340.0016
CoRTX 0.6978+0.0156  0.4938+0.0004  0.32611+0.0012 | 0.5643+0.0024  0.8241£0.0025  0.1749+0.0007
SGT + Grad | 0.53124+0.0019  0.4138£0.0011  0.393140.0015 | 0.5731+0.0021  0.782840.0013  0.2136+0.0008
TIMEX | 0.8324+0.0034  0.7219+0.0031 0.6381-£0.0022 | 0.7124+0.0017  0.94110.0006  0.33804-0.0014

Table 1: Attribution explanation performance on univariate synthetic datasets.

SeqComb-MV LowVar

Method AUPRC AUP AUR AUPRC AUP AUR

1G 0.3298+0.0015  0.7483+0.0027  0.258140.0028 | 0.8691+0.0035  0.48274+0.0029  0.8165+0.0016
Dynamask 0.3136+0.0019  0.5481£0.0053  0.1953+0.0025 | 0.1391+0.0012  0.1640£0.0028  0.2106+0.0018
WinIT 0.2809+0.0018  0.7594£0.0024  0.207740.0021 0.1667+0.0015  0.1140£0.0022  0.3842+0.0017
CoRTX 0.36294+0.0021  0.5625+0.0006  0.34574+0.0017 | 0.4983+0.0014  0.3281+0.0027  0.4711+£0.0013
SGT + Grad | 0.4893+0.0005  0.4970£0.0005  0.4289+0.0018 | 0.3449+0.0010  0.213340.0029  0.3528+0.0015
TIMEX | 0.6878+0.0021  0.8326-£0.0008  0.387240.0015 | 0.8673+0.0033  0.545140.0028  0.9004+0.0024

Table 2: Attribution explanation performance on multivariate synthetic datasets.

6 Results

R1: Comparison to existing methods on synthetic and real-world datasets.

Synthetic datasets. We compare TIMEX to existing explainers based on how well they can identify
essential signals in time series datasets. Tables show results for univariate and multivariate
datasets, respectively. Across univariate and multivariate settings, TIMEX is the best explainer on
10/12 (3 metrics in 4 datasets) with an average improvement in the explanation AUPRC (10.01%),
AUP (6.01%), and AUR (3.35%) over the strongest baselines. Specifically, TIMEX improves ground-
truth explanation in terms of AUP by 3.07% on FreqShapes, 6.3% on SeqComb-UYV, 8.43% on
SeqComb-MYV, and 6.24% on Low Var over the strongest baseline on each dataset. In all of these
settings, AUR is less critical than AUP since the predictive signals have redundant information.
TIMEX achieves high AUR because it is optimized to output smooth masks over time, tending to
include larger portions of entire subsequence patterns than sparse portions, which is relevant for
human interpretation. To visualize this property, we show TIMEX’s explanations in Appendix

Real-world datasets: arrhythmia detection. We demonstrate TIMEX on ECG arrhythmia detection.
TIMEX’s attribution maps show a state-of-the-art performance for finding relevant QRS intervals
driving the arrhythmia diagnosis and outperform the strongest baseline by 5.39% (AUPRC) and
9.83% (AUR) (Table [3). Integrated gradients achieve a slightly higher AUP, whereas state-of-the-art
time series explainers perform poorly. Notably, TIMEX’s explanations are significantly better in
AUR, identifying larger segments of the QRS interval rather than individual timesteps.

Ablation study on ECG data. We conduct ablations on the ECG data using TIMEX (Table[3). First,
we show that the STE improves performance as opposed to soft attention masking, resulting in an
AUPRC performance gain of 9.44%; this validates our claims about the pitfalls of soft masking for
time series. Note that this drop in performance becomes more significant when including direct-value
masking, as shown in Appendix Second, we use SimCLR loss to align Z to Z as opposed
to MBC; SimCLR loss can achieve comparable results in AUPRC and AUR, but the AUP is 13.6%
lower than the base TIMEX. Third, we experiment with the usefulness of MBC and LC objectives.
MBC alone produces poor explanations with AUPRC at 65.8% lower score than the base model. LC
alone does better than MBC alone, but its AUPRC is still 21.5% lower than the base model. MBC
and LC, in conjunction, produce high-quality explanations, showing the value in including more
intermediate states for optimizing G¥ (H*(-)). Extensive ablations are provided in Appendix

R2: Occlusion experiments on real-world datasets.

We evaluate TIMEX explanations by occluding important features from the reference model and
observing changes in classification [63] 58] [87]]. Given a generated explanation E(x; ), the bottom
p-percentile of features are occluded; we expect that if the explainer identifies important features for
the model’s prediction, then the classification performance to drop significantly when replacing these
important features (determined by the explainer) with baseline values. We compare the performance
under occlusion to random explanations to counter misinterpretation (Sec.[3.1). We adopt the masking



ECG TIMEX ECG
Method AUPRC AUP AUR ‘ ‘ Ablations ‘ AUPRC AUP AUR
1IG 0.4182+0.0014 0.5949-+£0.0023 0.3204=40.0012 || Full 0.4721£0.0018 0.5663£0.0025 0.445740.0018
Dynamask | 0.328040.0011 0.524940.0030 0.1082+0.0080 || —-STE 0.4014£0.0019 0.5570£0.0032 0.156440.0007
WinlT 0.3049+0.0011 0.4431£0.0026 0.347440.0011 || +SimCLR | 0.476740.0021 0.4895+0.0024 0.4779+0.0013
CoRTX 0.37354+0.0008 0.4968-+0.0021 0.303140.0009 || Only LC 0.3704+0.0018 0.3296+£0.0019 0.508440.0008

SGT + Grad | 0.314440.0010 0.424140.0024 0.2639+0.0013
TIMEX ‘0.4721:i:0A0018 0.5663+0.0025 0.4457:|:0.0018H

Table 3: (Left) Benchmarking TIMEX on the ECG dataset. (Right) Results of ablation analysis.

Only MBC | 0.1615£0.0006 0.1348=£0.0006 0.550440.0011
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Figure 3: Occlusion experiments on real-world datasets. Higher values indicate better performance.

procedure described in Sec.[d.2] performing attention masking where applicable and direct-value
masking otherwise.

Figure 3] compares TIMEX to Dynamask, a strong time-series explainer. On all datasets, TIMEX’s
explanations are either at or above the performance of Dynamask, and both methods perform above
the random baseline. On the Boiler dataset, we demonstrate an average of 27.8% better classification
AUROC across each threshold than Dynamask, with up to 37.4% better AUROC at the 0.75 threshold.
This gap in performance between TIMEX and Dynamask is likely because the underlying predictor
for Boiler is weaker than that of Epilepsy or PAM, achieving 0.834 AUROC compared to 0.979 for
PAM and 0.939 for Epilepsy. We hypothesize that TIMEX outperforms Dynamask because it only
considers changes in predicted labels under perturbation while TIMEX optimizes for consistency
across both labels and embedding spaces in the surrogate and reference models. TIMEX performs
well across both univariate (Epilepsy) and multivariate (PAM and Boiler) datasets.

R3: Landmark explanation analysis on ECG.

To demonstrate TIMEX’s landmarks, we show how landmarks serve as summaries of diverse patterns
in an ECG dataset. Figure ] visualizes the learned landmarks in the latent space of explanations. We
choose four representative landmarks based on the previously described landmark ranking strategy
(Sec.[.4). Every landmark occupies different regions of the latent space, capturing diverse types
of explanations generated by the model. We show the three nearest explanations for the top two
landmarks regarding the nearest neighbor in the latent space. Explanations (D), 2), and () are all
similar to each other while distinctly different from @), 3), and 6), both in terms of attribution
and temporal structure. This visualization shows how landmarks can partition the latent space
of explanations into interpretable temporal patterns. We demonstrate the high quality of learned
landmark explanations through a quantitative experiment in Appendix [C.10]

Additional experiments demonstrating flexibility of TIMEX.

In the Appendix, we present several additional experiments to demonstrate the flexibility and superi-
ority of TIMEX. In Appendix[C.8] we replicate experiments on two other time series architectures,
LSTM and CNN, and show that TIMEX retains state-of-the-art performance. In Appendix [C.9]
we demonstrate the performance of TIMEX in multiple task settings, including forecasting and
irregularly-sampled time series classification. TIMEX can be adapted to these settings with minimal
effort and retains excellent explanation performance.

7 Conclusion

We develop TIMEX, an interpretable surrogate model for interpreting time series models. By
introducing the novel concept of model behavior consistency (i.e., preserving relations in the latent
space induced by the pretrained model when compared to relations in the latent space induced by the
explainer), we ensure that TIMEX mimics the behavior of a pretrained time series model, aligning
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Figure 4: Landmark analysis of TIMEX on the ECG dataset. Shown is a UMAP plot of the latent
explanation space along with learned landmark explanations. For two selected landmarks (in red), we
show three explanation instances most similar to each landmark.

influential time series signals with interpretable temporal patterns. The generation of attribution maps
and utilizing a latent space of explanations distinguish TIMEX from existing methods. Results on
synthetic and real-world datasets and case studies involving physiological time series demonstrate
the superior performance of TIMEX compared to state-of-the-art interpretability methods. TIMEX’s
innovative components offer promising potential for training interpretable models that capture the
behavior of pretrained time series models.

Limitations. While TIMEX is not limited to a specific task as an explainer, our experiments focus
on time series classification. TIMEX can explain other downstream tasks, assuming we can access
the latent pretrained space, meaning it could be used to examine general pretrained models for time
series. Appendix [C.9]gives experiments on various setups. However, the lack of such pretrained
time series models and datasets with reliable ground-truth explanations restricted our testing in this
area. One limitation of our approach is its parameter efficiency due to the separate optimization of
the explanation-tuned model. However, we conduct a runtime efficiency test in Appendix [C.7]that
shows TIMEX has comparable runtimes to baseline explainers. Larger models may require adopting
parameter-efficient tuning strategies.

Societal impacts. Time series data pervades critical domains including finance, healthcare, energy,
and transportation. Enhancing the interpretability of neural networks within these areas has the
potential to significantly strengthen decision-making processes and foster greater trust. While explain-
ability plays a crucial role in uncovering systemic biases, thus paving the way for fairer and more
inclusive systems, it is vital to approach these systems with caution. The risks of misinterpretations or
an over-reliance on automated insights are real and substantial. This underscores the need for a robust
framework that prioritizes human-centered evaluations and fosters collaboration between humans
and algorithms, complete with feedback loops to continually refine and improve the system. This
approach will ensure that the technology serves to augment human capabilities, ultimately leading to
more informed and equitable decisions across various sectors of society.
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Appendix A Further discussion of background

Straight-through estimators. Discrete operations, such as thresholding, are often avoided in neural
network architectures due to difficulties differentiating discrete functions. To circumvent these
issues, [76] introduces the straight-through estimator (STE), which uses a surrogate function during
backpropagation to approximate the gradient for a non-differentiable operation. STEs have seen
usage in quantized neural networks [S1]. This method shows empirical performance even though
there is little theoretical justification behind it [S2].

Self-supervised learning. Methods in self-supervised learning (SSL) have become a common
pretraining technique for settings in which large, unlabeled datasets are available [S3, S4, S5, S6].
Common approaches for self-supervised learning are contrastive learning, which seeks to learn
representations for samples under invariant data augmentations, and metric learning, which aims to
generate a latent space in which a distance function captures some pre-defined relations on data [S7].
Consistency learning has emerged as another promising SSL approach; intuitively, this family of
methods seeks to learn latent spaces in which similar pairs are expected to be embedded similarly,
i.e., preserving some consistent properties. Consistency learning has seen use in aligning videos
[S8], enhancing latent geometry for multimodal contrastive learning [79]], and pretraining time series
models across time and frequency domains [1]].

The use of consistency for explaining machine learning models. Consistency has been considered
in previous XAl literature in two ways: 1) consistency between explanations and 2) consistency as an
explainability metric, as explained below.

* Consistency between explanations: This notion has been introduced in previous works in ex-
plainability literature. Pillai et al. [S9] train a saliency explainer via contrastive learning that
preserves consistency across the saliency maps for augmented versions of images. A few other
works have explored maintaining consistency of explanations across various perturbations and
augmentations, specifically in computer vision [S10, S11]. In one of the only previous works
to consider explanation consistency in time series, Watson et al. [S12] train an explainer on an
ensemble of classifiers to optimize the consistency of explanations generated by an explainer
applied to each classifier. TIMEX does not seek to optimize consistency between explanations but
rather a consistency to the predictor model on which it is explaining.

» Consistency as an explainability metric: Dasgupta et al. [S13] defines explanation consistency
as similar explanations corresponding to similar predictions; this metric is then used as a proxy
to faithfulness to evaluate the quality of explainers. However, Dasgupta et al. use consistency to
evaluate explainers, not to train and design a new explainer method. TIMEX uses consistency as a
learning objective rather than simply a metric.

Our work differs from these previous formulations of explanation consistency. We seek to optimize
the consistency not between explanations directly, as mentioned in previous works, but rather between
the explainer and the model it is tasked with explaining. MBC attempts to ensure that the behavior
of the explainable surrogate matches that of the original model. The definition of consistency in
Dasgupta et al. is the closest to our definition of MBC; however, Dasgupta et al. seek not to optimize
the consistency of explainers but rrather to evaluate the output of post-hoc explainers. TIMEX directly
optimizes the consistency between the surrogate model and the original predictor through the MBC
loss, a novel formulation that seeks to increase the faithfulness of explanations generated by TIMEX.

Appendix B Further theoretical discussions

B.1 Differentiable attention masking
As is described in Section we use differentiable attention masking [[77]], which is defined as such:

QK"
Vdy
where Q, K,V represent query, key and values operators, dy, is used as a normalization factor, and
My is a mask with self-attention values. This procedure is fully differentiable, and given that M y is

binarized via the STE, it sets all attention values to zero that are to be ignored based on output from
HE

a™ = (softmax( )OMy)V, (6)



B.2 Further discussion on the utility of model behavior consistency

The model behavior consistency (MBC) framework in TIMEX is a method to train an interpretable
surrogate model G'¥. In Section4.3| we discuss the conceptual advances of this approach. Here, we
will outline another advantage of the approach—preserving classification performance—and a brief
discussion on the broader uses of MBC in other domains and applications.

Training a model with an interpretability bottleneck such as TIMEX is often challenging, as the
inherent interpretability mechanism can hinder the performance and expressiveness of the method; this
is an advantage of post-hoc methods. MBC allows one to preserve the performance of the underlying
predictor. TIMEX, a surrogate method, allows one to keep the predictions from a pretrained time
series encoder and develop explanations on top of it, which is practical for real-world use when a
drop in classification performance is highly undesirable.

MBC is not limited to time series classification tasks. We demonstrate the utility of MBC for time
series due to the particularly challenging nature of the data modality and the lack of available time
series explainers. However, MBC gives a general framework for learning interpretable surrogate
models through learning the H¥ and G¥ modules. MBC also has the potential to be applied to
tasks outside of classification; since MBC is defined on the embedding space, any model with such
an embedding space could be matched through a surrogate model as in TIMEX. This opens the
possibility of learning on general pretrained models or even more complex tasks such as forecasting
(as shown in Appendix [C.9). Finally, we see MBC as having potential beyond explainability as well;
one could imagine MBC being a way to distill knowledge into smaller models [S14, S15, S16]. We
leave these discussions and experiments for future work.

B.3 Explanation landmark selection strategy

We proceed to describe how landmarks are selected for final interpretation. As described in Section
M.4] landmarks are initialized with the embeddings given by G for a random number of training
samples. Practically, we stratify this selection across classes in the training set. Landmarks are
then updated during the learning procedure. After learning landmarks, not every landmark will be
helpful as an explanation; thus, we perform a filtration procedure. Intuitively, this filtration consists
of detecting landmarks for which the landmark is the nearest landmark neighbor for many samples.
This procedure is described in Algorithm [I]

Algorithm 1: Landmark filtration

Input: Landmark matrix L € R"2*%; training explanation embeddings {z%, ..., z% } for
zf € R4 threshold number of neighbors n, € N

N« {}

fori < 1to N do
Compute similarity to all landmarks S! = sim(z, L)
Jmax ¢ argmax; Sé [4] (Gets nearest landmark for sample explanation )
Append jmax to N}

end

F; < Frequency of occurrence of each unique element in V;

Liyer < every landmark in L s.t. F; > n,

Return Lﬁher

Appendix C Additional experiments and experimental details

C.1 Description of datasets

We conduct experiments using both synthetic and real-world datasets. This section describes each
synthetic and real-world dataset, including how ground-truth explanations are generated when
applicable.



C.1.1 Synthetic datasets

We employ synthetic datasets with known ground-truth explanations to study the capability to
identify the underlying predictive signal. We follow standard practices for designing synthetic
datasets, including tasks that are predictive and not susceptible to shortcut learning [S17] induced by
logical shortcuts. These principles are defined in [S18] concerning graphs, but we extend these to
synthetic datasets for time series. Each time series is initialized with a non-autoregressive moving
average (NARMA) noise base, and then the described patterns are inserted. We will briefly describe
the construction of each time series dataset in this section, and the codebase contains full details
at https://github.com/mims-harvard/TimeX. We designed four synthetic datasets to test
different time series dynamics:

FreqShapes. Predictive signal is determined by the frequency of occurrence of an anomaly signal.
To construct the dataset, take two upward and downward spike shapes and two frequencies, 10 and
17 time steps. There are four classes, each with a different combination of the attributes: class 0
has a downward spike occurring every 10-time steps, class 1 has an upward spike occurring every
10-time steps, class 2 has a downward spike occurring every 17-time steps, and class 3 has an upward
spike occurring every 17-time steps. Ground-truth explanations are the locations of the upward and
downward spikes.

SeqComb-UV. Predictive signal is defined by the presence of two shapes of subsequences: increasing
(D and decreasing (D) trends. First, two subsequence regions are chosen within the time series so
neither subsequence overlaps; each subsequence is 10-20 time steps long. Then, a pattern is inserted
based on the class identity; the increasing or decreasing trend is created with a sinusoidal noise with
a randomly-chosen wavelength. Class 0 is null, following a strategy in [S18] that recommends using
null classes for simple logical identification tasks in synthetic datasets. Class 1 is I, I; class 2 is D,
D; and class 3 is I, D. Thus, the model is tasked with identifying both subsequences to classify each
sample. Ground-truth explanations are the I and D sequences determining class labels.

SeqComb-MYV. This dataset is a multivariate version of SeqComb-UV. The construction and class
structure are equivalent, but the I and D subsequences are distributed across different sensors in
the input. Upon constructing the samples, the subsequences are chosen to be on random sensors
throughout the input. Ground-truth explanations are given as the predictive subsequences on their
respective sensors, i.e., the explainer is required to identify the time points at which the causal signal
occurs and the sensors upon which they occur.

LowVar. Predictive signal is defined by regions of low variance over time that occur in a multivariate
time series sample. Similar to SeqComb datasets, we choose a random subsequence in the input
and, in that subsequence, replace the NARMA background sequence with Gaussian noise at a low
variance. The subsequence is further discriminated by the mean of the Gaussian noise and the sensor
on which the low variance sequence occurs. For class 0, the subsequence is at mean -1.5 on sensor 0;
for class 1, the subsequence is at mean 1.5 on sensor 0; for class 2, the subsequence is at mean -1.5
on sensor 1; for class 3, the subsequence is at mean 1.5 on sensor 1. This task is distinctly different
from other synthetic datasets, requiring recognition of a subsequence that is not anomalous from
the rest of the sequence. This presents a more challenging explanation task; a simple change-point
detection algorithm could not determine the explanation for this dataset.

We create 5,000 training samples, 1,000 testing samples, and 100 validation samples for each dataset.
A summary of the dimensions of each dataset can be found in Table [

Table 4: Synthetic Dataset Description

Dataset | #of Samples Length Dimension Classes
FreqShapes 6,100 50 1 4
SeqComb-UV 6,100 200 1 4
SeqComb-MV 6,100 200 4 4
LowVarDetect 6,100 200 2 4



https://github.com/mims-harvard/TimeX

C.1.2 Real-world datasets

We employ four datasets from real-world time series classification tasks: PAM [82] - human activity
recognition; ECG [81] - ECG arrhythmia detection; Epilepsy [83] - EEG seizure detection; and
Boiler [84] - automatic fault detection.

PAM [82]. It measures the daily living activities of 9 subjects with three inertial measurement units.
We excluded the ninth subject due to the short length of sensor readouts. We segment the continuous
signals into samples with a time window of 600 and the overlapping rate of 50%. PAM initially
has 18 activities of daily life. We exclude the ones associated with fewer than 500 samples, leaving
us with eight activities. After modification, the PAM dataset contains 5,333 segments (samples) of
sensory signals. Each sample is measured by 17 sensors and contains 600 continuous observations
with a sampling frequency of 100 Hz. PAM is labeled into eight classes, where each class represents
an activity of daily living. PAM does not include static attributes, and the samples are approximately
balanced across all eight classes.

MIT-BIH (ECG) [81]. The MIT-BIH dataset has ECG recordings from 47 subjects recorded
at the sampling rate of 360Hz. The raw dataset was then window-sliced into 92511 samples of
360 timestamps each. Two cardiologists have labeled each beat independently. Of the available
annotations, we choose to use three for classification: normal reading (N), left bundle branch block
beat (L), and right bundle branch block beat (R). We choose these because L and R diagnoses are
known to rely on the QRS interval [S19, S20], which will then become our ground-truth explanation
(see Section[C.4). The Arrhythmia classification problem involves classifying each fragment of ECG
recordings into different beat categories.

Epilepsy [83]. The dataset contains single-channel EEG measurements from 500 subjects. For
every subject, the brain activity was recorded for 23.6 seconds. The dataset was then divided and
shuffled (to mitigate sample-subject association) into 11,500 samples of 1 second each, sampled at
178 Hz. The raw dataset features five classification labels corresponding to different states of subjects
or measurement locations — eyes open, eyes closed, EEG measured in the healthy brain region,
EEG measured in the tumor region, and whether the subject has a seizure episode. To emphasize
the distinction between positive and negative samples, we merge the first four classes into one, and
each time series sample has a binary label indicating whether an individual is experiencing a seizure.
There are 11,500 EEG samples in total.

Boiler [84]]. This dataset consists of simulations of hot water heating boilers undergoing different
mechanical faults. Various mechanical sensors are recorded over time to derive a time series dataset.
The learning task is to detect the mechanical fault of the blowdown valve of each boiler. The dataset
is particularly challenging because it includes a large dimension-to-length ratio, unlike the other
datasets, which contain many more time steps than sensors (Table [5).

Table 5: Real-World Dataset Description

Dataset | #of Samples Length Dimension Classes Task
PAM 5,333 600 17 8 Action recognition
MIT-BIH 92,511 360 1 5 ECG classification
Epilepsy 11,500 178 1 2 EEQG classification
Boiler 160,719 36 20 2 Mechanical fault detection

C.2 Descriptions of baseline methods

‘We now describe each baseline method in further detail.

IG [31]. Integrated gradients is a classical attribution method that utilizes the gradients of the
model to form an explanation. The method compares the gradients to a baseline value and performs
Riemannian integration to derive the explanation. Integrated gradients is a popular data-type agnostic
interpretability method [S21], but it has no inductive biases specific for time series. We use the
Captum [S22] implementation of this method, including default hyperparameters such as the baseline
value.

Dynamask [58]. This explainer is built specifically for time series and uses a perturbation-based

procedure to generate explanations. The method performs iterative occlusion of various input portions,
learning a mask that deforms the input time series towards a carefully-determined baseline value.



This method is different from TIMEX in a few key ways. First, it performs continuous masking;
TIMEX performs discrete masking through STEs. Second, it measures perturbation impact on the
original model F(G(-)); TIMEX trains a surrogate model G¥ to learn the explanations and measure
the impact of masking the input. Third, Dynamask learns the explanations iteratively for each sample;
TIMEX trains the surrogate, which can then output explanations in one forward pass of HZ.

WinlIT [86]. This explainer is a feature removal explainer, similar to Dynamask. WinIT measures the
impact of removing features from a time series on the final prediction value. It eliminates the impact
of specific time intervals and learns feature dependencies across time steps. WinlT uses a generative
model to perform in-distribution replacement of masked-out features. WinIT improves on a previous
time series explainer, FIT [63], which is a popular baseline in time series explainability literature but
is excluded in our work because WinIT is more recent and improves on FIT both conceptually and
empirically.

CoRTX [87]]. Contrastive real-time explainer (CoRTX) is an explainer method that utilizes contrastive
learning to approximate SHAP [3]] values. This method is developed for computer vision, but we
implement a custom version that works with time series encoders and explanation generators. We
include this method because it uses self-supervised learning to learn explanations. TIMEX also uses
a self-supervised objective to learn explanations, but our method differs from CoRTX in several
ways. First, CoORTX performs augmentation-based contrastive learning while we use MBC, which
avoids the definition of negatives or the careful choice of augmentations specific to the data modality.
Second, CoRTX fundamentally attempts to approximate SHAP values via a small number of SHAP
explanations. In contrast, TIMEX includes a masking system that can produce masks without fine-
tuning a model on a set of explanations derived from an external method. CorRTX parallels ours in
using self-supervised learning but is fundamentally different from TIMEX.

SGT + Grad [17]. Saliency-guided training (SGT), an in-hoc explainer, is based on a modification
to the training procedure. During training, features with low gradients are masked to steer the model
to focus on more important regions for the prediction. The method is not an explainer alone but
requires another post-hoc explainer to derive explanations. In our experiments, we consider saliency
explanations, which the SGT authors recommend. The authors found that this method can improve
performance on time series data. For this reason, we include it as one of our baselines to demonstrate
the effectiveness of TIMEX against modern in-hoc explainers.

C.3 Hyperparameter selection

We list hyperparameters for each experiment performed in this work. For the ground-truth attribution
experiments (Section[6] results R1), the hyperparameters are listed in Table[§] The hyperparameters
used for the occlusion experiment (Section[6] results R2) with real-world datasets are in Table[7] We
also list the architecture hyperparameters for the predictors trained on each dataset in Tables 8|9

A few abbreviations are used for hyperparameters that are not mentioned in the main text. "Weight
decay" refers to an L1 regularization on the model weights; the value for weight decay is equivalent
to the weight on that term in the loss function compared to the rest of the loss terms (Section &.4)).
"Scheduler?" refers to using a learning rate scheduler that decreases the learning rate by a factor of
10 if a plateau occurs. We use a scheduler that delays decreasing learning rates until after 20 epochs;
not every experiment utilizes the scheduler as it is based on which choice yields lower validation loss
upon convergence. "Distance norm." refers to a normalization of the distances in Lypc; the loss is
divided by the variance of the distances on the Z embedding space. 7 is the temperature parameter
used for the Gumbel-Softmax reparameterization [73]], Section dy, refers to the dimensionality
of hidden layers in the transformer predictor. Finally, "Norm. embedding" refers to an architecture
choice that normalizes Z when training the predictor; this is used to prevent a poor latent space when
a collapse is observed via poor latent space geometry.

A few other notes on implementation and design of TIMEX: The architecture of H¥ uses the same
size of G¥ and encoder for H” as for the predictor on each task. The number of transformer decoder
layers is fixed at 2. Please reference the codebase for more details on these hyperparameters and
implementations https://github.com/mims-harvard/TimeX.

Choosing the r parameter. One of the most significant parameters in training TIMEX is r, the
parameter which controls sparsity of the learned masks. We conduct an experiment where we vary
the parameters and measure explanation quality. We use the SeqComb-UV dataset and hold all
hyperparameters constant while varying the parameter. The result is visualized in Figure[5} Low
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Figure 5: Experiment on SeqComb-UV dataset varying the r parameter.

Parameter ‘ FreqShape ‘ SeqComb-UV ‘ SeqComb-MV ‘ LowVarDetect ‘ ECG
Learning rate 0.001 0.001 0.001 0.003 0.0005
Batch size 64 64 64 64 16
Weight decay 0.001 0.001 0.001 0.0001 0.0001
Scheduler? Yes Yes No No No
Epochs 50 50 100 100 5

T 0.5 0.5 0.5 0.5 0.5
Distance norm. No No No Yes No
ALc 1.0 1.0 1.0 1.0 1.0

AE 2.0 2.0 2.0 2.0 2.0

Acon 2.0 2.0 2.0 2.0 2.0

T 1.0 1.0 1.0 1.0 1.0

nr 50 50 50 50 50

Table 6: Training parameters for TIMEX across all ground-truth attribution experiments.

values lead to a drop in explainer performance with respect to AUPRC and AUP. Importantly, for
values above 0.4, the explainer performance is stable, suggesting that is robust to choice of value.
Thus, we recommend choosing a value near 0.5 for experiments, as we did throughout our experiments.
If the pattern is hypothesized to be sparse, one can set the value lower, and vice versa if the pattern is
hypothesized to be dense.

C.4 Evaluation details

Following [58]], we use AUP and AUR to evaluate the goodness of identification of salient attributes
as a binary classification task, which is defined in[C.I}

Definition C.1 (AUP,AUR [58]). Let Q be a matrix in {0, 1}7*%x whose elements indicate the true
saliency of the inputs contained in x € RTxdx By definition, (); ; = 1 if the feature x; ; is salient

Parameter | Epilepsy | PAM | Boiler
Learning rate 0.0001 0.002 0.0001
Batch size 32 32 32
Weight decay 0.001 0.001 0.001
Scheduler? Yes No Yes

Epochs 50 100 50

r 0.5 0.1 0.5
Distance norm. No Yes No
ALc 1.0 1.0 1.0

AE 2.0 2.0 2.0

Acon 2.0 0.0 2.0

T 1.0 1.0 1.0

nr 50 50 50

Table 7: Training parameters for TIMEX across all real-world datasets used for the occlusion
experiments.



Parameter | FreqShape | SeqComb-UV | SeqComb-MV | LowVarDetect | ECG

Num. layers 1 2 2 1 1
dp, 16 64 128 32 64
Dropout 0.1 0.25 0.25 0.25 0.1
Norm. embedding No No No Yes Yes
Learning rate 0.001 0.001 Se-4 0.001 2e-3
Weight decay 0.1 0.01 0.001 0.01 0.001
Epochs 100 200 1000 120 500

Table 8: Training parameters for transformer predictors across all ground-truth attribution experiment
datasets.

Param. | Epilepsy | PAM | Boiler
Num. layers 1 1 1

dp, 16 72 32
Dropout 0.1 0.25 0.25
Norm. embedding No No Yes
Learning rate 0.0001 0.001 0.001
Weight decay 0.001 0.01 0.001
Epochs 300 100 500

Table 9: Training parameters for TIMEX across all real-world datasets used for the occlusion
experiments.

and 0 otherwise. Let M be a mask in {0, 1}7*4x obtained with a saliency method. Let 7 € (0, 1) be
the detection threshold for M, ; to indicate that the feature x, ; is salient. This allows to convert the

mask into an estimator Q ;(7) via:

. 1 M, >
Qui(T) = { 0 else.t’

By considering the sets of truly salient indexes and the set of indexes selected by the saliency method:
A={(t,i) e [1:T)x[1:dx]|q.=1}
A(r) ={(t,i) € 1 : T] x [1 1 dx] | Gei(7) = 1}.
the precision and recall curves that map each threshold to a precision and recall score:
| AN A(r)
A7)

AN A(r)
Al

P:(0,1) — [0,1] :7 —>

R:(0,1) — [0,1] :7 —
The AUP and AUR scores are the area under these curves:

1
AUP:/ P(r)dr
0

1
AUR:/ R(7)dr.
0

Groud-truth explanations for ECG datasets. We extract ground-truth explanations via a QRS
detection strategy following [85] because an initial set of beat labels was produced by a simple slope-
sensitive QRS detector and were then given to two cardiologists, who worked on them independently.
The cardiologists added additional beat labels where the detector missed beats, deleted false detections
as necessary, and changed the labels for all abnormal beats. We employ Neurokit[T_-]to extract QRS
complexes and also take care to ensure that the QRS is the proper explanation for each class. We
consider two types of arrhythmias: left bundle branch block beat and right bundle branch block beat,
to categorize our "abnormal” class. We perform the ground-truth evaluation on only the abnormal

"https://github.com/neuropsychology/NeuroKit



Method ‘ ToU AUPRC

1G 0.37504+0.0022  0.5760£0.0022
Dynamask | 0.29584+0.0014  0.4421+0.0016
TIMEX 0.5214+0.0019  0.712440.0017

Table 10: IoU metric compared to AUPRC on the SeqComb-UV dataset.

No STE STE
Method AUPRC AUP AUR AUPRC AUP AUR
FreqShapes 0.6695+0.0038  0.6398+0.0038  0.5454+0.0026 | 0.8324+0.0034  0.721940.0031 0.6381+0.0022
SeqComb-MV | 0.5694+0.0023  0.8723+0.0006  0.3229+0.0017 | 0.6878-0.0021 0.8326+£0.0008  0.387240.0015
ECG 0.4014+0.0019  0.557040.0032  0.1564+0.0007 | 0.4721+£0.0018  0.56631+0.0025  0.4457+0.0018

Table 11: Ablation 1: Ablation using the STE vs. no STE. "No STE" is equivalent to continuous
masking, as discussed in Section@

class, as the normal class signifies negative information, which may be harder to pinpoint based on
model logic.

Statistical analysis. We evaluate each experiment on a 5-fold cross-validation of each dataset. We
then report average performance and standard error across all folds of evaluation for each experiment,
which results in the error bars seen in all tables throughout this work.

Evaluation with IoU metric. To further demonstrate the superior performance of TIMEX and the
soundness of our evaluation setup, we additionally use an Intersection over Union (IoU) metric to
measure the quality of explanations produced by baseline explainers compared to that of TIMEX
when compared to ground-truth explanations. We calculate the IoU score on the SeqComb-UV
dataset, as shown in Table[T0} For comparison to our metrics, we include the AUPRC results for
the same methods. The IoU metric is highly correlated with the AUPRC metric, with each metric
resulting in the same ranking of methods and TIMEX achieving the highest metric.

C.5 Visualization of explanations

Figure 6] shows an example of TIMEX explainer versus IG and Dynamask. Shown is the SeqComb-
UV dataset, which has increasing and decreasing subsequences that determine the class label. Each
explainer identifies the regions driving the prediction. IG identifies very sparse portions of the
predictive region, choosing only one point out of the sequences for the explanation; this is not
reasonable when scaling to large and noisier datasets where the signal might not be as clear. Dynamask
seems to miss some important subsequences, identifying one or two subsequences. In contrast, TIMEX
identifies a larger portion of the important subsequences due to the connection loss in Equation [2]
This property becomes crucial when scaling to time series datasets with more noise as it becomes
more difficult to intuitively deduce the causal signal through visual inspection.

C.6 Further ablation experiments

We present a more in-depth study of ablations on TIMEX on three datasets: FreqShapes (univariate),
SeqComb-MV (multivariate), and ECG (real-world). This is an extension to the ablations on the ECG
dataset in Section[6] R1 in Table

Ablation 1: No STE. We now conduct an experiment examining the effectiveness of using the STE
for training TIMEX. Table[TT|shows the results of this ablation experiment. Using the STE provides
over a 17% increase in AUPRC for attribution identification for every dataset. Furthermore, AUR is
better when using an STE for every dataset, but the AUP is better for SeqComb-MV without the STE
than with the STE. Using the STE also shows benefits in both the univariate (FreqShapes, ECG) and
multivariate (SeqComb-MV) settings. In conclusion, the STE provides a noticeable benefit over a
continuous masking approach, giving empirical evidence for the claims made in Section .2}

Ablation 2: SimCLR vs. MBC. We now test a classical SimCLR [S5] contrastive learning loss
against our proposed model behavior consistency (MBC). The SimCLR objective is designed to
decrease the distance between explanation embeddings and embeddings in the reference model’s
latent space. We do not perform data augmentations as in the original SimCLR work. The SimCLR
loss that we use is given as:
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Figure 6: Visualization of explanations on SeqComb-UV dataset. Each column corresponds to a
unique sample. All are of Class 3, which consists of one increasing subsequence and one decreasing
subsequence. The methods that generate each figure are shown for each of the rows, while ground
truth explanations are provided in the top row.
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For each SimCLR trial, we fixed the number of sampled negatives at 32 and kept all other parameters
equal. In addition, an early stopping strategy was performed where the stopping value was based
on cosine similarity between explanation embeddings and reference sample embeddings (higher
similarity is better).

SimCLR loss provides a valuable objective for training TIMEX relative to baseline explainers, but
MBC optimization produces more robust explanations. SImCLR delivers a slightly better AUPRC for
ECG, but its AUPRC values are below that of MBC for FreqShapes and SeqComb-MV. SimCLR
loss yields explanations with consistently lower AUP; AUP is closest for SeqComb-MV with only



SimCLR MBC
Method AUPRC AUP AUR AUPRC AUP AUR
FreqShapes 0.7014+0.0046  0.599140.5915  0.5915+0.0027 | 0.8324+0.0034  0.72194+0.0031  0.6381-0.0022
SeqComb-MV | 0.6645+0.0019  0.81484+0.0009  0.3777+0.0017 | 0.6878+0.0021  0.832640.0008  0.3872-£0.0015
ECG 0.4767+0.0021 0.48951+0.0024  0.4779£0.0013 | 0.4721£0.0018  0.5663+0.0025  0.445740.0018

Table 12: Ablation 2: Ablation considering SimCLR objective for training TIMEX versus an MBC

objective as outlined in the main text.

Dataset | Ablation | AUPRC AUP AUR
MBConly | 0.2316£0.0020  0.1533+0.0015  0.4763+0.0022
FreqShapes LC only 0.26294+0.0022  0.1850£0.0016  0.5893+0.0018
MBC+LC | 0.832440.0034  0.72194£0.0031  0.6381:0.0022
MBConly | 0.0761£0.0008  0.057620.0006  0.49960.0019
SeqComb-MV | LC only 0.078840.0009  0.0570£0.0006  0.5294+0.0034
MBC+LC | 0.6878+0.0021  0.8326+0.0008  0.387240.0015
MBConly | 0.1615+0.0006  0.13484:0.0006  0.5504=-0.0011
ECG LC only 0.3704£0.0018  0.32960.0019  0.50844-0.0008
MBC+LC | 0.4721£0.0018  0.566310.0025  0.445740.0018

Table 13: Ablation 3: Effects of model behavior consistency (MBC) and label consistency (LC)
losses on explanation performance.

a 3.4% drop from MBC, but it is at a 17.0% decline for FreqShapes and a 13.6% drop for ECG. It
is important to note that in addition to increased performance, MBC loss is more computationally
efficient than SimCLR loss, avoiding inference on negative samples.

Ablation 3: Effect of MBC and LC losses. We now examine the effectiveness of using both model
behavior consistency (Eq. [3) (MBC) and label consistency (Eq. @) (LC) losses. Table[I3|shows that
using LC and MBC in combination is always better than using either alone. In isolation, LC performs
better than MBC, which is expected given its (obviously) higher correlation with the classification
predictions than MBC, which relies on an earlier layer’s embedding space. Using both losses results
in a powerful explainer that achieves over 27.5% higher AUPRC than MBC or LC alone. MBC and
LC work together to capture rich information about the model’s behavior, allowing TIMEX to be a
state-of-the-art explainer.

To justify these results, we recall an argument presented in Section.3] where we justify MBC. We
remark that perturbation-based methods have a similar idea to TIMEX: find some sparse perturbation
to the input that can preserve the output state of the model. This is often done by observing the
predicted label from the model under an applied mask or perturbation, e.g., in one of our baselines,
Dynamask. A perturbation that preserves the output state is said to be “faithful” to the model because
it is assumed that the model is invariant to the perturbation. In a sense, MBC generalizes this idea to
latent spaces, ensuring that invariances are preserved in the latent space of the model as well as the
prediction space.

Beyond the introduction of MBC alone, another core contribution of our work focuses on optimizing
faithfulness to predictor models on multiple levels. We use multiple hidden or output states of the
model, e.g., a latent and logit space, on which the explainable surrogate should match the reference
predictor. The hypothesis behind this innovation is that model behavior (the exact objective we are
trying to explain) cannot be fully captured by one state, e.g., a predicted label, but rather by multiple
states throughout the model. A similar assumption is made in knowledge distillation, where methods
often optimize student models to match the teacher in various network layers. Therefore, MBC and
LA together enforce adherence to model behavior on two fronts: the latent space and prediction
space, respectively. This explains the observed behavior: MBC and LA perform poorly alone, but
together, these two losses provide a powerful objective to train the model.

C.7 Implementation and computing resources

Implementation. We implemented all methods in this study using Python 3.8+ and PyTorch 2.0.
In our experiments, we employed the Vanilla Transformer [88]] as the classification model for all
methods. We verified that the classification models achieved satisfactory performance on the testing
set to ensure that the models are strong predictors, which was previously pointed out by Faber et al.
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[S18] as necessary for explainability evaluation. Complete classification results are in Table[T5] We
followed the hyperparameters recommended by the respective authors for all baseline methods.

Computational resources. For computational resources, we use a GPU cluster with various GPUs,
ranging from 32GB Tesla V100s GPU to 48GB RTX8000 GPU. TIMEX and all models were only
trained on a single GPU at any given time. The average experiment runtime in this work was around
5 minutes per fold, with ECG taking the longest at approximately 13 minutes per fold when training
TIMEX to convergence.

PAM Epilepsy
Training  Inference  Training  Inference
Dynamask N/A 102 N/A 358
WinIT 1810 5730 93.3 84.7
TIMEX 580 1.04 247 1.07

Table 14: Runtime results for Dynamask, WinIT, and TIMEX on PAM and Epilepsy datasets. Time is
shown in seconds. Note that Dynamask requires no training, thus a "N/A" designation.

Runtime experiment. We conducted a runtime experiment to understand how TIMEX compares to
baseline explainers. Table X shows the training and inference time in seconds of TIMEX versus two
state-of-the-art time series-specific baselines, Dynamask and WinIT. We chose two real-world time
series datasets, PAM and Epilepsy, which are of varying sizes. PAM contains 4266 training samples
and 534 testing samples, each of 600 time steps in length. Epilepsy contains 8280 training samples
and 2300 testing samples, each of 178 time steps in length. Table [I4] shows the time in seconds
needed to train each explainer and to perform inference on the testing set.

TIMEX is the most efficient model at inference time for both datasets. This result is expected, as
Dynamask and WinlT both require iterative procedures for each sample at inference time, while
TIMEX requires only a forward pass at inference. Combining training and inference time, TIMEX is
the second-fastest on both datasets. However, WinIT and Dynamask times vary greatly between each
dataset, with Dynamask being the fastest on PAM and WinlT being the fastest on Epilepsy. WinIT
scales poorly to samples with many time steps, while Dynamask scales poorly to large testing sets.
TIMEX strikes a compromise between these extremes, scaling better than Dynamask to larger testing
sets while scaling better than WinIT to longer time series.

C.8 Flexible use of TIMEX with different time series architectures

We now study the ability of TIMEX to work with different underlying time series architectures. This
means that of the original architecture, G and GE are now an alternative architecture, while HZ
remains as described in Section[d.1] Since experiments in the main text are based on transformer
architectures, we now use a convolutional neural network (CNN) and long-short term memory
(LSTM) network as the underlying predictors with the following hyperparameters:

e LSTM: 3 layer bidirectional LSTM + MLP on mean of last hidden states
e CNN: 3 layer CNN + MLP on meanpool

Tables [I§|[I9] show the results of TIMEX against strong baselines with a CNN predictor. TIMEX
retains the state-of-the-art prediction observed for the transformer-based architecture, achieving

Dataset ‘ F1 AUPRC AUROC

FreqShapes 0.971610.0034  0.9940£0.0008  0.9980+-0.0003
SeqComb-UV 0.94154+0.0052  0.9798+£0.0028  0.992140.0011
SeqComb-MV | 0.97651+0.0024  0.9971£0.0005  0.999040.0001

LowVar 0.9748+0.0056  0.9967£0.0013  0.9988+0.0005
Boiler 0.8345+£0.0089  0.834440.0071 0.88651+0.0159
ECG 0.91544+0.0134  0.9341£0.0169  0.958740.0111
Epilepsy 0.92014+0.0079  0.9246£0.0130  0.93914-0.0157
PAM 0.88454+0.0051  0.9251£0.0029  0.9786+0.0009

Table 15: Classification (i.e., predictive) performance achieved by transformer time series models on
datasets used in this study. These models are considered time series predictors throughout experiments
in this study.
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FreqShapes SeqComb-MV
Method AUPRC AUP AUR

AUPRC AUP AUR
1G 0.92824+0.0016 ~ 0.77754£0.0010  0.6926+0.0017 | 0.2369+0.0020  0.515040.0048  0.3211+£0.0032
Dynamask | 0.229040.0012  0.3422+0.0037  0.517040.0013 | 0.283640.0021  0.6369+0.0047  0.181640.0015
WinIT 0.4171£0.0016  0.5106£0.0026  0.3909+0.0017 | 0.3515+0.0014  0.6547+0.0026  0.3423+0.0021

Ours | 0.9974£0.0002  0.7964+0.0009  0.8313+0.0011 | 0.1298+0.0017  0.13074£0.0022  0.475140.0015
Table 16: Explainer results with LSTM predictor on FreqShapes and SeqComb-MYV synthetic datasets.

ECG
Method AUPRC AUP AUR
1G 0.5037+0.0018  0.612940.0026  0.4026+0.0015
Dynamask | 0.373040.0012  0.6299+0.0030  0.110240.0007
WinIT 0.3628+0.0013  0.380540.0022  0.4055+0.0009

Ours | 0.6057+0.0018  0.641640.0024  0.4436+0.0017
Table 17: Explainer results with LSTM predictor on ECG dataset.

the best AUPRC on SeqComb-MV and ECG datasets. However, the performance for FreqShapes
saturates at very high values for both TIMEX and IG, making the comparison more difficult for
AUPRC. Tables show the results of TIMEX against strong baselines with an LSTM predictor.
TIMEX performs very well for both FreqShapes and ECG datasets, achieving the highest AUPRC,
AUP, and AUR for both datasets. For SeqComb-MV, TIMEX did not converge. However, no explainer
performed well for this task, achieving lower results than for the transformer and CNN predictors.

Visualization under different architectures. We add a visualization on the FreqShapes dataset
with various explainers on different underlying architectures. Figure [/| shows this visualization.
Explanations are similar across models. IG outputs appear similar, but TIMEX has a higher recall for
essential patterns, which is reflected in quantitative results.

C.9 TIMEX on diverse tasks and datasets

We experiment with TIMEX on various tasks and types of datasets to demonstrate the generality of
the method.

Irregular time series. We experiment with TIMEX on irregular time series classification. We
introduce an irregularly sampled version of SeqComb-MYV, randomly dropping an average of 15% of
time steps. This results in variable-length time series, addressing both W1 and W2. We then follow
Zhang et al. [S23], using a time series transformer with an irregular attention mask. We train only
with direct-value masking to avoid direct interference with this mechanism.

Table 20| shows the results of this experiment. We compare TIMEX to Integrated Gradients (IG)
performance because, given the nuance of learning from irregularly-sampled datasets [S23], most

FreqShapes SeqComb-MV
Method AUPRC AUP AUR AUPRC AUP AUR
1G 0.9955+0.0005  0.8754+0.0008  0.7240+0.0015 | 0.5979+0.0027  0.8858+0.0014  0.2294+0.0013
Dynamask | 0.257440.0008  0.4432+0.0032  0.525740.0015 | 0.455040.0016  0.7308+£0.0025  0.313540.0019
WinIT 0.5321+0.0018  0.6020£0.0025  0.3966+0.0017 | 0.5334+0.0011 0.832440.0020  0.2259£0.0020

Ours | 0.994140.0002  0.69154+0.0010  0.852240.0009 | 0.7016+0.0019  0.7670+0.0012  0.4689+0.0016
Table 18: Explainer results with CNN predictor on FreqShapes and SeqComb-MYV synthetic datasets.

ECG
Method AUPRC AUP AUR
1G 0.4949+0.0010  0.5374£0.0012  0.53060.0010
Dynamask | 0.45984+0.0010  0.7216+£0.0027  0.13144-0.0008
WinIT 0.3963+0.0011  0.329240.0020  0.3518+0.0012

Ours | 0.7844+0.0014  0.870640.0012  0.39724:0.0010
Table 19: Explainer results with CNN predictor on ECG dataset.
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Figure 7: Visualization of FreqShapes dataset of TIMEX explainer (top row), integrated gradients (IG),
and Dynamask explainers on the FreqShapes dataset with transformer, CNN, and LSTM architectures.

‘ AUPRC AUP AUR

1G 0.286+£0.004  0.617+0.009  0.37240.009
TIMEX | 0.4344+0.007  0.666+0.010  0.196£0.003

Table 20: Performance of TIMEX and IG on a modified version of the SeqComb-MV dataset such
that the samples are irregularly sampled.

baselines do not apply to irregularly-sampled time series datasets without significant changes that are
out-of-scope for our work. TIMEX demonstrates superior performance in this setting, outperforming
IG by an over 1.5x improvement in AUPRC.
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Figure 8: Forecasting experiment on the ETTh1 dataset with TIMEX explanations.

Forecasting. We demonstrate TIMEX ’s generalizability to diverse tasks by explaining a forecasting
model. We use the ETTh1 dataset [S24] and a vanilla forecasting transformer. To modify TIMEX
for forecasting, we first extract embeddings used for MBC by max pooling over hidden states of the
decoder. Next, we used a revised LC loss that used MSE as the distance function between predictions
rather than JS divergence. We show visualizations of two samples in Figure[8] Explanations are in
the left column, while forecasted time steps are in the right column. A few patterns emerge:

1. TIMEX identifies late time steps as crucial for the forecast, an expected result for a dataset
with small temporal variance.
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2. (a): the forecast is an increasing sequence, and TIMEX identifies a region of an expanding
sequence (time 450-485). This suggests the model uses this increasing sequence as a
reference for forecasting.

3. (b): a sharp upward spike is forecasted at the beginning of the predicted window. Corre-
spondingly, TIMEX identifies a local minimum around time 260 and a sharp upward spike
around time 475-490.

This preliminary experiment demonstrates that TIMEX shows the potential to extract meaningful
explanations from forecasting datasets.

C.10 Quantitative analysis of landmark explanations

Random Explanations
Top 10 Landmarks

0.8

0.6

Relative Counts

0.4 A

0.0 T T T T T T T
1.0 1.5 2.0 25 3.0 3.5 4.0
Average DTW

Figure 9: Distributions of DTW distance between structures of masked-in portions of explanations.

To examine landmark quality on the ECG dataset, we compare two groups: 1) the landmark group,
with the five nearest-neighbors around the top 10 filtered landmarks, and 2) the random group, with
five random explanations. We then compare the structure of the most salient values in the samples.
We mask in the top-10 time steps as identified by TIMEX, then compute DTW [S25] distance between
samples in each group. We then plot the distribution of average within-group DTW distances in Figure
O Alower average DTW within their groups demonstrates the high quality of learned landmarks.

Clustering method ‘ NMI ARI

Landmark 0.191+0.014  0.1524+0.026
K-means 0.147£0.010  0.02540.001
Random 0.109+0.030  0.02740.042

Table 21: Quantitative experiment comparing learned landmark explanations to K-means and Random
clusters in the explanation latent space.

We have run an additional experiment comparing the clustering performance of our landmarks to
those learned by k-means on the final latent space. On the ECG dataset, we match embeddings to
their nearest landmarks, to their nearest k-means cluster centroids, and to randomly-selected points
as a baseline. For each method, we use 50 clusters. We then evaluate each clustering method’s
Normalized Mutual Information (NMI) and Adjusted Rand Index (ARI), which are standard clustering
metrics, against the ground-truth labels and report the standard error (+/-) computed over 5-fold
cross-validation. Higher metrics for one set of centroids would indicate that proximity is more
meaningful for prediction. The results are shown in Table[21] Here, we see higher NMI and ARI for
landmarks, which means the landmarks are a better heuristic for forming clusters than the K-means
centroids for this task.
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