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Language model pre-training and derived methods are incredibly impactful in machine learn-

ing. However, there remains considerable uncertainty on exactly why pre-training helps im-

prove performance for fine-tuning tasks. This is especially true when attempting to adapt

language-model pre-training to domains outside of natural language. Here, we analyze this

problem by exploring how existing pre-training methods impose relational structure in their

induced per-sample latent spaces—i.e., what constraints do pre-training methods impose on

the distance or geometry between the pre-trained embeddings of two samples xi and xj .

Through a comprehensive review of existing pre-training methods, we find that this ques-

tion remains open. This is true despite theoretical analyses demonstrating the importance of

understanding this form of induced structure. Based on this review, we introduce a descrip-

tive framework for pre-training that allows for a granular, comprehensive understanding of

how relational structure can be induced. We present a theoretical analysis of this framework

from first principles and establish a connection between the relational inductive bias of pre-

training and fine-tuning performance. We also show how to use the framework to define new

pre-training methods. We build upon these findings with empirical studies on benchmarks

spanning 3 data modalities and ten fine-tuning tasks. These experiments validate our the-

oretical analyses, inform the design of novel pre-training methods, and establish consistent

improvements over a compelling suite of baseline methods.
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Main
The pre-training (PT)/fine-tuning (FT) learning paradigm (also known as transfer learning) has had
tremendous impact on natural language processing (NLP) and related domains [2, 35, 72]. In NLP
or NLP-derived PT/FT, we are given a dataset X ∈ XNPT and attempt to pre-train an encoder
fθ : X → Z which maps our domain of interest X into a latent space Z: fθ : xi 7→ zi. This
encoder fθ is then transferred for use in various fine-tuning tasks (which are not known at pre-
training time). We evaluate PT/FT systems via the transfer performance of fθ on said fine-tuning
tasks.

In this work, we are concerned primarily with the efficacy of PT/FT for downstream tasks
that operate at a per-sample level (e.g., in natural language processing, evaluating the sentiment
of a whole restaurant review is a per-sample task, in contrast to identifying a named entity token
within a sentence which is an intra-sample/per-token task). One aspect of pre-training that drives
such eventual fine-tuning performance is the induced geometry of the pre-trained, per-sample la-
tent space Z (formally defined in the Methods section). For example, it is well documented that
the sentence embeddings produced by pre-trained language models in NLP can be non-smooth
and anisotropic, which harms downstream task performance [73]. In other domains, such as
biomedical modalities, where per-sample tasks are even more prevalent than intra-sample tasks
as compared to NLP, the importance of this geometry only increases. Despite this importance,
research into mechanisms to induce explicit, deep structural constraints in Z is surprisingly lim-
ited. Many methods outright ignore the geometry of Z (e.g., by imposing no pre-training loss
over the whole-sample embeddings during pre-training) [2, 4, 5, 5] and other methods impose ei-
ther only shallow structural constraints, such as through an auxiliary, per-sample, classification PT
objective [35, 40, 42], or deeper structural constraints, but in an implicit manner, such as through
data-augmentation [56, 60] or noising-based contrastive losses [57, 59]. While such methods can
be powerful and have been successful in many areas, we argue that the lack of a clear framework to
design PT methods that impose structural constraints on Z that are simultaneously explicit (simi-
lar to supervised classification losses) and deep (similar to noising/augmentation-based contrastive
losses) is a major weakness.

On the basis of this observation, we develop an analytical framework under which the PT ob-
jective is subdivided into two components: first, a language-model inspired imputation/denoising
objective that leverages intra-sample relationships, and, second, a loss term explicitly driven to
regularize the geometry of the per-sample latent space Z to reflect the connectivity patterns of
a user-specified graph GPT. By relying on graphs to capture the structure we wish to induce in
Z , this PT framework allows us to specify PT methods that induce deep structure in an explicit
manner, filling exactly the gap identified above. In addition, this paradigm can capture diverse re-
lationships, such as those motivated by external knowledge (e.g., [74]), self-supervised constraints
(e.g., [75, 76]), or distances between samples in an alternate modality (e.g., [69]). Moreover, this
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PT framework is simultaneously specific enough to allow us to make theoretical guarantees about
how different PT graphs impact FT performance, general enough to encompass a variety of exist-
ing PT methods, and expressive enough to motivate new PT methods that have not been previously
studied. In addition to theoretical analysis, we demonstrate empirically that defining new methods
according to our framework, using explicit forms of real-world structure, yields significant benefits
over competitive PT baselines across 3 modalities and 10 FT tasks.

Our work advances PT/FT research through three major contributions. First, we show via
a comprehensive review and detailed commentary that existing pre-training methods largely do
not induce structural constraints over Z that are simultaneously deep and explicit. Second, we
establish a new framework for describing PT methods, which provides a vehicle to design new PT
methods that explicitly induce deep structural constraints in Z in accordance with a user-specified
PT graph GPT. We further support this framework with theoretical results quantifying how the
graph’s structure relates to FT task performance. Crucially, this formalization in our new PT
paradigm offers insight into when PT does or does not add value over supervised learning alone.
Third, we show that structure-inducing PT methods through our framework perform at or above
the level of existing PT baselines across three data modalities and 10 FT tasks.

Results
General Pre-Training Problem Formulation
Given a dataset XPT ∈ XNPT , a PT method aims to learn an encoder fθ : X → Z such that
fθ can be transferred to FT tasks that are unknown at pre-training time. While we can leverage
additional information at PT time to inform the training of fθ (e.g., PT-specific labels YPT), the
encoder fθ must take only samples from X as inputs so that it can be used for fine-tuning. Pre-
training methods typically solve this problem by training fθ to minimize a pre-training loss LPT

over XPT. For example, in BERT, X consists of free-text samples, fθ is a transformer model, and
LPT consists of both a masked language modelling (MLM) per-token loss and the next-sentence-
prediction (NSP) per-sample loss [35].

Note that our definition of pre-training ignores secondary applications of the pre-training ob-
jective itself; for example, autoregressive language models (e.g., GPT-3 [2]) are often used for their
generative use directly, and not as commonly used to acquire embeddings or in transfer learning.
This is a perfectly valid use of pre-trained language models within NLP, but is often not as useful
in other domains which lack NLP’s generative properties, so we focus on the induced embeddings
produced by pre-training methods instead. Note further that we are primarily interested in PT
methods that either are or are derived from NLP PT methods. This domain is of particular interest
because these methods (1) have been extremely successful within NLP [2, 35, 77], (2) have moti-
vated a large number of derived methods in non-language, biomedical modalities [19, 33, 43, 46],
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and (3) are not yet fully technically understood [29, 73, 78].

Defining Explicit and Deep Structural Constraints
Central to our hypothesis is the claim that most NLP-derived PT methods today do not impose
explicit, deep constraints on the (per-sample) latent space geometry of Z . To justify this claim, we
define “explicit” and “deep” structural constraints (Definitions 1-2).

Definition 1. Explicit vs. Implicit Structural Constraints:
A PT objective LPT imposes a structural constraint that is explicit (vs. implicit) to the de-

gree that it (as fθ approaches optimality) permits us to reason directly about the relationship (in
particular, the distance) between any two samples zi and zj in the latent space Z .

Definition 2. Deep vs. Shallow Structural Constraints:
A PT objective LPT imposes a structural constraint that is deep (vs. shallow) on the basis

of how much information (e.g., how many dimensions) would be required to fully satisfy the
constraint.

For example, consider a classification PT loss according to labels yi ∈ Y and a logit layer
which maps zi 7→ ỹi. This method produces an explicit structural constraint because near optimal-
ity, we can infer that the relative (cosine) distance between two samples zi and zj is small if and
only if yi = yj . However, this constraint is also shallow, because to fully satisfy this constraint,
we need only embed each class c ∈ Y with a unique position pc ∈ Z , then compress all samples
zi near their class prototype pyi . This distance-based constraint can be accomplished in a very
low dimensional space Z (e.g. we can distribute each pc uniformly about a 2D unit circle, then
compress all zi to appear at a very small cosine distance from their class prototypes), illustrating
that this constraint is very shallow.

In contrast, consider a contrastive method that asserts that zi = fθ(xi) should be close to
z′i = fθ(x̃i), under some noising/augmentation procedure xi 7→ x̃i, but simultaneously far from
other samples zj . While this method constrains the latent space to be smooth with respect to the
noising process, it offers only an implicit constraint on Z as it is generally not possible to infer
how the distance between distinct samples zi and zj is constrained. However, it imposes a deeper
constraint than does the classification objective because the implicit connections between samples
induced by the noising procedure reflect relationships that can not necessarily be captured in a
low-dimensional space (dependent on dataset size and density).

Existing Pre-training Methods do not use Deep, Explicit Constraints
To show that existing methods largely do not provide means to impose structural constraints that
are simultaneously deep and explicit, we survey over 90 existing PT methods on the basis of how
their objective functions constrain the Z (Figure 1, Appendix A). For full details on our review
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findings, see the Methods section. Throughout all examined methods, we find that deep, explicit
structural constraints are almost never employed. Instead, most methods either (1) impose no per-
sample PT objectives at all (e.g., text-generation models, which are often not used for embeddings
at all but rather for prompting or generative applications [2, 4–6]), (2) use explicit, but shallow,
supervised PT objectives (e.g., BERT’s “Next-sentence Prediction” (NSP) objective, ALBERT’s
“Sentence-order Prediction” (SOP) objective, or various multi-task objectives [35, 40, 42]), or (3)
use implicit, but deep, un- or self-supervised contrastive PT objectives (e.g., contrastive sentence
embedding losses [56, 57, 59, 60, 79]).

Across all surveyed methods, we find that only four methods impose simultaneously explicit
and deep constraints: KEPLER [68], CK-GNN [69], XLM-K [70], and WebFormer [71]. All four
can be described as some form of per-sample graph alignment, in which an external, pre-training
knowledge graphGPT or connectivity algorithm is employed over a subset of pre-training samples,
and the output embeddings of pairs of samples zi = fθ(xi) and zj = fθ(xj) are constrained to
reflect their relationships in the pre-training graph. This form of constraint is explicit, as the graph
GPT contains explicit relationships that will be induced in the output latent space, but also deep,
as the geometry of the graph GPT can be arbitrarily complex.

However, all these methods have major limitations. In KEPLER and XLM-K, the per-sample
embeddings are only constrained to a restricted set of samples corresponding to entity descriptions
from a knowledge graph. As such, there are no constraints implied on the general domain free-
text samples in X alone [68, 70]. In CK-GNN, the graph connectivity is derived from a cluster-
restricted 1-nearest-neighbor graph in an alternate modality’s distance space, which may offer a
limited higher-order structure, and unlike the NLP approaches, this method has no intra-sample
(e.g. per-token) pre-training task [69]. Finally, in WebFormer, the graph used is inferred from the
structure of the HyperText Markup Language (HTML) underlying web-pages, and relationships
are only constrained at the per-sample level for limited structural relationships within the HTML.
Further, WebFormer is a specialized model specifically for processing web content (text and HTML
elements), so their approach can’t be directly generalized to other domains [71]. Moreover, these
methods explore only the particular contexts of their individual models. They offer no general
framework for how to realize this style of deep, explicit per-sample constraints in other contexts,
nor do they explore any theory on how these constraints relate to performance for fine-tuning
tasks [68–71].

Overall, our review of pre-training methods establishes unequivocally that pre-training meth-
ods capable of providing explicit, deep structural constraints are significantly under-explored.
Across all the methods we reviewed, only four methods leverage constraints are explicit and deep,
all of which have significant limitations, and there is no general consensus on how to constrain the
Z explicitly and deeply. These findings motivate our new framework, which offers insight into
how to realize deep, explicit structural constraints in pre-training models across diverse contexts
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and provides theoretical guidance on how structural constraints relate to fine-tuning performance.

New Pre-training Framework: Structure-Inducing Pre-training (SIPT)
Our pre-training problem framework includes two small, but important, differences from the stan-
dard formulation (Figure 2).

First, we assume that we have as an additional input to the PT problem a graphGPT = (V,E)

where vertices denote pre-training samples withinXPT (e.g., {xPT|xPT ∈XPT} ⊆ V ) and edges
represent user-specified relationships. Importantly, while we take the graph GPT an input to the
PT problem, we cannot use it as a direct input to fθ. Just like in traditional pre-training, fθ must
take as input only samples from X . This is because otherwise, we can not apply fθ to the same,
general class of FT tasks over domain X .

Second, we decompose the PT lossLPT into two components, weighted with hyperparameter
0 ≤ λSI ≤ 1:

LPT = (1− λSI)LM + λSILSI.

LM is a traditional, intra-sample objective (e.g., a language model), and LSI is a new, structure-
inducing objective designed to regularize the per-sample latent space geometry in accordance with
the relationships (edges) in GPT. Under our framework, LSI is only allowable for GPT, fθ, and Z
if it permits some stable optima at which point a radius nearest-neighbor connectivity algorithm
under some distance function in Z will recover GPT (formal constraint is in the Methods section).
Note that this constraint strikes a connection between our framework and the wealth of existing
research focused on graph representation learning [80–85]. These techniques do indeed offer
valuable insights into how to sample minibatches over graph-structured data and devise losses for
graph embeddings; however, many methods for actually modelling graph-structured data, includ-
ing deep attributed graph embeddings and graph convolutional neural networks, should not be seen
as replacements for our techniques here as they are typically not adaptable to contexts in which
the graph is not known at inference time, and so they could not be used in our pre-training setting
where fθ must take in only inputs from X directly.

As the new loss term added LSI is explicitly designed to induce the structure of GPT in
Z , we call methods trained under our framework structure-inducing pre-training (SIPT) methods.
Many existing PT approaches can be re-realized as SIPT methods, including classification-based
PT objectives like NSP or SOP, contrastive methods, or existing graph alignment methods (see
Methods for full details).

Theoretical Analyses
Under our framework, one can link the structure of the PT graph GPT to eventual FT task perfor-
mance. In particular, as a SIPT embedder f over graph GPT approaches optimality under the loss
LSI, it produces an embedding space such that nearest-neighbor performance for any downstream
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task is lower bounded by the performance that could be obtained via a nearest neighbor algorithm
over graph GPT (Theorem 1). This fact directly connects the geometry of the graph GPT with the
eventual fine-tuning performance of a SIPT embedder f . Furthermore, it demonstrates the advan-
tage of employing an explicit constraint rather than an implicit one; by controlling the structure
of GPT, users can directly choose to add different inductive biases to the PT process, in a manner
which has a provable impact on the eventual suitability for downstream FT tasks.

Theorem 1. Let XPT be a PT dataset, GPT be a PT graph, and let fθ∗ be an encoder pre-trained
under a PT objective permissible under our framing that realizes a LSI value no more than `∗.
Then, under embedder f , the nearest-neighbor accuracy for a FT task y converges as dataset size
increases to at least the local consistency (Definition 5) of y over GPT.

We also establish two important corollaries of Theorem 1 that further illustrate the impor-
tance of choosing graphs GPT which impose deep structural constraints (Corollaries 1-2).

Corollary 1. Let XPT ∈ XN , be a PT dataset with corresponding labels y ∈ YN
PT. Define

GPT = (XPT, E) such that (xi,xj) ∈ E if and only if yi = yj .
Then, the local consistency for a given FT task y(FT) over GPT (and thus by Theorem 1, the

nearest-neighbor accuracy for any optimized SIPT embedder) is upper bounded by the probability
that a sample xi’s fine-tuning label y(FT)

i agrees with the majority class label for task y(FT) over the
clique consisting of all nodes with the same pre-training label yi as xi.

Corollary 2. LetXPT be a PT dataset that can be realized over a valid manifoldM. AssumeXPT

is sampled with full support overM. Let GPT(XPT, E) be an r-nearest-neighbor graph overM
(e.g., (xi,xj) ∈ E if and only if the geodesic distance between the two points onM is less than
r: DM(xi,xj) < r). Let y(FT) be a FT classification task that is almost everywhere smooth on the
manifold.

Then, as PT dataset size (and thus the size of GPT) tends to∞, and r tends to zero, the local
consistency of y(FT) over GPT (and thus by Theorem 1 the nearest-neighbor accuracy of an SIPT
embedder) will likewise tend to 1.

Informally, these corollaries establish that when a shallow structural constraint is used (e.g. a
supervised classification objective), then the associated SIPT-equivalent model permits only min-
imal guarantees for FT performance, driven by the extent to which an FT task label is consistent
within the classes under the supervised PT objective. In contrast, if a deep structural constraint is
used, realized in Corollary 2 via GPT being a nearest-neighbor graph over an arbitrary manifold
M, then a SIPT model permits a theoretical guarantee for FT performance that approaches unity
as the pre-training dataset size grows for any FT task that is smooth overM.

In sum, this theoretical analysis shows that we can directly connect the structure induced inZ
to downstream FT performance. As such, moving to new PT methods which leverage graphs GPT

7



with deeper structural constraints has the potential to markedly improve performance, as we will
demonstrate on real-world datasets in our experiments. Complete proofs for all theoretical results
and semi-synthetic experiments validating our theoretical findings in practice are in the Methods
section.

Real-world Experiments: Datasets and Tasks
We examine three data modalities for our experiments: PROTEINS, containing protein sequences;
ABSTRACTS, containing free-text biomedical abstracts; and NETWORKS, containing sub-graphs
of protein-protein interaction (PPI) networks.

In each data modality, we use different pre-training datasets and leverage different kinds of
pre-training graphsGPT, test on publicly available benchmarks for FT tasks, and compare our SIPT
methods to compelling baselines spanning both per-sample and/or per-token methods (Tables 1-3).
Further details on these aspects can also be found in the Methods Section.

Real-world Experiments: LSI and Training Procedures
As discussed in the definition of our framework, a SIPT method differs from a standard PT method
by (1) the choice of graph GPT (Table 1) and (2) the design of the new, structure-inducing loss LSI.
To define LSI in our experiments, we leverage ideas from structure-preserving metric learning
(SPML) [86–88]. SPML is a form of metric learning where positive relationships are defined
by edges in a graph rather than a shared supervised label. We adapt two losses, a traditional
contrastive loss [89] and a multi-similarity loss [90], from supervised metric learning to the graph-
based, structure-preserving context of LSI terms in SIPT.

In addition to these losses, in the ABSTRACTS and PROTEINS domains, we use a warm-
start procedure to initialize pre-training from existing language models rather than beginning from
scratch. This saves significant computational time and allows for a powerful ablation study to
isolate performance improvements to the introduction of our LSI term. Second, we perform ex-
tensive hyperparameter tuning studies on these two domains to identify appropriate values for λSI,
and adapt those findings to the NETWORKS domain. Further details about the experimental setup,
including formal statements of our contrastive and multi-similarity losses, are in the Methods sec-
tion.

Result 1: Incorporating LSI performs comparably to or improves over all
baselines across all 3 domains and 10 FT tasks
To analyze our experiments, we compute the relative reduction of error of the best performing SIPT
model vs. the per-token or per-sample baselines across all FT tasks (Table 2). We can see that in
10/15 cases, SIPT improves over existing methods, and in no case does it do worse than either
baseline. In some cases, the gains in performance are quite significant, with improvements of
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approximately 17% (0.05 macro-F1 raw change) on AA, 6% on SRE (0.01 macro-F1 raw change),
and 4% on RH (2% accuracy raw change). SIPT models further establish a new SOTA on AA and
RH and match SOTA on FL, ST, & PF.

We see in Figure 3 how performance evolves over FT iterations for the NETWORKS dataset
to determine if the improvements observed at the final converged values are present throughout
training. We see that SIPT methods converge faster to better performance than both baselines.
Raw results across all settings are presented in the Methods section (Tables 7-8).

Result 2: These performance gains are present across diverse modalities and
pre-training graphs and outperform both per-sample and per-token baselines
SIPT performance gains persist over all three data modalities and all different GPT types we use
here. This shows that explicitly regularizing the per-sample latent space geometry offers value
across NLP, non-language sequences, and non-sequential domains, as well as while leveraging
graphs including those defined by external knowledge, by self-supervised signals in the data di-
rectly, and by nearest-neighbor methods over multi-task label spaces. Furthermore, note that these
improvements exist not only in comparison to standard language modelling approaches but also
against existing methods that impose per-sample PT objectives, including single and multi-task
classification objectives.

Result 3: Observed gains are uniquely attributable to the novel loss LSI

As outlined in the Methods section, our experimental design permits us to determine how much
of the observed gains in Table 2 are due to the novel loss component, as opposed to, for exam-
ple, continued training, new PT data, or the batch selection procedures used in our method which
also indirectly leverage the knowledge inherent in GPT. Unsurprisingly, some gains are observed
due to these other factors, and performance gains shrink when considering these ablation stud-
ies. However, even when comparing against the maximal performance baseline or ablation study
overall, neither the direction of observed relationships nor the statistical significance of observed
comparisons changes. Therefore, we can conclusively state that the performance improvements
observed here are uniquely attributable to the new, structure-inducing components introduced by
our framework. Full ablation study results can be found in the Methods section (Tables 7-8).

Discussion
We show that despite the breadth of research into PT methods, methods for imposing explicit and
deep structural constraints over the per-sample, pre-training latent space Z are under-explored
(Figure 1). Our theoretical and empirical analyses show that this deficit matters in practice. In
particular, we define a new pre-training framework, structure-inducing pre-training (SIPT), under
which the PT loss is subdivided into two components: one which is designed to capture intra-
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sample (e.g. per-token) relationships and one which is designed to constrain the per-sample latent
space to capture relationships between samples given by a user-specified pre-training graph GPT.
Under our framework, we show both theoretically and via experiments that the structure induced in
Z can be directly connected to eventual fine-tuning performance. Empirically, we show that novel
SIPT methods leveraging a variety of pre-training graphs can consistently outperform compelling
existing PT methods across three real-world domains.

Our work highlights several important directions for future research. For example, are there
losses better suited than metric learning losses for pre-training graphs—e.g., can we leverage the
graph distance alongside the intra-batch distance to improve negative sampling strategies? In ad-
dition, can we produce theoretical results on convergence of pre-trained models? Can we advance
the understanding of when and how pre-trained models converge to solutions that recover GPT?
In a different direction, can pre-trained models reflect forms of structure beyond nearest neighbor
relationships—e.g., such as by leveraging higher-order topological considerations or by match-
ing a distance function rather than a discrete graph? We anticipate that further analyses of these
and other questions will lead to new pre-training methods and enable pre-training to be successful
across diverse domains.
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Contrastive Sentence Embeddings
[54-67]

NSP
[35-39]

None
[1-34]

Other Classification
[42-51]
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[40,41]

Unsupervised Autoencoding/Clustering
[52,53]

Whole-sample Graph Alignment
[68-71]
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S-I

S-E

D-I

D-E

S-I: Per-sample embeddings are not
constrained during pre-
training at all.

S-E: Per-sample embeddings are
constrained via self- or fully
supervised classification
objectives

D-I: Per-sample embeddings are
constrained via unsupervised
contrastive learning or
autoencoding objectives

D-E: Per-sample embeddings are
constrained via alignment to
an auxiliary pre-training
graph.

Figure 1: Existing Pre-training (PT) Methods: A summary of 71 existing natural language processing (NLP) and
NLP-derived PT methods, categorized into clusters based on how they impose structural constraints over the PT (per-
sample) latent space. Clusters are arranged on axes via manual judgements on whether the imposed constraint is shallow
vs. deep and implici vs. explicit. Clusters are sized such that the area corresponds to the number of citations methods
included in that cluster have received on average per month since first publication, according to Google Scholar’s citation
count. “None” captures models that leverage no pre-training loss over the per-sample embedding. “NSP” refers to “Next-
sentence Prediction,” the per-sample PT task introduced in BERT [35]. “SOP” refers to “Sentence-order Prediction,” the
per-sample PT task introduced in ALBERT [40]. Note that over 90 studies in total were considered in our review, but
only 71 met the inclusion criteria to be included in this figure. These methods are described in more detail in Methods
Table 4 and in Appendix A.
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Figure 2: Our Pre-training (PT) Framework: We re-cast the PT formulation by taking a pre-training graph GPT as an
auxiliary input. GPT is used to define a new structure-inducing objective LSI, which pushes a pre-training encoder fθ to
embed samples such that samples are close in the latent space if and only if they are linked in GPT.
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Figure 3: Fine-tuning (FT) Performance over NETWORKS: FT AUROC as a function of FT iteration for the NET-
WORKS dataset. The SIPT method converges faster and performs better than intra-sample (masked node modelling) or
per-sample (multi-task classification) pre-training.
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Figure 4: Per-sample vs. Per-token Latent Space Language model pre-training methods produce both per-sample and
per-token latent spaces. Traditional language modelling objectives (illustrated here via the RoBERTa [4] model, which
uses only a masked language model loss during pre-training) only constrain the per-token latent space.
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Figure 5: Semi-synthetic Experiments Results: (a) Comparisons between nearest-neighbor FT AUROC (higher is
better) of LM PT models and SIPT models over various graphs with various forms of structural alignment. LC indicates
the label consistency between FT task and GPT (Definition 5). (b) Nearest-neighbor FT AUROC vs. noise rate. Up to
10% noise SIPT dramatically outperforms LM PT, and at 50% noise, the two approaches are equal. (c-d) Embedding
space of MPT and SIPT models on the MÖBIUS dataset. Point colors indicate topic labels. SIPT’s embedding space
reflects the structure of the PT graph, whereas MPT does not.
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PT Dataset Tree-of-life [74] Microsoft Academic Graph [75,
76]

[43]

GPT:
(xi,xj) ∈ E iff

xi interacts with xj xi’s paper cites xj’s paper xi’s central protein
agrees on all but 9
Gene Ontology (GO)
labels with xj’s central
protein.

Per-token
baseline

TAPE [15] SciBERT [91] Attribute Masking [43]

Per-sample
baseline

PLUS [45] None Multi-task learning [43]

FT Dataset TAPE [15] SciBERT [91] [43]

Table 1: A summary of our datasets, tasks, and benchmarks. For example, for the PROTEINS domain, our pre-training
dataset is the set of protein sequences contained in the tree-of-life dataset [74], proteins are linked in our pre-training
graph GPT if and only if they interact according to the tree-of-life graph, and we compare over the fine-tuning tasks in
the TAPE benchmark against both the raw, per-token baseline publicly available in the TAPE model [15] as well as the
per-sample baseline published in the PLUS pre-training model [45].
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Domain Task
Vs. Per-Token PT vs. Per-Sample

RRE ∆ RRE ∆

PROTEINS

RH 7.0%±1.2 ↑ 8.4%±2.4 ↑
FL -0.8%±1.3 ∼ 12.8%±1.1 ↑
ST 13.1%±2.5 ↑ 2.2%±2.8 ∼
SS 4.5%±0.2 ↑ 4.5%±0.2 ↑
CP 10.5% ∗ ↑ N/A

ABSTRACTS

PF 0.3%±0.2 ∼ N/A
SC 2.4%±4.1 ∼ N/A
AA 17.7%±6.5 ↑ N/A
SRE 6.7%±0.4 ↑ N/A

NETWORKS 7.8%±5.2 ∼ 5.1%±2.7 ↑

Table 2: Relative reduction of error (RRE; defined to be [baseline error]−[GPT model error]
[baseline error] ) of models trained under our frame-

work vs. published per-token or per-sample baselines. Higher numbers indicate models under our framework reduce
error more and thus outperform baselines. The ∆ column indicates whether the model offers a statistically significant
improvement (↑), no significant change (∼), or a statistically significant decrease (↓). Statistical significance is assessed
via a t-test at significance level p < 0.1. Per-sample analysis and variance estimates for CP were infeasible due to the
computational cost of this task.
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FT Dataset FT Task Description Metric

Name Abbr.

TAPE
[15]

Remote Homology RH Per-sequence classification
task to predict protein fold
category.

Accuracy

Secondary Struc-
ture

SS Per-token classification task
to predict amino acid struc-
tural properties.

Accuracy

Stability ST Per-sequence, regression task
to predict stability.

Spearman’s ρ

Fluorescence FL Per-sequence, regression task
to predict fluorescence.

Spearman’s ρ

Contact Prediction CP Intra-sequence classification
to predict which pairs of
amino acids are in contact in
the protein’s 3D conforma-
tion.

Precision @ L/5

SciBERT
[91]

Paper Field PF Per-sentence classification
problem to predict a paper’s
area of study from its title.

Macro-F1

SciCite SC Per-sentence classification
problem to predict citation
intent

Macro-F1

ACL-ARC AA Per-sentence classification
problem to predict citation
intent

Macro-F1

SciERC SRE Per-sentence relation extrac-
tion

Macro-F1

NETWORKS

[43]
Multi-label binary classifica-
tion into 40 Gene Ontology
terms

Macro-AUROC

Table 3: Fine-tuning tasks.
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Online Methods
Per-token vs. Per-sample Latent Space: Definition of Z
Let fθ be a pre-training (PT) model trained over a datasetX ∈ XNPT . Furthermore, let us assume
that samples x ∈ X are composed of smaller units (e.g. tokens, sequence time-points, nodes in
a network, etc.). Let us denote this by saying that x = w1, w2, . . . , wnx . Finally, as is true in
natural language processing (NLP) and NLP-derived settings, we assume that fθ can be seen to
produce output embeddings for both the entire sample x—which we will denote by fθ(x)—and
for the internal tokens individually—which will denote by fθ(wj|x). For example, in the BERT
model [35], fθ(x) will be given by the output embedding of the [CLS] token of x and fθ(wj|x)

will be given by the output embedding of the j-th token in x.
We can then formally define the per-sample latent space, Z(S) (which we will also refer

to as Z without the superscript), and the per-token (aka intra-sample) latent space Z(T) (Defini-
tions 3 & 4, and Figure 4).

Definition 3. Per-Sample Latent Space We define the per-sample latent space induced by fθ as
Z(S) = {fθ(x)|x ∈ X}. We will also use Z with no superscript to refer to this space.

Definition 4. Per-token/Intra-sample Latent Space We define the per-token latent space (also
known as the intra-sample latent space) induced by fθ as Z(T) = {fθ(wj|x)|wj ∈ x,x ∈ X}.

Both of these spaces are very different and are useful in different contexts; for a task like
named entity recognition, where the unit of classification is a single or short span of tokens, an-
alyzing the per-token latent space will be more informative, whereas for a task like sentiment
analysis, where the unit of classification is an entire sample (sentence), the per-sample latent space
would be preferred [35]. Furthermore, another key difference between these spaces is that the tra-
ditional PT language model objective only induces significant constraints on the geometry of the
per-token latent space and does not impact the per-sample latent space at all. This illustrates a gap
in the capabilities of PT methods. In our work, we are concerned with precisely this gap and focus
our attention on Z (i.e. Z (S)). We focus our attention on the per-sample latent space for 3 reasons:

1. There has been significantly more research on how to regularize the per-token latent space
than the per-sample latent space, as we show in our extensive review (Table 4).

2. In many domains outside of NLP, the per-sample latent space is often of much greater interest
than the intra-sample latent space. For example, in modelling protein sequences [15], drug
structures [43], or electronic health record time series [46], per-sample tasks are of much
greater interest than intra-sample tasks.

3. Even within NLP, modern methods struggle much more with representing whole passages
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of text rather than short, isolated spans. This is evidenced by the battery of work examining
sentence representations atop pre-trained language models [73, 92].

Why is NLP Different than Other Domains?
In this work, we have implicitly argued that because a PT objective like masked language mod-
elling (MLM) will not necessarily directly enrich the per-sample latent space Z(S), it may yield
models less well suited to downstream per-sample tasks than other approaches. One seeming
contradiction to this is that methods in NLP like RoBERTa [4] (for which MLM is the only PT
objective) succeed across both per-token and per-sample tasks.

In fact, this observation does not contradict our hypothesis but reflects a unique advantage
of the natural language modality that does not apply in other domains. In particular, in the NLP
domain (and not in other domains), we can leverage the flexibility of the language to sidestep any
deficit in Z(S) by re-framing per-sample tasks as per-token, language modelling tasks. Significant
literature exists documenting this phenomenon through the lenses of prompting, cloze-filling mod-
els, text-to-text transformers, and theoretical analyses [2,3,11,77,93]. For example, [93] examines
the efficacy of pre-trained language models on sentiment analysis explicitly and show that the lan-
guage modelling component alone can be used in a per-token manner to indirectly solve a review
sentiment analysis task by judging the likelihood of following the review with a “:)” emoji vs. a
“:(” emoji. In this way, they shift the per-sample task of sentiment analysis to a per-token task via
the (inserted) emoji.

However, language model pre-training has also inspired many derived methods to be used
in other non-NLP domains. For example, in modelling graphs, [43] has examined vertex or edge-
masking strategies reminiscent of MLM, with vertices and edges analogous to tokens and entire
graphs whole samples; in modelling time series data, [46] has examined masked imputation mod-
els, with timepoints analogous to tokens and whole time series to samples; and in modelling protein
sequences, [45] has used masked language modelling directly, with individual amino acids repre-
senting tokens and entire proteins representing samples. In all three of these domains, we cannot
re-frame per-sample tasks as “per-token” tasks as we can in NLP, and accordingly, the prob-
lem of insufficient per-sample latent space regularization will likely be much more severe in these
domains. Accordingly, existing work, including the three works referenced above, all find that aug-
menting the language model pre-training task with additional, per-sample level supervised tasks
can be beneficial, or even absolutely essential, to improving performance [43, 45, 46, 94].

Pre-training Review Methodology
Papers were selected via a manual search of the natural language processing (NLP) and NLP-
derived pre-training methods (i.e., methods focused primarily on other domains or on multi-modal
domains were excluded) via Google Scholar as well as by crawling through references of papers
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already included. Citation counts for each work were obtained via Google Scholar on August
2nd, 2022. Publication date (used to calculate citations per month since publication date) was
computed as the earlier of either (1) the paper’s venue-specific date of publicatoin or (2) the first
submission date to the arXiv or BioRxiv platform, as referenced via an exact title match. A manual
review was done to classify how pre-training methods constrain latent space geometry and assign
subjective, numerical “shallow-deep” and “explicit-implicit” axes scores. In total, over 90 methods
were examined, of which 71 were suitable for inclusion in numerical review results (Figure 1 and
Table 4). All methods considered are summarized and categorized (and reasons for exclusions are
given) in Appendix A.

Further Analysis of Reviewed Methods
This work has extensively examined how existing pre-training methods constrain the per-sample
latent space. However, it is also worth examining how these methods constrain the per-token latent
space to demonstrate the extent to which per-sample objectives are under-explored in current pre-
training research. To that end, we break down all of the studies included in our review not only by
how they constrain their per-sample latent spaces but also by how they constrain their per-token
latent spaces (Table 4). These groupings are also done at a greater granularity than the previously
examined categories to offer more insight into which methods use which techniques. We see that
not only are there more types of per-token latent space constraints leveraged (10 vs. 7), but also
methods consistently leverage a much greater diversity of per-token constraints vs. per-sample
constraints (1.45 per-token constraints per method vs. 0.58 per-sample constraints, on average).
We can further see from Figure 1 that the citation volume for works in this space is also heavily
concentrated around methods that first employ no per-sample PT objective, followed by methods
that only impose shallow, explicit methods, which further establishes this research gap.
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Per-token Per-sample

[1] ELMO X
[2] GPT-3 X
[3] T5 X
[4] RoBERTa X
[5] GPT-1 X
[6] GPT-2 X
[7] BART X
[8] Unsupervised Cross Lingual X
[9] ELECTRA X
[10] SpanBERT X
[11] UniLM X
[12] DAPT X
[13] ERNIE (Sun et. al.) X X
[14] KnowBERT X X X X
[15] TAPE X
[16] LUKE X X
[17] T0pp X
[18] Pretrained Encyclopedia X X
[19] MSA X X
[20] COLAKE X X X
[21] BERTMK X X
[22] ERICA X X
[23] JAKET X X
[24] CALM X
[25] KeBioLM X X X X
[26] MG-BERT (Molecules) X
[27] CDLM X X
[28] KgPLM X X
[29] kNN PT X X
[30] LP-BERT X X X
[31] MG-BERT (NLP) X X
[32] UD-PrLM X X
[33] ESM-1B X
[34] UniRep X
[35] BERT X X
[36] ERNIE (Zhang et. al.) X X X X
[37] CokeBERT X X X X
[38] SPIDER X X X
[39] Syntatic-Distilled BERT X X X
[40] ALBERT X X
[41] SMedBERT X X X X
[42] MT-DNN X X
[43] Graph-PT X X
[44] SentiLARE X X
[45] PLUS X X X
[46] EHR-PT X X
[47] ERNIE 2.0 (Sun et. al.) X X X
[48] ERNIE 3.0 (Sun et. al.) X X X X
[49] Dict-BERT X X X X
[50] LinkBERT X X
[51] StructBERT X X
[52] MARGE X X
[53] REALM X X X X
[54] GraphCL X
[55] GCC X
[56] DeCLUTR X X
[57] CLEAR X X
[58] JOAO X
[59] COCO-LM X X
[60] InfoWord X X
[61] MICRO-Graph X X
[62] STS-CT X X
[63] CAPT X
[64] GearNet X X X
[65] InfoXLM X X
[66] GLM X X X
[67] KCL X
[68] KEPLER X X
[69] CK-GNN X
[70] XLM-K X X
[71] Webformer X X X X

Table 4: Existing Pre-training (PT) Methods: A subset of existing PT methods, broken down by how they constrain
per-token and per-sample latent space geometries.
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Constraints on LSI in our Framework
Formally, for LSI to be valid, then there must exist a distance function d : Z × Z → R, radius
r ∈ R, and loss value `∗ ∈ R such that at any solution θ∗ for which LSI(θ

∗) < `∗, the learned
embeddings zi = fθ∗(xi) must recover the graphGPT under a radius nearest neighbor connectivity
algorithm via distance function d and radius r—i.e., it must be the case that (xi,xj) ∈ E if and
only if d(fθ∗(xi), fθ∗(xj)) < r. Furthermore, for the particular graph GPT and latent space Z , the
set of θ∗ such that LSI(θ

∗) < `∗ must be non-empty (i.e. such a solution must exist).

Realizing Existing Methods in our Framework
Let X ∈ XNPT be the pre-training dataset throughout this section. In cases where we have some
auxiliary information (e.g., supervised, per-sample, pre-training labels), they will be denoted by
Y ∈ YNPT .

Methods with no per-sample objectives
Naturally, we can realize any method that only employs a per-token pre-training objective

within our framework simply by setting λSI = 0. This realization is trivial and offers no insight
into the suitability of these pre-training methods for downstream per-sample tasks.

Methods with a supervised, single-task per-sample objective (e.g., BERT [35])
A simple, single-task, per-sample, classification pre-training objective induces a geometric

constraint in the output latent space on the basis of the inner product “distance” between samples
of the same vs. different class labels. We can use this observation to realize a reduction from
a valid SIPT objective to the original classification objective. In particular, we can introduce a
graph G = ({xi ∈ X}, {(xi,xj)|yi = yj}) which consists of cliques corresponding to each
unique label c ∈ Y . Then, leveraging any structure-preserving metric learning loss with a cosine
distance objective will, at optimality, recover a solution that also satisfies the original classification
objective, where we use centroids of the induced clique embeddings to represent class embeddings.

Methods with a supervised, multi-task per-sample objective (e.g., MT-DNN [42])
A slightly more complicated case is when methods employ a multi-task, per-sample classi-

fication objective. In this case, there are two ways to realize this task within the SIPT framework.
First, we can simply transform the multi-task objective into a single-task objective by constructing
a new label-space consisting of the Cartesian product of all label spaces for each task individually.
This will greatly increase the number of “labels” in the task, but then the problem can be realized
via a graph of disconnected cliques much like in the single-task setting.

However, there is another manner in which we can realize this objective in the SIPT frame-
work; In particular, suppose our collection of tasks consists of k label spaces: Y = Y1 × · · · × Yk.
Then, we can construct a graph G = (V,E) such that:
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1. the vertices consist of all pre-training samples xi as well as auxiliary nodes corresponding
to each label c(j)h ∈ Yh across each task: V = {xi ∈X} ∪ Y1 ∪ · · · ∪ Yk

2. the edges contain links between each sample xi and label y(i)h across all tasks 1 ≤ h ≤ k:
E = {(xi, c

(j)
h )|y(i)h = c

(j)
h }.

Then, we can see that if we solve the SIPT problem under a structure-preserving metric
learning loss, we will naturally have produced embeddings for each xi which are close (in inner-
product distance space) to the class embeddings corresponding to their labels for each task, while
they are also far from other, non-matching class embeddings, as desired. This second approach is
more useful to us in considering the ramifications of this style of constraint because it enables us
to make more rigid theoretical guarantees via the SIPT theory.

Methods with a based contrastive per-sample objective (e.g., GraphCL [54])
It is challenging to realize contrastive learning approaches within the SIPT framework, but

it is still possible. Here, we highlight two distinct types of contrastive learning approaches we
can capture within SIPT: a noising/augmentation-based approach, in which sample embeddings
are constrained to be similar to embeddings of noised versions of said samples; and a multi-modal
(or multi-lingual) contrastive approach, in which there exists a 1:1 mapping between two different
sub-modalities withinX which is used to join those two modalities into a unified latent space (e.g.
a model which constrains embeddings of English sentences to be close to embeddings of their
french translations, but far from unrelated sentences).

To consider the augmentation/noising policy type first, let h : xi 7→ x̃i represent the noising
transformation. Then, to build an analogous SIPT model to this model, we construct an augmented
dataset consisting of all original data points alongside all possible transformed versions of the
original data points under h: X ′ = X ∪

(⋃NPT

i=1 Im (h|xi
)
)

. Note that even in contexts where h is
continuous (and thus has an infinite image), we can still construct this dataset in practice because
training is only performed over a finite number of steps, meaning our augmented dataset X ′ need
only be expanded to cover a finite number of augmentations. Then, the associated pre-training
graph is simple; we simply use every sample in the augmented dataset X ′ as a vertex and connect
any two samples if and only if one is a transformed version of the other. This forms a graph of many
disconnected stars (one star for each original datapoint xi), and thus it does not directly enforce
any particular geometry via our current theory. However, in cases where dataset size is sufficiently
large, h sufficiently expressive, and data density sufficiently high, then the natural continuity of
any neural network model will induce additional, auxiliary connections across these stars (if, for
example, the noised versions of two distinct samples have a high probability of being very similar),
which increases the depth of the geometric constraints enforced. Quantifying the exact parameters
of these interactions, however, we leave to future work.
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In the case of the multi-modal/multi-lingual contrastive alignment objective across k modal-
ities, our setup is much simpler: we simply let GPT be a k-partite graph whose samples consist of
individual data points (across all modalities) and edges connect samples that compose a matching
pair across modalities (e.g. edges link English sentences to their french translations). The extent to
which this constrains the output geometry in practice, then, comes down to several questions: (1)
Is the cross-modal alignment a one-to-one, one-to-many, or many-to-many alignment (which im-
pacts the geometry of the resulting graph), (2) How large and dense is the dataset (which impacts
the extent to which additional, indirect edges will be induced due to continuity in practice), and
(3) How do other pre-training objectives constrain the individual modalities separately? In a case
where this graph is one-to-one, and no other constraints are induced in each modality separately,
this objective will offer only minimal constaints as the resulting graph will consistent of many
disconnected 2-cliques.

Methods with a per-sample graph-alignment objective (e.g., KEPLER [68])
Methods that explicitly align samples with a provided pre-training graph (KEPLER [68],

CK-GNN [69], XLM-K [70], and WebFormer [71]) are naturally already realized within SIPT, so
need no further commentary here.

Structure-inducing Losses Examined in this Study

Multi-similarity loss
The multi-similarity loss, parametrized by w+, w−, and t, is given below:

LSI =
1

Nw+

log

1 +
∑

(i,j)∈E

e−w+(〈fθ(xi),fθ(xj)〉−t)

+
1

Nw−
log

1 +
∑

(i,j) 6∈E

ew−(〈fθ(xi),fθ(xj)〉−t)

 ,

Contrastive loss
Our contrastive loss is modeled after [89]’s version. For this loss, we assume we are given

the following mappings: ‘pos’, which maps x into a positive node (i.e., linked to x in GPT), and
‘neg’, which maps x into a negative node (i.e., not linked to x in GPT). The union of a seed
minibatch B of points XB and its images under ‘pos’ and ‘neg’ mappings form a full minibatch.
This loss is specified by the positive and negative margin parameters µ+ and µ− as:

L(CL)
SI =

1

N

∑
xi∈X

max(D(xi, pos(xi))− µ+, 0) +
1

N

∑
xi∈X

max(µ− −D(xi, neg(xi)), 0).

Additional Choices within the SIPT Framework
In addition to a loss term, we can use negative sampling to improve efficiency. Using the full
graph GPT, which is not available in many contexts where negative sampling is employed, we
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can leverage the distance between samples calculated on GPT, which provides a complementary
source of information beyond embedding space distance alone. For example, one could use this to
limit negative samples within the same connected component, but more complex strategies based
on graph sampling (e.g. [95]) could also be used.

Proof of Theorem 1
We begin by defining the notion of “Local Consistency,” which (informally) quantifies how “smooth”
a given fine-tuning task label is over a graph GPT (Definition 5). In addition, note that throughout
all proofs, we will assume that the PT and FT datasets are iid, that FT tasks, though they may be
unobserved over PT samples, are well defined over the entire PT and FT domain and thus true
labels do exist (though they may be unknown) for PT samples, and that the sampling distribution
of the PT/FT data has full support over the label-space of any considered task.

Definition 5 (Local Consistency). Let y : X → Y be a task over a domain X , and let G = (V,E)

be a graph such that X ⊆ V . The local consistency LCG(y) is the probability that a node’s label
y(x) agrees with the majority of labels of x’s neighbors in G:

LCG(y) = P

y(x) = argmax
c∈Y

∑
x′∈X|(x,x′)∈E

1y(x′)=c

 .

Note this is closely related to homophily [96–98].

With Local Consistency defined, we can now formally prove Theorem 1, reproduced below.

Theorem 1. Let XPT be a PT dataset, GPT be a PT graph, and let fθ∗ be an encoder pre-trained
under a PT objective permissible under our framing that realizes a LSI value no more than `∗.
Then, under embedder f , the nearest-neighbor accuracy for a FT task y converges as dataset size
increases to at least the local consistency (Definition 5) of y over GPT.

Proof. Given f realizes SIPT-optimal embeddings, we know that if we define a r-NN predictor
via the same radius r∗ at which f achieves optimality, then this predictor will be correct exactly as
often as the label of a given node in the graph GPT agrees with the labels of its neighbors—which
is LCGPT

(y). This classifier may not be well defined for small FT dataset sizes. However, as if
data is not sufficiently dense, there may be no data points within the radius r of a given query.
Similarly, without sufficient PT data, the LC computed over the empirical distribution of the graph
GPT may be a poor proxy for the true distribution. As PT and FT dataset sizes increase, however,
we can achieve at least this performance. We may be able to achieve even higher performance if
other effects motivate stronger performance at radii smaller than r∗, but this is not guaranteed.
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Proof of Corollary 1
Corollary 1. Let XPT ∈ XN , be a PT dataset with corresponding labels y ∈ YN

PT. Define
GPT = (XPT, E) such that (xi,xj) ∈ E if and only if yi = yj .

Then, the local consistency for a given FT task y(FT) over GPT (and thus by Theorem 1, the
nearest-neighbor accuracy for any optimized SIPT embedder) is upper bounded by the probability
that a sample xi’s fine-tuning label y(FT)

i agrees with the majority class label for task y(FT) over the
clique consisting of all nodes with the same pre-training label yi as xi.

Proof. This follows directly from the definition of Local Consistency, GPT, and the law of total
probability. In particular,

LCGPT
(yFT) = P

yFT(xi) = argmax
`∈YFT

∑
xj∈XPT|(xi,xj)∈E(GPT)

1yFT(xi)=`


= P (yFT(xi) = MC(xi, yFT))

=
∑

`PT∈YPT

P(yi = `PT)P(yFT(xi) = MC(xi, yFT)|yi = `),

With Local consistency found, a simple application of Theorem 1 completes the proof.

Note that this has a dependence on the PT dataset size as the probabilities P are taken over the
empirical distribution induced by the datasetXPT and graph GPT inherent in local consistency —
if XPT is too small, these empirical distributions will be poor proxies for the true distribution and
this bound will not hold tightly. However, once saturation is reached, it will not improve beyond
this fixed upper bound relating to task correlation.

Proof of Corollary 2
Corollary 2. LetXPT be a PT dataset that can be realized over a valid manifoldM. AssumeXPT

is sampled with full support overM. Let GPT(XPT, E) be an r-nearest-neighbor graph overM
(e.g., (xi,xj) ∈ E if and only if the geodesic distance between the two points onM is less than
r: DM(xi,xj) < r). Let y(FT) be a FT classification task that is almost everywhere smooth on the
manifold.

Then, as PT dataset size (and thus the size of GPT) tends to∞, and r tends to zero, the local
consistency of y(FT) over GPT (and thus by Theorem 1 the nearest-neighbor accuracy of an SIPT
embedder) will likewise tend to 1.

Proof. As r → 0, provided PT dataset size increases at a sufficient associated rate so as to maintain
a constant minimum degree of G, we have the property that the total diameter overM contained
in a node’s local neighborhood within GPT likewise decreases. Given some fixed node x ∈ M
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that is within the interior of a set of constant yFT label, this implies that, eventually, it will grow
sufficiently small that all of x’s neighbors share the same label as x under yFT.

More concretely, it is clear that this point will occur exactly when r is the geodesic distance
between x and the boundary of the surrounding constant-label patch containing x. But, it is clear
that the only sections ofM will not have the property that neighborhoods around points will be
constant w.r.t. yFT labels will almost everywhere be patches within distance r of the points where
yFT changes.

This implies that as r → 0, then almost everywhere will the neighborhoods around a node
x be constant w.r.t. yFT. However, this implies that almost everywhere would yFT display perfect
local consistency, as desired.

Semi-synthetic Experiments Validating Theoretical Results
We can further validate the theoretical analyses of our framework via semi-synthetic experiments.
In particular, we create several datasets of natural language sentences augmented with synthetic
graphs with known relationships to certain FT tasks (e.g., low or high local consistency, low or
high rates of noise). We then use these datasets to validate three important properties of PT meth-
ods: First, do PT methods trained with a LSI and GPT yield Nearest-neighbor FT performance in
accordance with our theory? In particular, do (a) FT tasks with high local consistency over the PT
graph offer better performance, and (b) those with very low local consistency offer worse perfor-
mance? Second, do PT methods trained with a LSI and GPT suffer significantly when pre-training
graphs are polluted with noise? Finally, third, do the latent space geometry regularizing proper-
ties of LSI yield methods whose embeddings more clearly cluster than embeddings produced by
traditional pre-training alone?

Pre-training & fine-tuning datasets
Across all experiments, our synthetic datasets consist of free-text sentences from https://www.
kaggle.com/mikeortman/wikipedia-sentences (CC BY-SA 4.0 License).

Topics were assigned to these sentences by running Latent Dirichlet Allocation via Scikit-
learn [99] over a Bag-of-words representation to 100 topics, with otherwise default parameters.
Given the probabilities over all 100 topics, we treated the prediction of the most probable topic as
a 100-class multi-class classification problem for our FT task in these experiments.

To test across various graphs, we produce a number of pre-training graphs per experiment,
as detailed below.

Pre-training graphs
We use graphs spanning 3 categories. (1) A graph (CLIQUES) consisting of disconnected cliques,
where sentences are linked in the graph if they share the same topic label. (2) Graphs composed
of nearest-neighbor graphs defined over simplicial manifolds built using topic probabilities to lo-
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calize sentences onto simplices. We explore manifolds with a range of topological complexity,
including: PLANE, MÖBIUS, SPHERE, and TORUS. Finally, (3) we define three graphs according
to a mechanistic process that allows us to control how topic labels relate to graph structure: first, so
that topics are maximally conserved within local neighborhoods (NEIGHBORHOOD); second, by
assigning sentences to nodes in the graph such that each graph motif corresponds to a unique topic
(MOTIF); and third, such that node topics are driven by non-local graph structural features, on the
basis of graphlet degree vectors (STRUCTURAL). Details for each pre-training graph formation are
given below.

CLIQUES Graph Setup
To construct the Cliques graph setting, we choose a random subset of sentences asXPT and

define GPT = (XPT, E) such that (xi,xj) ∈ E if and only if xi and xj share the same topic label.

PLANE, MÖBIUS, SPHERE, & TORUS Graphs
For these graphs, we take a more involved practice to localize sentences onto specifiable

simplicial manifolds, then construct pre-training graphs via radius nearest neighbor graphs on those
manifolds. This involves several steps:

Localizing Sentences on Simplices We can localize any sentence in our overall dataset onto a 2-
simplex by mapping them onto the (re-normalized) probabilities associated with their top-3
topics. Doing this means that the simplex on which they are localized has vertices corre-
sponding to possible topics among our 100 total topics.

Stitching Topic-simplices Into Manifolds Given these topic-simplex localized sentences, we need
to construct our manifolds. To do so, we first produce any arbitrary simplicial tiling of
a 2-manifold. With this tiling, all that remains to localize sentences onto the manifold is
to find a self-consistent mapping of topics to simplex vertices (in the tiling) such that all
topic-simplices induced by this mapping have sufficiently many associated samples to en-
able roughly uniform sampling.

Sampling Points After finding a self-consistent map of topics to simplicial tiling vertices that
satisfy density requirements, we can sample sentences onto the manifold. To make this
process more uniform, we also calculate the relative entropy of each sentence (over the re-
normalized probabilities of the top-3 topics), bin those entropies into buckets, then sample
first what entropy bucket we wish to draw from such that the induced distribution of sentence
entropies is approximately uniform, then sample within that entropy bucket.

Calculating on-Manifold Distances Finally, with sentences sampled and localized onto a simpli-
cial manifold, we then need to compute approximate geodesic distances to enable building
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radius-nearest-neighbor graphs over these sentences. To do so, we use an approximate al-
gorithm that considers only on-simplex distance (e.g., it does not consider any curvature
penalties) which is equivalent to calculating the distance between any pair of points over
the simplices presuming they were flattened onto a plane (this flattening naturally does not
preserve manifold topology, but along only the shortest path between any particular set of
two points it is always possible to do so with a 2-manifold).

The above process describes how to produce a radius-nearest-neighbor graph for any specifi-
able manifold using our topic-model outputs. We do this for simplicial manifolds that correspond
topologically to a simple plane (PLANE), a möbius strip (MÖBIUS), a sphere (SPHERE), and a
torus (TORUS).

STRUCTURAL, NEIGHBORHOOD & MOTIFS Graphs
In order to form these examples, we must (1) define our overall graphs, (2) featurize these

graphs in a manner that is reflective of different forms of graph structure, then (3) use these featur-
izations to assign sentences to graph nodes to form our pre-training dataset.

Graph Construction We sample graphs by first building a base cycle of a parametrized size, then
add motifs along this cycle by sampling small graphs from all possible connected graphs of
size less than 6 nodes.

Node Featurization Nodes in this graph are then assigned internal features based on three notions
of graph topology. For the “Neighborhood” label, a node n is identified according to an
index-vector indicating which nodes in the graph are within shortest-path distance 3 of n.
For the “Motif” label, n is identified based on its membership either in the base cycle or
any of the attached random subgraphs. For the “Structural” label, n is identified based on
its graphlet degree vector (of order 4). For structural and homophily features, categorical
labels are then produced by feeding these raw representations through a k-means clustering
algorithm.

Sentence Assignment We assign sentences to nodes in multiple ways so that we can produce
datasets that reflect each of the notions of graph structure discussed previously. In particular,
for either the neighborhood, motif, or structural labels, each sentence topic is matched to a
node label, then sentences are assigned randomly to nodes in the graph with a matching topic
label. Note that this produces a dataset where the graph structure is only partially reflected
by the node’s features, which is itself another useful test of the SIPT method, as it would not
be useful if SIPT could only capture data in contexts where the graph was perfectly reflected
by the node features themselves.

Expected local consistency between graphs GPT and the topic prediction FT task
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Of all these graphs, we expect that topics will display a low local consistency over the
STRUCTURAL graph and a moderately high local consistency over the MOTIF graph (as graph
motifs are all connected components), and high local consistency everywhere else.

Network Architecture & Hyperparameters
The Cliques and Mechanistic experiments use a shallow Transformer model with 2 layers and
10 hidden units. The Manifold experiments use a 3-layer Transformer model with 256 hidden
units. Hyperparameters were not tuned but were chosen by hand to produce as small a network as
possible while permitting reasonable learning dynamics.

Experimental setup
To answer our three questions, we will pre-train models under both traditional LM pre-training
alone and a new, structure-inducing PT (SIPT) method within our paradigm that augments the
loss with a contrastive learning loss over GPT, with λSI = 0.1. Both models use a shallow trans-
former encoder for fθ and a character-level tokenization scheme. Final results are reported via
the AUROC of 3-nearest-neighbor classifiers over the latent space, per-sample embeddings. In
line with our theoretical predictions, we expect to see higher NN FT performance in all settings
where the FT task (topic prediction) has high local consistency over the graph GPT (all graphs
except STRUCTURAL) and worse performance in the case where the local consistency is very low
(STRUCTURAL).

We also assess the stability of our method as the graph GPT is noised using the CLIQUES

graph by randomly adding additional edges with varying rates.

Semi-synthetic Result 1: SIPT improves performance over LM PT by 0.26 ± 0.13 AUROC
on graphs where the topic task has a high local consistency
As can be seen in Figure 5a, SIPT offers significant improvements over LM PT in nearest-neighbor
FT AUROC across all graph types with strong topic local consistency.

Semi-synthetic Result 2: SIPT’s empirical results are in agreement with theoretical findings
In line with our theoretical findings, SIPT only under-performs LM PT on the STRUCTURAL graph
where the topic task (by design) does not have strong local consistency. This validates our theoret-
ical results by showing that local consistency strongly predicts Nearest-neighbor FT performance.

Semi-synthetic Result 3: SIPT is robust to incomplete and noisy pre-training graphs
Figure 5b shows Nearest-neighbor FT AUROC as a function of noise rate on the CLIQUES graph.
For up to 15% noise, SIPT shows improvements over LM PT, and even at 50% noise, the two
approaches perform comparably.
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Semi-synthetic Result 4: SIPT pre-trained embeddings show stronger clustering than LM
PT embeddings
Figure 5c-d shows embeddings produced under the MÖBIUS graph either by LM PT or SIPT,
clustered via UMAP into 2 dimensions. It is clear visually from these figures that SIPT embed-
dings show clear clusters strongly associated with the topic-modelling FT task, whereas LM PT
embeddings do not.

Conclusions
From these analyses, we see that augmenting PT with per-sample structure-inducing objectives
can both (1) offer significant advantages over existing PT architectures and (2) permit analytical
reasoning about which FT tasks PT will offer improvements. These findings are not surprising;
in these semi-synthetic experiments, we designed our graphs explicitly to have either high or low
local consistency with respect to our FT task so that we could probe exactly whether SIPT methods
would behave in accordance with theory in tightly controlled settings. In this way, the graphs GPT

used here may not be reflective of graphs in the real world, which will be chosen more indepen-
dently of specific FT tasks. To address this, in the Results section, we demonstrate experimental
results over diverse real-world datasets with real, FT-task-independent graphs to show that the
gains persist in more realistic scenarios.

Further Details on Real-world Experiments
Further Details on the PROTEINS Dataset and FT tasks
PT Dataset We use a dataset of∼1.5M protein sequences from the Stanford Tree-of-life dataset [74]

(https://snap.stanford.edu/tree-of-life/data.html). The associated Github repository for this
resource lists an MIT license.

PT Graph Two proteins are linked in GPT if and only if they are documented in the scientific
literature to interact, according to the tree-of-life interaction dataset. This is an external
knowledge graph.

FT Dataset/Tasks We use the TAPE FT benchmark tasks [15], including Remote homology (RH),
a per-sequence classification task to predict protein fold category (metric: accuracy); Sec-
ondary structure (SS), a per-token classification task to predict amino acid structural proper-
ties (metric: accuracy); Stability (ST) & Fluorescence (FL), per-sequence, regression tasks to
predict a protein’s stability and fluorescence, respectively (metric: Spearman’s ρ); and Con-
tact prediction (CP), an intra-sequence classification task to predict which pairs of amino
acids are in contact in the protein’s 3D conformation (metric: Precision at L/5).

Baselines We compare against the published TAPE model [15], which uses an LM task alone as
our per-token comparison point, and the PLUS [45] model, which optimizes for LM and
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supervised classification jointly, for our per-sample comparison point.

The tasks in the TAPE benchmark [15] on which we test are described more fully below.
All these datasets are publicly available. All datasets can be obtained directly on TAPE’s Github
(https://github.com/songlab-cal/tape#data), which lists no licenses for these datasets though the
overall Github is released under a BSD 3-Clause ”New” or ”Revised” License.

Remote Homology This is a per-sequence, multi-class classification problem, evaluated using
accuracy, which tasks a model to predict a protein fold category at a per-sequence level.
This task’s dataset contains 12,312/736/718 train/val/test proteins and is originally sourced
from [100].

Secondary Structure This is a per-token, multi-class classification problem, evaluated using ac-
curacy, which tasks a model to predict the structural properties of each amino acid in the
final, folded protein. This task’s dataset contains 8,678/2,170/513 train/val/test proteins, and
is originally sourced from [101].

Stability This is a per-sequence, continuous regression problem evaluated using the Spearman
correlation coefficient, which tasks a model to predict the protein’s stability in response
to environmental conditions. This task’s dataset contains 53,679/2,447/12,839 train/val/test
proteins, and is originally sourced from [102].

Fluorescence This is a per-sequence, continuous regression problem evaluated using the Spear-
man correlation coefficient, which tasks a model to predict how brightly a protein will fluo-
resce. This task’s dataset contains 21,446/5,362/27,217 train/val/test proteins, and is origi-
nally sourced from [103].

Further Details on the ABSTRACTS Dataset and FT tasks
PT Dataset We use a dataset of ∼650K free-text scientific article abstracts from the Microsoft

Academic Graph (MAG) dataset [75, 76]. The ABSTRACTS PT data (the Microsoft Aca-
demic Graph dataset) is licensed with an Open Data Commons Attribution License (ODC-
By) v1.0 license.

PT Graph Two abstracts are linked in GPT if and only if their corresponding papers cite one
another. This is a self-supervised graph.

FT Dataset/Task We use a subset of the fine-tuning tasks used in the SciBERT paper [91], includ-
ing Paper field (PF), SciCite (SC), ACL-ARC (AA), and SciERC Relation Extraction (SRE),
all of which are per-sentence classification problems (metric: Macro-F1). PF tasks models
to predict a paper’s area of study from its title, SC & AA tasks both predict an “intent” label
for citations, and SRE is a relation extraction task.
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Baseline We compare against the published SciBERT model [91] as our per-token comparison and
lack an associated per-sample comparison as we don’t know of any published per-sample
models in the academic papers modality.

The tasks in the SciBERT benchmark [91] on which we test are described more fully below.
All tasks here are per-sentence, multi-class classification problems (i.e., we do not study any per-
token tasks), and all are evaluated in Macro-F1 (out of 1). All FT datasets can be obtained from the
SciBERT Github (https://github.com/allenai/scibert), which lists no dataset-specific licenses but is
released with an Apache-2.0 license.

Paper Field This problem asks models to predict a paper’s area of study given its title. This
task’s dataset contains 84,000/5,599/22,399 train/val/test sentences. Though the original
dataset is derived from the MAG [75], it was formulated into this task format by SciBERT
directly [91].

SciCite This problem tasks models to predict an “intent” label for sentences that cite other scien-
tific works within academic articles. This task’s dataset contains 7,320/916/1,861 train/val/test
sentences, and is originally sourced from [104].

ACL-ARC This problem tasks models to predict an “intent” label for sentences that cite other sci-
entific works within academic articles. This task’s dataset contains 1,688/114/139 train/val/test
sentences and is originally sourced from [105].

Further Details on the NETWORKS Dataset and FT tasks
PT Dataset We use a dataset of∼70K protein-protein interaction (PPI) ego-networks here, sourced

from [43]. Each individual sample here describes a single protein, realized as a biological
network (i.e., an attributed graph) corresponding to the ego-network about that protein (i.e.,
a small subgraph containing all nodes within the target protein) in a broader PPI graph. Un-
like our other domains, this domain does not contain sequences. The NETWORKS PT dataset
releases its code and dataset files under an MIT license.

PT Graph The dataset from [43] is labeled with the presence or absence of any of 4000 protein
gene ontology terms associated with the central protein in each PPI ego network. Leveraging
these labels, two PPI ego-networks are linked in GPT if and only if the Hamming distance
between their observed label vectors is no more than 9. This is an alternate-representation
nearest-neighbor graph.

FT Dataset/Tasks Our FT task is the multi-label binary classification of the 40 gene-ontology
term annotations (metric: macro-AUROC) used in [43]. We use the PT set for FT training
and evaluate the model on a held-out random 10% split.
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Baselines We compare against both attribute-masking [43] and multi-task supervised PT.

The Networks FT task is a multi-task, binary classification task. Recall that the dataset
here consists of PPI ego-networks, which means that an individual sample input to the model
is an attributed graph x which contains a central node, corresponding to a protein, along with
the ego-graph surrounding that node in a larger PPI graph. This ego-graph can thus be seen to
correspond to the central protein, and the FT and PT tasks leverage this association, as both of
which flag whether or not that central protein is associated with particular gene-ontology (GO)
terms (annotations relating to protein properties or function applied in the literature). The PT tasks
contain 4000 possible GO annotations, but the FT tasks correspond to a smaller set of only 40 GO
terms, chosen as they were of greater interest than the full set. See the original source ( [43]) for
more information and full details.

Further Details on Experimental Procedure
To minimize computational burden, we do not pre-train a structure-inducing model from scratch
for PROTEINS and ABSTRACTS datasets. Instead, we initialize a model from the per-token base-
line directly, then perform additional pre-training for only a small number of epochs under the
new SIPT loss subdivision. We assess both multi-similarity and contrastive LSI variants in these
domains. On the NETWORKS dataset, we pre-train all models (including baselines) from scratch,
and based on early experimental results, we only assess the contrastive loss variant.

Further Details on Ablation Studies
Note that the warm-start procedure described above on the PROTEINS and ABSTRACTS domains
allows a powerful ablation study: by additionally training a PT model from the per-token baseline
with λSI = 0, we can uniquely assess the impact of the new loss term, rather than simply additional
training or the different PT dataset. We perform this ablation study for all applicable datasets. For
the NETWORKS dataset, no additional ablation studies are needed to assess the impact of the loss
term, given all models are trained from scratch with the same early-stop procedures.

Further Details on Choosing λSI
For the PROTEINS and ABSTRACTS dataset, to choose the optimal value of λSI for use at PT time,
we pre-trained several models and evaluated their efficacy in a link retrieval task onGPT = (V,E).
In particular, we score a node embedder f by embedding all nodes n ∈ V as f(n), then rank all
other nodes n′ by the euclidean distance between f(n) and f(n′), and assess this ranked list via IR
metrics including label ranking average precision (LRAP), normalized discounted cumulative gain
(nDCG), average precision (AP), and mean reciprocal rank (MRR), where a node n′ is deemed to
be a “successful” retrieval for n if (n, n′) ∈ E. In this way, note that we choose λSI in a manner
that is independent of the fine-tuning task and can be determined solely based on the PT data. Final
results for these experiments are shown in Methods Table 9 for the proteins dataset and Methods
Table 10 for scientific articles.
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Ultimately, this process suggests that λSI of 0.1 is a robust setting, and as such, 0.1 was used
directly for the NETWORKS task without further optimization.

Further Details on Architecture & Hyperparameters
The architectures of our encoders for the PROTEINS and ABSTRACTS domains are fully determined
from our source models in TAPE [15] and SciBERT [91]. In particular, for proteins and scientific
articles, we use a 12-layer Transformer with a hidden size of 768, an intermediate size of 3072, and
12 attention heads. Provided TAPE and SciBERT tokenizers are also used. A single linear layer to
the output dimensionality of each task is used s the prediction head, taking as input the output of
the final layer’s [CLS] token as a whole-sequence embedding. We also tested either pre-training
for a single or for four additional epochs, based on validation set performance, and ultimately used
a single epoch for proteins and four for scientific articles.

For the NETWORKS domain, we match the architecture used in the original source [43] for
the mask model runs. Save that for computational efficiency, we scale the batch size up as high
as it can go, then proportionally scale up the learning rate to account for the larger batch size.
This corresponds to a batch size of 1024, the learning rate of 0.01, a GCNN encoder type of GIN,
embedding dimensions of 300, 5 layers, 10% dropout, mean pooling, and a JK strategy of “last”.

Fine-tuning hyperparameters (learning rate, batch size, and the number of epochs) were de-
termined based on a combination of existing results, hyperparameter tuning, and machine limita-
tions. On proteins, most hyperparameters were set to follow those reported for a LM PT model
in [106], though additional limited hyperparameter searches were performed to validate that these
choices were adequate. As the original source for these hyperparameters was an LM PT model,
any bias here should be against SIPT, meaning this is a conservative choice. Early stopping (based
on the number of epochs without observing improvement in the validation set performance) was
employed, and batch size was set as large as possible given the limitations of the underlying ma-
chine. For the PLUS reproduction, we compared hyperparameters analogous to the reported PLUS
hyperparameters for other tasks and analogous to our hyperparameters for other tasks and used
those that performed best on the validation set. For scientific articles, we performed a grid search
to optimize downstream task performance on the validation set, with the learning rate varying
between 5e-6 and 5e-5 and the number of epochs between 2 and 5. The same grid search was
used in the original SciBERT method. We additionally match the SciBERT benchmark by apply-
ing a dropout of 0.1, using the Adam optimizer with linear warm-up and decay, a batch size of
32, and no early stopping. For the NETWORKS, FT hyperparameters were again chosen to match
the original source model [43] to save the increase in batch size and learning rate. No additional
hyperparameter search was performed.

Final hyperparameters for each downstream task are shown in Tables 5 for proteins and 6 for
scientific articles.
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Task Batch Size LR

Remote Homology 16 1e-5
Fluorescence 128 5e-5
Stability 512 1e-4
Secondary Structure 16 1e-5

Table 5: Final hyperparameters for our PROTEINS domain. All tasks used 200 total epochs and performed early stopping
after 25 epochs of no validation set improvement. LR, learning rate.

Task # Epochs LR

Paper Field 2 5e-5
ACL-ARC 4/5 5e-5
SciCite 3/2 1e-5

Table 6: Final hyperparameters for our ABSTRACTS dataset. All models used a batch size of 32 and no early stopping to
match the original SciBERT paper [91]. LR, learning rate. A / B = [LM PT Hyperparameter] / [SIPT Hyperparameter].

Further Details on Implementation and Compute Environment
We leverage PyTorch for our codebase. FT Experiments and NETWORKS PT were run over various
ubuntu machines (versions ranged from 16.04 to 20.04) with a variety of NVIDIA GPUs. PRO-
TEINS and ABSTRACTS PT runs were performed on a Power 9 system, each run using 4 NVIDIA
32 GB V100 GPUs with InfiniBand at half precision.

Full Results
Here we provide the raw FT results for all tasks in the PROTEINS and ABSTRACTS domains,
respectively (Tables 7 and 8). The NETWORKS domain raw results are already present in the main
text (Figure 3).

Model RH FL ST SS CP

TAPE 21% 0.68 0.73 73% 0.32
PLUS 19.8%±1.7∗ 0.63 0.76 73% N/A
LM PT 23.8%±1.1 0.67±0.00 0.76±0.02 73.9%±0.0 0.38

SIPT-C 25.1%±0.6 0.68±0.00 0.77±0.01 73.9%±0.0 0.38
SIPT-M 26.6%±1.0 0.68±0.00 0.76±0.01 74.2%±0.1 0.39

Table 7: Results of the TAPE Transformer [15], the PLUS Transformer [45] (∗: our measurements), our LM PT baseline,
and two SIPT variants (“-C” indicates the contrastive loss, “-M” the multisimilarity loss). Higher is better.
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Model PF SC AA SRE

SciBERT 0.66 0.85 0.71 0.80
LM PT 0.66±0.0 0.85±0.01 0.70±0.05 0.80±0.01

SIPT-C 0.66±0.0 0.86±0.01 0.76±0.02 0.81±0.00
SIPT-M 0.66±0.0 0.85±0.00 0.73±0.05 N/A

Table 8: Results of the original SciBERT [91] model, our own LM PT baseline, and two SIPT variants (“-C” indicates
the contrastive loss, “-M” the multisimilarity loss). Higher is better.

SIPT Results are in Accordance with Theory and Guiding Hypothesis
Results over all real-world domains are consistent with our theoretical analyses and guiding hy-
pothesis. We can also analyze the extent to which induced structure helps non-NLP domains by
examining the results of our λSI tuning procedure. In particular, we find that far less structure-
inducing is necessary on our ABSTRACTS dataset (λSI = 0.01) than on our PROTEINS dataset
(λSI = 0.1). This agrees with our guiding hypothesis that per-sample latent space regularization is
much more necessary on non-NLP domains than on NLP domains.

To demonstrate this, we show the final results for the guiding link-retrieval task for the PRO-
TEINS domain in Table 9 and for the ABSTRACTS domain in Table 10. In both settings, we compare
the following models.

Random Nodes are embedded with random vectors to assess chance performance.

Initial Model Nodes are embedded with the base pre-trained model we build on in our exper-
iments without further modifications. This model is TAPE [15] for proteins and SciB-
ERT [91] for scientific articles.

LM PT Nodes are embedded with the final encoder after additional pre-training on our graph-
augmented datasets, but without any SIPT (i.e., λSI = 0).

CS RoBERTa (for scientific articles only) Nodes are embedded via [12]’s DAPT CS RoBERTa
model, which is another LM PT model over scientific abstracts which performed very well
on ACL-ARC, the task on which SIPT does best in scientific articles.

SIPT (for various values of λSI). Nodes are represented via SIPT PT models at the specified
weighting. For proteins, all SIPT models are initialized from TAPE, but for scientific articles,
we test against both initializing from SciBERT and CS RoBERTa (as both are just different,
domain-specific LM PT models).

Note that in addition to the discrepancy in the magnitude of improvement (over scientific
articles, average precision goes from 12.9% to 14.2%, vs. 2.4% to 3.5% on proteins, which is
proportionally much more significant), we can also see that SIPT improves retrieval performance
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Method λSI LRAP nDCG AP MRR

Random Baseline N/A 0.88% 27.1% 0.88% 0.003
TAPE [15] N/A 8.50% 34.9% 2.41% 0.226
LM PT Baseline 0 8.92% 38.0% 2.33% 0.238

SIPT (TAPE Initialized)

0.01 9.69% 39.1% 2.56% 0.254
0.10 10.95% 39.4% 3.46% 0.260
0.50 10.54% 40.3% 3.43% 0.246
0.90 10.12% 39.0% 3.16% 0.237
0.99 14.50% 37.5% 3.13% 0.236

Table 9: PT set link-retrieval performance for a random baseline, the raw TAPE model, and SIPT for various weighting
parameters λSI on the dataset of protein sequences. LRAP, label ranking average precision; nDCG, normalized dis-
counted cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values indicate better performance.
Highlighted in grey are realizations of SIPT framework that yield better results than the strongest baseline, providing
evidence that incorporating sequence-level relational information into PT (i.e., λSI > 0) leads to improved performance.

over the baselines for proteins much more than it does for scientific articles. This is, admittedly,
largely due to [12]’s CS RoBERTa model’s surprisingly good performance without any modifi-
cations, however as we also compare SIPT pre-trained from a CS RoBERTa model and it does
not demonstrate significant improvements, we still feel this is a fair comparison. These findings
are consistent with our hypothesis that SIPT will offer more significant advantages in non-natural
language domains.
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Method λSI LRAP nDCG AP MRR

Random Baseline N/A 0.89% 26.0% 0.27% 0.016
SciBERT [91] N/A 17.22% 52.8% 5.16% 0.272
LM PT Baseline (SciBERT initialized) 0 16.79% 35.4% 5.00% 0.271
DAPT CS RoBERTa [12] N/A 32.56% 50.3% 12.86% 0.459
LM PT Baseline (CS RoBERTa initialized) 0 30.58% 48.3% 12.36% 0.438

SIPT (SciBERT initialized)

0.01 42.26% 58.7% 14.23% 0.536
0.10 34.73% 52.5% 9.39% 0.457
0.50 32.85% 50.8% 8.37% 0.438
0.90 31.61% 49.8% 7.82% 0.426
0.99 30.72% 49.0% 6.80% 0.415

SIPT (CS RoBERTa initialized)

0.01 33.32% 51.2% 8.61% 0.448
0.10 25.46% 44.4% 5.88% 0.359
0.50 25.08% 44.0% 6.08% 0.355
0.90 22.43% 41.6% 4.27% 0.317
0.99 22.38% 41.5% 4.68% 0.316

Table 10: PT set link-retrieval performance for a random baseline, the raw SciBERT model, and SIPT for various
weighting parameters λSI on the scientific articles dataset. LRAP, label ranking average precision; nDCG, normalized
discounted cumulative gain; AP, average precision; MRR, mean reciprocal rank. Higher values indicate better perfor-
mance. Highlighted in grey are realizations of SIPT framework that yield better results than the strongest baseline,
providing evidence that incorporating sequence-level relational information into PT (i.e., λSI > 0) leads to improved
performance.
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A Review of Language Model Pre-training Methods
In this supplementary section, we describe all of the models featured in our review (Figure 1 and
Table 4) and highlight key details of their approach.

A.1 Language modelling alone
[1] General domain NLP; ELMO leverages a biLSTM to perform language modelling; unlike

later methods, for FT tasks, models do not typically re-train the entire LSTM but rather
use a weighted combination of model interior hidden states as (at FT time) static word-
embeddings.

[4] General domain NLP; RoBERTa includes only a masked language modelling objective.

[2, 5, 6] General domain NLP; The GPT series of models use autoregressive language modelling
alone and focus on generative language tasks, not general PT/FT, though GPT-III does show
that by reframing many classical NLP fine-tuning tasks as generative language tasks, GPT-
III can still offer a compelling zero and few-shot solution to these tasks using only the pre-
trained embedder [2].

[7] General domain NLP; BART utilizes a denoising language-model objective across various
noising constraints.

[11] General domain NLP; UniLM integrates several different kinds of language modelling, in-
cluding bidirectional, unidirectional, and sequence-to-sequence LMs. They impose no other
PT losses.

[15, 33, 34] Protein sequences; Various methods have explored language modelling alone for pro-
tein sequences. One notable entry is the TAPE benchmark, which also introduces a public
benchmark of FT tasks for future comparisons.

[26] Molecular Graphs; Molecular Graph BERT (MG-BERT; no relation to MG-BERT [31]) uses
masked atom prediction to pre-train a GNN over molecular graphs.

[8] General domain NLP; This paper pre-trains a model for multi-lingual language modelling,
using only a multi-lingual masked language modelling objective.

[12] General domain NLP; DAPT advocates for continual pre-training on increasingly task-focused
text to improve its relevance to various downstream tasks. DAPT uses a RoBERTa baseline
pre-training model, which includes only a masked language modelling objective. It shows
significant gains after adaptation. However, as they only adapt the pre-training context to the
more focused text, this induces no additional constraints on the latent space geometry.
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[10] General domain NLP; SpanBERT changes the traditional masked language modelling task
to a task in which contiguous spans are masked wholesale, rather than individual tokens.

A.2 Language modelling & templated tasks/prompting as language mod-
elling

[3] General domain NLP; T5 not only performs a robust analysis of various existing pre-training
strategies but also introduces the “text-to-text” style of diverse pre-training, in which vari-
ous downstream NLP tasks can be re-realized as language modelling tasks via templating
and prompting, then integrated into language model pre-training alongside unsupervised
objectives (such as traditional masked language modelling, albeit realized as a sequence-to-
sequence task). As they realize all these downstream tasks as additional language modelling
tasks, they neither officially produce a directly constrained per-sample embedding nor con-
strain the geometry of Z beyond traditional masked language modelling.

[24] General domain NLP; CALM builds on ideas from T5 to propose a text-to-text pre-training
objective that leverages recognized per-token KG entities from the source text as a generative
prompt.

[17] General domain NLP; T0pp extends the architecture of T5 [3] to ingest templated language
modelling task from a wide variety of possible input tasks, then evaluates its performance in
a zero-shot manner on unseen fine-tuning tasks.

A.3 Language modelling & Per-token KG Integration
[13] General domain NLP; ERNIE 1 augments traditional MLM with entity-specific masking

(e.g., masking the word “Mozart” from the sentence “Mozart was a musician”) to force the
model to recover common-sense knowledge about named entities.

[28] General domain NLP; KgPLM adapts the discriminative training ideas of ELECTRA [9]
alongside the idea of entity masking explored previously. They perform entity masking and
a discriminative loss identifying which tokens were replaced focused on entity replacements.

[22] General domain NLP; ERICA presents a mechanism for leveraging contrastive learning and
distant supervision to incorporate external knowledge into a PLM for improving language
understanding. ERICA augments MLM with two per-token tasks to ensure the per-token
representations within a document reflect the structure of the KG. First, ERICA ensures
that the pooled representations of head and tail entities are similar when conditioned on a
relation (which is prepended to the document prior to embedding). Second, ERICA ensures
that relation embeddings (defined as concatenated head, tail per-token entity embeddings)
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are similar within and across documents. As both tasks are done on per-token embeddings
and never at a per-sample level, this approach induces minimal constraints on the per-sample
latent space.

[14] General domain NLP; Know-BERT integrates per-token entity information into an MLM
pre-training scheme by performing unconstrained attention over a per-entity knowledge
graph (only on pre-identified candidate entity spans), alongside any available entity link-
ing supervision information via direct Named Entity Linking. This has similarities with [25]
and [107].

[25] Biomedical domain NLP; KeBioLM integrates a per-token KG into a biomedical language
model by augmenting token entity representations with attention lookups into a biomedical
KG (regardless of whether the attended entities match a given entity mention in the source
text, though they do only apply this on recognized entities). To ensure this attention is
meaningful, they perform named entity linking and recognition as auxiliary PT objectives,
leveraging the same KG embeddings used during the attention calculation. In doing so,
the method incentivizes per-token representations to be similar to their associated entity
representations, thus ensuring that the entities are reflected in the attention over the KG.
KG embeddings are initialized using Trans-E [108]. Their usage of automatically attending
over entities within their language model (without explicit constraints on those matches) is
motivated by [107]’s work in [107] and has similarities to Know-BERT [14].

[16] General domain NLP; LUKE performs pre-training using MLM and an entity-specific mask-
ing/recognition scheme that is a slight variation on the traditional entity-specific mask-
ing [13] proposed. At FT time, they have other knowledge-specific integrations, including
specialized query matrices in KQV attention based on attending to either traditional tokens
or entities. However, at PT time, LUKE’s only modulation over a ROBERTA [4] baseline is
an entity masking task.

[20] General domain NLP; COLAKE performs a priori entity linking on the source text, then re-
places per-token mentions with entity embeddings, and appends to the input text sub-graphs
from a (relational) knowledge graph, including both neighboring mentions and relations in
the augmented input text block. This input is then encoded via a transformer that limits at-
tention flow between tokens of different types and trains the entire ensemble with masked
language, entity, and relation modelling.

[18] General domain NLP; In this paper, traditional masked language modelling is augmented
with an entity-replacement-detection task. Named entity recognition and linking are per-
formed before pre-training, and entity replacements are constrained to be the same type as
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the true entity.

[30] Knowledge Graph Completion; LP-BERT constructs a specialized pre-training corpus con-
sisting of entity-relation statements from a knowledge graph. This is used in a pre-training
context under three pre-training tasks: masked language modelling, masked entity mod-
elling, and masked relationship modelling. All three are per-token, and no per-sample tasks
are used at pre-training time.

[32] Multilingual Language Models; UD-PrLM examines multilingual pre-training, and aims to
improve it by incorporating universal dependency parse trees into the model. They incor-
porate a per-token task to align tokens with identified dependency parse tree components,
alongside masked language modelling.

A.4 Language modelling, Per-token KG Integration, & Supervised Classifi-
cation

[47, 48] General domain NLP; ERNIE 2.0 & 3.0 augments traditional MLM with entity-specific
masking (e.g., masking the word “Mozart” from the sentence “Mozart was a musician”) as
well as a multi-task per-sample task, largely motivated at classifying a block of text based
on internal text cohesion (predict the true order of the sentences within an input sample &
identify whether the sentences within the input sample are spatial neighbors, come from the
same document, or come from different documents). ERNIE 3.0 additionally augments pre-
training with a per-token relation-embedding task using cloze-filling as a vehicle to perform
relation extraction on pre-specified per-token KGs.

[36] General domain NLP; ERNIE (no relation to [13, 47]) uses both architectural and objective-
function changes to inject per-token knowledge into PT. Specifically, they separately embed
all named entities in a sample using the architecture to join contextualized entity embed-
dings alongside the embeddings of tokens, realizing that entity in the span and performing
entity-specific masking. In addition, they simultaneously perform standard MLM and next-
sentence prediction in the manner of BERT [35].

[31] General domain NLP; MG-BERT introduces a GCNN layer after BERT token, aggregating
token embeddings together over a unified graph consisting both of co-occurrence relation-
ships and knowledge graph relationships.

[23] General domain NLP; JAKET embeds entities by extracting per-token representations of
entity texts inside per-entity descriptions, then produces updated KG embeddings via a graph
attention network [109]. Those embeddings are then fed into a language model alongside
per-token embeddings corresponding to those entities. The entire model is trained according
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to an MLM objective, plus entity category prediction and relation prediction (only on the
entity embeddings extracted from entity descriptions and fed through the GCNN—not on
the raw entities within the contextualized text).

[21] Biomedical NLP; BERT-MK introduces a transformer-based subgraph summarization net-
work that produces entity embeddings for dynamically chosen subgraphs of a given knowl-
edge graph. This network is trained via a contrastive triplet-validity objective. These are
then fused with per-token embeddings in free-text based on apriori entity-token matching
(i.e., named entity recognition and linking must be performed first and separately before
using this model).

[37] General domain NLP; Coke is similar to ERNIE [36], JAKET [23], and BERT-MK [21]
in that it aggregates entity information by leveraging a GCNN over a restricted dynamic
context KG based on token-entity mentions then integrates those augmented embeddings
into the per-token embeddings of a BERT-style pretrained model (similar to JAKET and
BERT-MK), but also leverages the denoising entity autoencoder task of ERNIE [36]. In
addition, in the variant of COKE derived from the BERT model, COKE also employs the
next-sentence prediction task introduced in BERT [35].

[41] Medical domain NLP; SMedBERT leverages a complex, multi-faceted loss including MLM,
Sentence-order prediction SOP (as introduced in, e.g., ALBERT [40]), and includes per-
token KG information by aggregating token embeddings across KG embeddings (produced
via trans-H [110]) corresponding to matching entities and the neighbors of matching enti-
ties in the KG. They also include relation and entity masking variations to ensure the PT
model learns per-token information corresponding to the KG. This method bares similarity
to Coke [37] and JAKET [23]. However, unlike Coke and JAKET, SMedBERT realizes the
entity/neighbor matching via a geometric objective, which results in an explicit per-token
knowledge graph alignment.

[49] General domain NLP; Dict-BERT focuses on augmenting BERT by concatenating defini-
tions of rare words via a per-token KG integration. They add two additional tasks atop the
traditional MLM task. First, a task maximizing the mutual information between a masked
rare word (treated as a named entity) and its definition (represented as the per-token em-
bedding of the first mention of the entity in the concatenated definition). Second, a task
discriminating valid rare word definition per-sequence embeddings from non rare-word def-
inition embeddings via a classification objective.

[44] Sentiment Analysis; SentiLARE integrates sentiment analysis and labels into pre-training
by including word polarity signals during masked language modelling and embedding and
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augmenting pre-training with a supervised sentence sentiment prediction. Word polarities
are determined via an external knowledge base integrated at the per-token level.

[38] Dialogue Modelling; SPIDER augments traditional MLM and NSP pre-training with two
tasks specific to dialogue modelling: first, utterance order prediction, in which individual
utterances (which are nested within a larger sample) are shuffled and the true order is pre-
dicted, and a geometric task ensuring that subject, verb, object triples from the utterances
obey a geometric relationship inspired by KG embedding methods.

A.5 Language modelling & Graph link-prediction realized as single-task
classification

These methods all employ some variant of a graph link-prediction task over their data. However,
they all realize this link prediction task not by enforcing any relationship between independent
sample embeddings but rather by concatenating samples corresponding to linked (or unlinked,
for negative samples) pairs of vertices in the source graph, then framing the learning problem as
a binary or multi-class classification problem over the (now concatenated) single output whole
sample embedding. In doing so, they transform the task from one that implies a deep geometric
constraint over the output latent space to one that only enforces an intra-sample objective and
imposes only a shallow geometric constraint on the per-sample latent space.

[35] General domain NLP; Masked language model plus the binary classification of whether the
input text block is sequentially consistent, with samples chosen via true positive pairs vs.
randomly joined sentences. This can be seen as a link prediction task over a graph consisting
of independent, disconnected “sticks”, with each stick corresponding to sentences in the
documents in the corpus, in sequential order.

[40] General domain NLP; Masked language model plus the binary classification of whether the
input text block is sequentially consistent, with samples chosen via true positive pairs vs.
reordered positive sentence pairs. This can be seen as a link prediction task over a directed
graph consisting of independent, disconnected “sticks”, with each stick corresponding to
sentences in the documents in the corpus, in sequential order, with edge direction indicating
sequential ordering.

[50] General domain NLP; Masked language model plus the classification of whether the input
text block contains sentences from either (1) random documents, (2) a sequentially consistent
pair within a single document, or (3) within a pair of sentences within two linked documents
according to a document linking graph G. This can be seen as a link prediction/edge clas-
sification task over a graph whose nodes are text blocks in the corpus, with two distinct
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edge modalities. First, to capture sequential consistency within a document, one edge type
produces a set of independent, disconnected “sticks”, with each stick corresponding to sen-
tences in the documents in the corpus, in sequential order. Second, to capture the document
linking graph G, sentences in a document Di are all linked to all sentences in a document
Dj if and only if documents i and j are linked in G.

[39] General domain NLP; While this model incorporates an interesting per-token syntatic knowl-
edge distillation procedure, at a per-token level it merely leverages BERT’s NSP loss [35].

A.6 Language modelling & Single-task Classification
[45] Protein sequences; Masked language model plus the multi-class classification of to which

protein family an input sequence belongs. Uses non-standard whole-sequence embedding
procedure (no [CLS] token).

[51] General domain NLP; StructBERT includes masked language modelling, a token permuta-
tion language modelling task, and an extended version of the NSP/SOP task at a per-sample
level.

A.7 Language modelling & Multi-task Classification
[42] General domain NLP; Masked language model plus multi-task classification across various

NLP tasks.

[43] Graph data; This model uses a masked imputation task similar to a masked language model
and a highly multi-task supervised whole-graph level prediction. On this non-NLP domain,
[43] finds that the multi-task whole-graph level task is essential for performance.

[46] EHR Timeseries data; This model uses a masked imputation task similar to a masked lan-
guage model over time series data and a multi-task supervised whole-sequence prediction
task. On this non-NLP domain, [46] finds the multi-task whole-sequence level task essential
for performance.

A.8 Language modelling & whole-sample graph-based contrastive objec-
tives

[68] General domain NLP; KEPLER augments traditional MLM on text samples with a con-
straint ensuring the (per-sample) embeddings of entity descriptions pulled from pre-specified
knowledge graphs (KGs) reflect geometric constraints, leveraging the [111] geometric con-
straints. As we will see in our theoretical analyses, these constraints are much more restric-
tive on the latent space geometry and thus imply a greater encoding of domain knowledge
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in the model. Note that JAKET [23] also leverages entity descriptions in its per-token en-
coding. However, these descriptions are (1) extracted via per-token embeddings, using the
first mention of the token, not whole-sample embeddings, and (2) integrated back into the
original text in a per-token manner, not optimized over directly via geometric constraints as
in KEPLER.

[69] Molecules; CK-GNN designs a pre-training scheme for molecular graphs in which a molec-
ular GNN is trained to produce molecule embeddings that obey the similarity structure of a
1-NN graph in a cluster-limited molecular fingerprint space (using the Dice similarity coef-
ficient). Unlike the NLP approaches, this method has no intra-sample (i.e., per-token, where
here “token” refers to individual atoms within the molecular graph) pre-training task.

[70] Multi-lingual NLP; Much like KEPLER, XLM-K augments traditional MLM with two tasks
that constrain the geometry of the per-sample latent space via a (now multi-lingual) graph of
entity descriptions linked to sentences containing said entities. Like KEPLER, as the graph
connections here are defined only for entity descriptions and not all free-text, the latent space
regularization is only over a limited slice of the space.

[71] General domain NLP/IR; WebFormer designs a pre-training scheme leveraging the structure
of DOM trees in HTML pages to impose multiple per-sample and per-sample/per-token
hybrid constraints that encourage individual samples to be (a) close to noised versions of
themselves based on reordering or masking and (b) to be close to representations of their
parent/child nodes in the DOM tree, thus imposing a structural penalty geometrically. By
mixing per-sample and per-token tasks, WebFormer even more closely entangles the per-
sample and per-token latent spaces in their model, and this approach bears closer study in
other contexts.

A.9 Language modelling & whole-sample augmentation/noising based con-
trastive objectives

[60] General domain NLP; InfoWord incorporates an objective alongside masked language mod-
elling which pushes the whole-sample embedding of a sentence to have high mutual in-
formation with various sub-contexts within that sentence and low mutual information with
sub-contexts of other sentences.

[56] General domain NLP; DeCLUTR optimizes for masked language modelling alongside a con-
trastive objective comparing anchor spans to positive spans chosen from within individual
samples, contrasted against spans from other samples. This is considered “whole-sample”
rather than a per-token contrastive loss as the embeddings of the spans (which can be quite
long) are produced via a canonicalized pooling operation used for sentence embeddings.
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[57] General domain NLP; CLEAR optimizes for masked language modelling alongside a con-
trastive objective powered by per-sentence noising strategies, including word or span dele-
tion, reordering, and synonym substitution.

[59] General domain NLP; COCO-LM builds on other discriminative language modelling vari-
ants such as ELECTRA [9] by adding two additional tasks. First, a true language modelling
task atop the auxiliary-model-driven corrupted input text. Second, a contrastive objective
pushing corrupted sentences towards their un-corrupted originals and those derived from
distinct sentences farther apart.

[62] General domain NLP; Semantic re-tuning via contrastive tension adds a pre-training objec-
tive onto language model pre-training. This is done to encourage the final per-sample repre-
sentations of a single sentence embedded via two otherwise independently trained models to
be similar and those of different sentences to be distinct.

[54, 55, 58, 61, 67] Networks; KCL,GraphCL, JOAO, MICRO-Graph and GCC use augmentation-
based contrastive learning pre-training methods for network datasets. KCL is notable as
it is (1) specialized for molecular graphs and (2) uses a knowledge-derived augmentation
strategy that constructs a knowledge enriched version of an input molecular graph as its
“augmentation policy.” MICRO-Graph is also notable as its contrastive objective compares
a graph to dynamically clustered “motif” subgraphs from within said graph as positive pairs.

[66] General domain NLP; GLM integrates a per-token KG through traditional entity masking
(albeit with an improved selection mechanism) and a per-sample contrastive objective that
uses the entity knowledge graph to generate distractor negative samples for the contrastive
learning task.

[63] General domain NLP & Computer Vision; CAPT proposes a noising based contrastive learn-
ing loss in substitution for the masked language modelling loss of BERT. They employ no
per-token pre-training task.

[64] Protein Sequences/Structures; GearNet introduces a vehicle for pre-training not over pro-
tein sequences, but rather over protein structures, realized as graphs. They combine intra-
sample/per-amino-acid tasks, including prediction of masked node features and prediction
of geometric relationships between nodes as implied by the protein graphs, and a per-sample
noising based contrastive objective.
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A.10 Language modelling & multi-modal or multi-lingual contrastive ob-
jectives

Note that by viewing multiple data modalities as “augmentations” of the data samples, one can
realize these methods (in general) as examples of augmentation-based contrastive learning objec-
tives, such as those used in [92]. However, as these methods are common, we highlight them
explicitly here.

[65] General domain NLP; InfoXLM focuses on multi-lingual pre-training, and leverages per-
token tasks. This includes multi-lingual masked language modelling and translation lan-
guage modelling (i.e., variations on a traditional masked language modelling task). It also
incorporates a cross-lingual per-sample contrastive objective that aligns the geometry of the
latent spaces across distinct languages. One important nuance is that they use different layer
depths to define the latent space for their cross-lingual contrastive objective vs. their per-
token objectives, which is not natively describable in our framework. In addition, as each
monolingual corpus lacks any rich, independent per-sample task, any individual monolingual
latent space cannot be guaranteed to have any rich structural constraints.

A.11 Language modelling alone with relationally-concatenated samples
These methods concatenate samples together before processing them with a pre-training encoder
based on inter-sample relations. This is an orthogonal direction to adding greater per-sample de-
pendencies to pre-training methods than our framework but warrants commentary nonetheless.

[19] Protein sequences; MSA transformers extend protein-sequence language models such that
they do not take in as input a single sequence but rather an entire multiple-sequence align-
ment (MSA) profile. These profiles consist of many sequences corresponding to evolutionary
homologs of the same protein. This concatenated input is processed via a sparsified form of
axial self-attention, which enables cross-attention between the various aligned sequences.
They impose no per-sequence tasks by default in this architecture.

[29] General domain NLP; This theoretical analysis shows that transformers cannot model de-
pendencies between sentences that never appear in the same example during pre-training. To
combat this, they propose concatenating samples via inter-sample relations (in particular, via
a kNN method) at pre-training time, enabling a greater diversity of cross-attention contexts
during pre-training vs. fine-tuning. Thus, while they only use language modelling during
pre-training, they speculate that their sample-augmentation procedure helps the model better
reason about per-sample information through per-token tasks.

[27] General domain NLP; CDLM proposes to concatenate multiple related documents (lever-
aging categorical information to cluster documents) together into a single sample prior to
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performing traditional masked language modelling. To limit the model’s complexity, atten-
tion is restricted to intra-document for unmasked tokens but allowed to be global for masked
tokens.

[53] General domain NLP; REALM uses a latent variable model to learn a relevance score be-
tween input text spans and documents in an auxiliary document base. The top-k documents,
according to this relevance score, are then concatenated to the input prior to solving the
masked language modelling task used during pre-training. In this way, the model learns to
join relevant documents from an external knowledge base in accordance with which docu-
ments would most improve the masked language modelling objective. In addition, by learn-
ing this relevance score, the model introduces an implicit whole-sample structural constraint
on the latent space according to the unsupervised clustering induced by relevance assign-
ment.

A.12 Autoencoding & Unsupervised Clustering
[52] General domain NLP; MARGE deviates significantly from the norm by not employing any

form of language modelling or other forms of a per-token pre-training task. Instead, it em-
ploys only a per-sample contextualized autoencoding objective and an unsupervised per-
sample retrieval step (to provide context for said autoencoding). While this approach does
provide a deeper form of a per-sample structural constraint than many other approaches, it is
also implicit and has no mechanism for injecting domain knowledge. MARGE is also tested
solely on downstream tasks at the per-sample level, so it is unclear if this method would offer
reduced benefits for per-token downstream tasks.

A.13 Methods orthogonal to our framework
[112] KG-BART is a text-generation model that leverages per-token knowledge after a text-

encoder to enrich the generated text with information from a textual knowledge graph (in
a per-token manner). It is neither used for general pre-training nor does it leverage any
additional per-sample constraints.

[113] Text-based Knowledge Graphs; This work produces embeddings of nodes in KGs by com-
bining transformer-based text encodings with graph convolutional network KG embedding
methods, leveraging link prediction as the pre-training task. Entity descriptions / textual fea-
tures represent the individual nodes. Link prediction can be seen as inducing a geometric
constraint via the connectivity of the knowledge graph on whole-sample embeddings. How-
ever, given that relationships are used in encoding the data as well, GraphFormer cannot be
used in a context where KG links may not be observed at FT time. It should be seen not
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as a general text PT method but as an advanced KG embedding mechanism, so it does not
directly fall under our framework.

[114] KeLM (unrelated to KELM [115]) is a method for converting a free-text KG into textual
nodes so language modelling can be used over that corpus and is orthogonal to the methods
of pre-training.

[79] This paper is a method for populating a KG from free-text via BERT. It has no bearing on
incorporating structure or knowledge into PT and is irrelevant to our framework.

[116] This paper presents a method to drop redundant triples from a knowledge graph and a
regularization technique to limit the impact of added irrelevant knowledge to per-token
knowledge-enhanced PT methods such as ERNIE [36].

[117] Knowledge Graph Completion; KG-BERT is a method for knowledge graph completion in
which textual representations of entities and relations in KGs are embedded by fine-tuning a
pre-trained BERT style transformer for link prediction over a given KG. As this is only for
knowledge graph completion, it is orthogonal to our study of pre-trained models in general.

[118] Knowledge Graph Completion; Much like KG-BERT, SimKGC is a method for knowledge
graph completion that fine-tunes a BERT model via a contrastive loss over a fixed knowl-
edge graph for link prediction. Though their methodology overlaps with ours in that both
use variants of contrastive losses and SimKGC explores more complex negative sampling
strategies, the two methods are still very different. Ours is focused on general pre-training
and uses a single encoder and a unified latent space. In contrast, SimKGC is only examined
for KG completion and encodes head and tail entities via separate encoders.

[119] Event Extraction (EE); CLEVE designs a pre-training method specifically for event ex-
traction. Their pre-training method includes a text-encoder which includes a cross-event
contrastive loss pushing individual tokens from the same “event” closer together than those
from different events, which bears a surface similarity to our approach. In addition, they add
a graph encoder over the semantic structure of events. Their methodology is focused solely
on EE, which is orthogonal to our more general PT framework.

[120] General domain NLP and Computer Vision; ViLT is a method for pre-training aligned text-
image pairs. It leverages masked language modelling, an image-text matching binary clas-
sification objective, and a contrastive objective comparing image and text representations.
This multi-modal contrastive objective is very similar (insofar as it relates to our framework)
to those works that perform multi-lingual or other multi-modal contrastive methods. In ViLT,
however, the transformer architecture processes images and text jointly in a single encoder,
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so it is not well suited for use on only images or only text. This, combined with its focus on
computer vision, renders it orthogonal to our framework.

[121] General domain NLP and Computer Vision; StructuralLM proposes a new method of pre-
training for scanned documents that takes advantage of the structure of the document w.r.t.
images and text simultaneously. As their focus is on cross-modal pre-training of text and
image alignment, it is orthogonal to our work.

[122] General domain NLP and Computer Vision; This paper proposes a framework for simul-
taneous (and continuous) discovery of edges in a multi-modal knowledge graph and the
leveraging of that knowledge graph to inform representation learning. However, it is not
suitable for our framework for two reasons. First, like ViLT, it is focused on image-text
alignment pre-training. Second, when producing node (e.g., images or text snippets) rep-
resentations, it requires connectivity information in the associated multi-modal knowledge
graph. In contrast, our methods take as input only elements from X .

[123] Named Entity Linking; SapBERT is a method for aligning the output of a pre-trained lan-
guage model with a per-token knowledge graph through a metric learning loss applied at a
per-sample level but only over entity names (not even entity descriptions). As it applies this
as a secondary, post-PT stage, and this method only optimizes for alignment between entity
names and a static KG, it is not a general PT framework. It is thus orthogonal to our efforts
here.

[124] Information Retrieval; HARP is a method for specializing pre-training towards ad-hoc
query information retrieval. They introduce four retrieval-specific pre-training tasks lever-
aging hyperlinks in Wikipedia articles in addition to traditional masked language modelling.
Rather than using the raw text of the hyperlinks or the per-sample representations of text
spans containing hyperlinks, both of which are explored in [125], these authors use attention
weights to extract various “queries” from the underlying text and match those against possi-
ble destination pages via contrastive losses. This, therefore, does not impose a constraint on
the latent space over the original pre-training dataset X (but instead introduces a new latent
space consisting of query spans) and is further specialized exclusively for ad-hoc retrieval
tasks.

[126] Node Embedding for Heterogeneous Graphs; CPT-HG is a contrastive pre-training frame-
work to embed nodes in a heterogeneous network. Unlike in our setting, where the pre-
training graph GPT is only used as an implicit input to derive the loss function, in CPT-HG
the graph (with entire edge connectivity information) is the input to the problem. Thus,
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node embeddings will rely on connectivity information, which is not permissible in our pre-
training context. So, this method is orthogonal to our study here.

[127] Expert Matching; CODE is a method specifically and exclusively designed to discover ap-
propriate experts in an employment/contracting setting and is thus orthogonal to our frame-
work, which is focused on more general pre-training.

A.14 Methods that only change things at FT time
[128] Biomedical domain NLP; MOP does not change anything at PT time but trains sub-KG

adapters on entity recognition tasks prior to FT to infuse entity knowledge into the PT
method. It is a per-token pre-training method.

[129] General domain NLP; K-BERT, at PT time, is actually equivalent to BERT [35]. However,
it does do other interesting things at FT time, including augmenting the sentence flow with
injected per-token knowledge graphs and limiting self-attention to only flow along links
supported by the original sentence or the injected knowledge. However, as this is only true
at FT time, it is equivalent to BERT at PT time.

[130] General domain NLP; This model, at PT time, is equivalent to BERT [35]. Like [129].
However, it specializes in a fine-tuning procedure for sentence information retrieval tasks,
similar to how PT is adapted in this framework.

[131] General domain NLP; ConSERT adds an auxiliary specialization stage after pre-training
to fine-tune sentence representations. This new stage imposes a SimCLR [132] style data-
augmentation/noise-invariance based contrastive learning objective, using adversarial per-
turbations, token shuffling, token/feature/span erasure, and dropout noising methods.

[133] General domain NLP; IS-BERT does not modify anything from traditional BERT at pre-
training time. However, they add a second PT stage to optimize sentence representations
alone using an auxiliary feature extractor in the form of various CNNs applied atop BERT
token representations. The final sentence representation is trained to maximize mutual infor-
mation with various sub-contexts within the sentence but low mutual information with other
sentences. In this second pre-training stage, there is no language modelling performed. As
this approach only adapts an auxiliary featurizer to produce sentence encodings and is not
intended for general transfer learning, it is inappropriate for our framework. A similar work
that integrates both components during pre-training, and thus is relevant in our work is [60]
and is discussed above.

[115] General domain NLP; KELM does not modify PT objective but instead enhances a model
at FT time by injecting per-token knowledge via a GNN module atop the pre-trained LM
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embeddings via a unified text-entity graph. It is similar to KBERT [129] in this way but
resolves other issues with that approach relating to knowledge ambiguity and by supporting
multi-hop reasoning, again over the per-token embeddings.

[134] General domain NLP; KI-BERT augments BERT with KG-specific information via joint
token-entity embeddings and information fusion but does this only at FT time.

[135] General domain NLP; K-XLNet introduces a secondary FT stage in which knowledge injec-
tors throughout an XL-Net architecture are further trained to leverage knowledge (encoded
via free-text entity descriptions) that is injected into input sentences alongside matched to-
kens. It does not modify the XL-Net PT stage at all.

[136] General domain NLP; K-Adapter proposes to pre-train various knowledge adapters that
can be used alongside a pre-trained language model at a fine-tuning time. Thus, while there
is a pre-training process for the adapters, this process does not modulate the original pre-
trained language model. In addition, both adapters pre-trained in this work are based on per-
token knowledge graphs; one leverages concatenated entity embeddings to perform relation
classification, and another predicts which token in the sentence is the “head” in a dependency
parse tree, so no per-sample constraints are applied.

[137] General domain NLP; E-BERT injects per-token knowledge into BERT by first aligning
embeddings of a knowledge graph with the input word piece embedding space of a (fixed,
pre-trained) BERT model, then using various strategies to input them alongside their source
mentions in FT text. They do no additional pre-training, so this model only affects the model
at FT time.

[138] General domain NLP; [138] augment LMPT methods with an additional, pre-FT procedure
in which the model is further trained using a supervised, per-sample metric learning task
leveraging FT labels directly to form the classes used for metric learning. They do not mate-
rially change the task-independent PT procedure, though their FT metric learning procedure
does induce some structure at the per-sample level.

[139] QA; GreaseLM is a method for fusing information from knowledge graphs into pre-trained
language models. It shares many similarities with methods that do this for pre-training pur-
poses, such as JAKET [23], CokeBERT [37], SMedBERT [41], and Bert-MK [21]. However,
unlike these methods, it only employs these techniques at the fine-tuning time, for question
answering tasks specifically. As it is not focused on general pre-training, it is outside our
scope.
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[140] Language modelling; kNN language models improve the text generation powers of lan-
guage models by augmenting traditional decoding with a nearest-neighbor lookup operation
over a text datastore leveraging the embeddings of a token’s leftward context by the language
model to judge nearest neighbors. However, it involves no additional language model train-
ing and can only be applied at the fine-tuning time to aid in text generation, and is thus out
of our scope.

[141] Sentence embedding; NT-Xent proposes a secondary specialization stage after pre-training
only for generating sentence embeddings. To do this, they employ a contrastive objective
contrasting the final CLS embeddings of an updating, specialized BERT model against a
pooled aggregate of the per-token embeddings across all layers of the pre-trained BERT
model used to initialize the specialized sentence embedding model.

[73, 142, 143] Sentence Embedding; These methods propose to use unsupervised per-sample smooth-
ing operations (a normalizing flow network in [73] and a mean/covariance standardization
whitening operation in [142, 143]) on the per-sample embeddings after pre-training in order
to produce higher quality per-sample embeddings.

[92] General domain NLP; SimCSE extends traditional MLM by imposing a second pre-training
stage for optimizing sentence embeddings. In this stage, SimCSE optimizes the transformer
such that the whole-sample embeddings satisfy either a supervised or unsupervised con-
trastive learning objective. In the supervised case, this is based on labeled sentence pairs
according to a Natural Language Inference (NLI) task, with entailment pairs being treated
as positives and contradiction pairs as hard negatives. In the unsupervised case, this is based
solely on applying multiple dropout masks to the same sentence to generate positive pairs.
Any two distinct sentence inputs are treated as negative samples. This extra pre-training
stage is applied to a relatively small number of samples (106) relative to the entire PT cohort,
which may help prevent catastrophic forgetting of the original pre-training objective.

[144] Academic NLP; SPECTER extends traditional language model pre-training by imposing a
second pre-training stage for optimizing document embeddings (realized as [CLS] token
embeddings of concatenated academic paper titles and abstracts). This stage uses a triplet-
based geometric loss to ensure that these per-sample embeddings reflect the structure of a
pre-specified citation network. This is a form of an explicit, structural constraint; however,
they do not ever test fully fine-tuning the SPECTER model in their paper and only compare it
against other, frozen pre-trained language models. This is likely to have a significant impact
on model comparisons. Similar to SimCSE [92], this extra pre-training stage is applied to
a small number of samples (146K documents) to help prevent catastrophic forgetting of the
original pre-training objective.
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[125] General domain NLP; This paper introduces a second pre-training stage after multi-lingual
masked language modelling. In this second stage, hyperlinks in the source text (drawn from
Wikipedia) are matched via single-task classification to a curated set of destination URL cat-
egories, collapsing all URLs pointing to the same Wikipedia page across languages into one.
They do this classification in several ways, including incorporating the per-sample repre-
sentation of the text span rather than merely the hyperlink token representations themselves
(likely motivated by the likelihood of only a single hyperlink being present in the source
text). We can realize this task as instances of several other common paradigms: (1) Single-
task classification applied to the per-sample representation, (2) link prediction in a graph
linking cross-lingual Wikipedia pages together, or (3) as an example of named entity recog-
nition. This second stage is only allowed to modify the last two layers of the transformer
architecture, which may be a vehicle to prevent catastrophic forgetting.

[145] Sentiment Analysis; SAKG-BERT augments a pre-trained language model with a sentiment-
analysis knowledge graph at the fine-tuning time only by concatenating relevant relationships
from the KG based on sentiment-laden terms appearing in the review to the raw input text.
They do not otherwise change the pre-training or fine-tuning process.
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