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Biological networks are powerful representations for the discovery of molecular phenotypes. Fun-
damental to network analysis is the principle—rooted in social networks—that nodes that interact in
the network tend to have similar properties. While this long-standing principle underlies powerful
methods in biology that associate molecules with phenotypes on the basis of network proximity,
interacting molecules are not necessarily similar, and molecules with similar properties do not nec-
essarily interact. Here, we show that molecules are more likely to have similar phenotypes, not if
they directly interact in a molecular network, but if they interact with the same molecules. We call
this the mutual interactor principle and show that it holds for several kinds of molecular networks,
including protein-protein interaction, genetic interaction, and signaling networks. We then develop a
machine learning framework for predicting molecular phenotypes on the basis of mutual interactors.
Strikingly, the framework can predict drug targets, disease proteins, and protein functions in differ-
ent species, and it performs better than much more complex algorithms. The framework is robust
to incomplete biological data and is capable of generalizing to phenotypes it has not seen during
training. Our work represents a network-based predictive platform for phenotypic characterization
of biological molecules.
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1. Introduction

Molecules in and across living cells are constantly interacting, giving rise to complex biological
networks. These networks serve as a powerful resource for the study of human disease, molecular
function and drug-target interactions.1,2 For instance, evidence from multiple sources suggests that
causative genes from the same or similar diseases tend to reside in the same neighborhood of protein-
protein interaction networks.3–6 Similarly, proteins associated with the same molecular functions
form highly-connected modules within protein-protein interaction networks.7

These observations have motivated the development of bioinformatics methods that use molec-
ular networks to infer associations between proteins and molecular phenotypes, including diseases,
molecular functions, and drug targets.8–11 Many of these methods assume that molecular networks
obey the organizing principle of homophily: the idea that similarity breeds connection (see Figure
1b).12 However, while this principle has been well-documented in social networks of many types
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(e.g. friendship, work, co-membership), it is unclear whether it captures the dynamics of biological
networks. If not, existing bioinformatics methods that assume homophily may not realize the full
potential of biological networks for scientific discovery.

To better understand the place for homophily in bioinformatics, we consider groups of pheno-
typically similar molecules (e.g. molecules associated with the same disease, involved in the same
function, or targeted by the same drug) and study their interactions in large-scale biological net-
works. We find that most molecules associated with similar phenotypes do not interact directly in
molecular networks, a result which puts into question the assumption of homophily, an assumption
that is taken for granted by so many bioinformatics methods.

In fact, a different principle better explains how phenotypic similarity relates to network struc-
ture in biology. On average, two molecules that interact directly with one another will have less in
common than two molecules that share many mutual interactors, just as people in a social network
may share mutual friends. We call this the mutual interactor principle and validate it empirically on
a diverse set of biological networks (see Figure 1c).

Motivated by our findings, we develop a machine learning framework, Mutual Interactors, that
can predict a molecule’s phenotype based on the mutual interactors it shares with other molecules.
We demonstrate the power, robustness, and scalability of Mutual Interactors on three key prediction
tasks: disease protein prediction, drug target identification, and protein function prediction. With ex-
periments across three different kinds of molecular networks (protein-protein interaction, signaling
and genetic interaction) and four species (H. sapiens, S. cerevisiae, A. thaliana, M. musculus), we
find that Mutual Interactors substantially outperforms existing methods, with gains in recall up to
61%. Additionally, we show that the weights learned by our method provide insight into the func-
tional properties and druggability of mutual interactors.

Mutual Interactors is an approach based on a different network principle than existing bioinfor-
matics methods. That it can outperform state-of-the-art approaches suggests a need to rethink the
fundamental assumptions underlying machine learning methods for network biology.

2. Network connectivity of molecular phenotypes

One way we measure phenotypic similarity between two molecules is by comparing the set of pheno-
types (e.g., diseases or functions) associated with each molecule and quantifying their similarity with
the Jaccard index. We find that the average Jaccard index of the 62,084 molecule pairs that interact
in the human reference interactome (HuRI) is significantly smaller than the average Jaccard index
of the 62,084 molecule pairs with most degree-normalized mutual interactors (p = 2.00 ⇥ 10�59,
dependent t-test).13 We replicate this finding on three other large-scale interactomes: a PPI net-
work derived from the BioGRID database14 (p = 3.56 ⇥ 10�26) another derived from the STRING
database15 (p = 1.29⇥ 10�10) and the PPI network compiled by Menche et al. (p = 1.02⇥ 10�4).16

To further evaluate these two principles (i.e., homophily and Mutual Interactor), we collect
75,744 disease-protein associations17 and analyze their interactions in the protein-protein interac-
tion network (see Figure 1d-f and Figure D4). For each disease-protein association we compute the
fraction of the protein’s direct interactors that are also associated with the disease. In only 17.8%
of disease-protein associations is this fraction statistically significant (P < 0.05, permutation test).
Moreover, in 46.5% of disease-protein associations, the protein does not interact directly with any

3DFLILF�6\PSRVLXP�RQ�%LRFRPSXWLQJ�����

��



vzu

z

v
z

u

Learned weight for proteinNode degree of protein 

Learning Mutual Interactors

ba

gKetonemia-associated protein Protein-protein interaction

BCKDHBSLC37A4

GCDH

MLYCD
PHKG2

PHKA2

FBP1

DBT

BCKDHA

Protein-protein interaction network

e f

d

Social interaction networks

Direct interactors (Friendship principle)

Protein-protein interaction networks

Mutual interactors

Predicted ketonemia proteinMutual interactor

GCDH

MLYCD
PHKG2

PHKA2

FBP1

DBT

BCKDHA

BCKDHBSLC37A4

GCDH

MLYCD
PHKG2

PHKA2

FBP1

DBT

BCKDHA

PCCA

? ?

c

Ketonemia-associated protein Mutual interactorDirect interactor

Insulin resistant diabetes

D
is

e
a
s
e
s

Mutual interactors

p-value = 0.0058 

Random

Mutual interactors

Direct interactors

P
ro

te
in

-d
is

e
a

s
e

a
s
s
o

c
ia

ti
o

n
s

Statistical significance, p-value

>

57,106

 45,393

1000

Myeloid leukemia

D
is

e
a
s
e
s

Mutual interactors

p-value < 0.0001 

Fig. 1: The mutual interactor principle. (a) The human protein-protein interaction (PPI) network with proteins associated with ketonemia highlighted (in red). (b)

Schematic illustration of the friendship principle (i.e., network homophily12) in a social network of five individuals. (c) Schematic illustration of the mutual interactor
principle in a PPI network. According to the mutual interactor principle, the grey protein is likely associated with ketonemia because it interacts with the same proteins as
a known ketonemia protein (in red); the two proteins share four mutual interactors (in blue). (d) Comparison of mutual interactors and direct interactors as principles of
disease protein connectivity in a human PPI network. For 75,744 disease-protein associations, the statistical significance (p-value) of the mutual interactor score (in blue)
and the direct interactor score (in red) is computed and plotted for comparison (see Section B.3). We calculate the average mutual interactor score of proteins associated
with (e) insulin resistant diabetes and (f) myeloid leukemia (see Section B.3). (e-f) The observed mutual interactor scores (in blue) are significantly larger than random
expectation (in grey).

other proteins associated with the same disease. For each disease-protein association, we also com-
pute the degree-normalized count of mutual interactors between the protein and other proteins as-
sociated with the disease. We call this the association’s mutual interactor score (see Section B.3).
In 31.0% of disease-protein associations, this score is significant (permutation test, P < 0.05). For
other molecular phenotypes, we get similar results: proteins targeted by the same drug have a sig-
nificant direct interactor score 35.1% of the time and a significant mutual interactor score 67.5% of
the time (see Figure 3b).18 In only 31.0% of the protein-function associations in the Gene Ontology
is the direct interactor score significant, compared with 56.7% for the mutual interactor score (see
Figure D1a).19 For biological processes in the Gene Ontology, these fractions are 26.7% and 46.3%
for the direct and mutual interactor scores, respectively (see Figure D1b). These results suggest that,
in biological networks, there is more empirical evidence for the Mutual Interactor principle than
there is for the principle of homophily.
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3. Mutual Interactors as a machine learning method for predicting molecular phenotypes

Based on the mutual interactor principle, we develop a machine learning method for inferring as-
sociations between molecules and phenotypes. Below, we describe how our method can predict
disease-protein associations using the protein-protein interaction network.

In network-based disease protein prediction, the objective is to discover new disease-protein as-
sociations by leveraging the network properties of proteins we already know to be involved in the
disease. Our method, Mutual Interactors, scores candidate disease-protein associations by evaluat-
ing the mutual interactors between the candidate protein and other proteins already known to be
associated with the disease. Rather than score candidate disease-protein associations according to
the raw count of these mutual interactors, our method learns to weight each mutual interactor differ-
ently. Intuitively, this makes sense: the significance of a mutual interactor depends on it’s profile. For
example, that two proteins both interact with the same hub-protein is probably less significant than
two proteins both interacting with a low-degree signalling receptor. Rather than hard-code which
mutual interactors we deem significant, through training on a large set of disease pathways, Mutual
Interactors learns which proteins often interact with multiple proteins in the same disease pathway.
Mutual Interactors maintains a weight wz for every protein z in the interactome. This allows Mutual
Interactors to down-weight spurious mutual interactors when evaluating a candidate association.

To further ground our method, we consider its application to a specific disease pathway. Ketone-
mia is a condition wherein the concentration of ketone bodies in the blood is abnormally high.20,21

In Figure 1a, we show the Ketonemia pathway in the human protein-protein interaction network. In
red are the proteins known to be associated with Ketonemia, including MLYCD and BCKDHA.22,23

We see that Ketonemia-associated proteins rarely interact with one another. In Figure 1g, we show
the same network and disease pathway, but now we’ve highlighted in blue the mutual interactors
between Ketonemia-associated proteins. Of all 21,557 proteins in the human protein-protein inter-
action network, Mutual Interactors predicts that PCCA, shown in orange, is the most likely to be
associated with Ketonemia. PCCA is a protein involved in the breakdown of fatty acids, a process
which produces ketone bodies as a byproduct. PCCA shares mutual interactors with four proteins
known to be associated with Ketonemia: BCKDHA, DBT, FBP1, and MLCYD. Further, two of
these mutual interactors, MCEE and PCCB, are of very low degree (with 7 and 21 interactions
respectively) and are weighted highly by Mutual Interactors.

3.1. Problem Formulation
Though Mutual Interactors was motivated by the molecular phenotype prediction problem, it is a
general model that can be applied in any setting where we’d like to group nodes on a graph. Suppose
we have a graph G = {V,E} and a set of node sets S = {S1, S2, ..., Sk} where each set Si is a subset
of the full node set Si ✓ V . Note that the node sets need not be disjoint. For example, G could be
a PPI network and each Si could be the set of proteins associated with a different phenotype. We
can split each node set Si into a set of training nodes S̃i ⇢ Si and a set of test nodes Si � S̃i. Given
S̃i and the network G, we’re interested in uncovering the full set of nodes Si. Formally, this means
computing a probability Pr(u 2 S|S̃) for each node u 2 V .
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3.2. The Mutual Interactors model
The mutual interactors of two nodes u and v are given by the set Mu,v = N(u) \N(v), where N(u)

is the set of u’s one-hop neighbors. For each node z 2 V , Mutual Interactors maintains a weight
wz. As we discussed above, these weights are meant to capture the degree to which each node in the
graph acts as a mutual interactor in the node sets of S. With a weight wz for every possible mutual
interactor in the network, we model the probability that a query node u is in a full node set S given
the training set S̃ ✓ S as

Pr(u 2 S|S̃) = �

✓
a

✓X

v2S̃

1p
dvdu

X

z2Mv,u

wzp
dz

◆
+ b

◆
(1)

where du is the degree of node u, �(x) = 1
1+e�x is the sigmoid function, a is a scale parameter, b

is a bias parameter, and wz is a learned weight for node z. With sparse matrix multiplication we
can efficiently compute the probability for every node in the network with respect to a batch of
k training sets {S̃1, ..., S̃k}. Let’s encode training sets with a binary matrix X 2 {0, 1}k⇥n, where
xij = 1 if and only if j 2 S̃i. With X, we can efficiently compute the probability matrix P where
Pij = Pr(j 2 Si|S̃i) with

P = �(a(XD
� 1

2AWD
� 1

2AD
� 1

2 ) + b) (2)

where A is the adjacency matrix, D is the diagonal degree matrix and W is a diagonal matrix with
the weights wz on the diagonal. Note this formulation ignores any edge weights in the graph, future
work should explore simple extensions of this formulation that incorporate edge weights.

3.3. Training the Mutual Interactors model
Given a meta-training set of k node sets S = {S1, ..., Sk}, we can learn the model’s weights W,
a, and b that maximize the likelihood of observing the node sets in the meta-training set. During
meta-training we simulate node set expansion by splitting each set Si into a training set S̃i encoded
by X 2 {0, 1}m⇥n and a target set Si � S̃i encoded by Y 2 {0, 1}m⇥n. For each epoch, we randomly
sample 90% of associations for the training set and use the remaining 10% for the test set. The input
associations X are fed through our model to produce association probabilities P. We update model
weights by minimizing weighted binary cross-entropy loss

`(X,Y) =
mX

i=1

nX

j=1

�[↵pYij logPij + (1� Yij) log(1� Pij)] (3)

where ↵p is the weight given to positive examples. Since there are far more positive examples than
negative examples, we set ↵p =

# negative examples
# positive examples .

We can minimize the loss using a gradient-based optimizer. First, we compute the gradient of
the loss with respect to model parameters via backpropagation. Then, we use ADAM with a learning
rate of 1.0. We train Mutual Interactors with weight decay 10�5 and a batch size of 200.24 We train
for five epochs and use 1

9 of the training labels as a validation set for early stopping.

4. Predicting disease-associated proteins with Mutual Interactors
We systematically evaluate our method by simulating disease protein discovery on 1,811 different
disease pathways. In ten-fold cross-validation, we find that Mutual Interactors recovers a larger frac-
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(f) Comparison of the degree-normalized Mutual Interactor weights of drug targets and non-targets. Shown
is the distribution of degree-normalized Mutual Interactor weights for 2,212 drug targets18 (in blue), and, for comparison, the distribution of degree-normalized Mutual
interactor weights for 2,212 random proteins that are not targets of any drug (in grey). (g) Mutual Interactor neighborhood for Arnold-Chiari (AC) malformation. The
neighborhood includes known disease proteins (red squares), Mutual Interactors’ top predictions (orange squares), and the mutual interactors between them (blue circles).
Mutual interactors are sized proportional to their learned Mutual Interactor weight, wz .

tion of held-out proteins than do existing disease protein discovery methods. Specifically, for 10.2%
of disease-protein associations our method ranks the held-out protein within the first 25 proteins in
the network (recall-at-25 = 0.102). Mutual Interactors’s performance represents an improvement of
60.9% in recall-at-25 over the next best performing method, random walks. Other network-based
methods of disease protein discovery including DIAMOnD10 (recall-at-25= 0.059), random walks26

(recall-at-25 = 0.063), and graph convolutional neural networks25 (recall-at-25 = 0.057) recover con-
siderably fewer disease-protein associations (see Figure 2a,c-d). Moreover, Mutual Interactors main-
tains its advantage over existing methods across disease categories: in all seventeen that we consid-
ered Mutual Interactors’s mean recall-at-100 exceeds random walks’ (see Section C.3 and Figure
C3). We also study whether Mutual Interactors can generalize to a new disease that is unrelated to
the diseases it was trained on. To do so, we train Mutual Interactors in the more challenging setting
where similar diseases are kept from straddling the train-test divide (see Section C.2 and Figure
C2). In this setting, Mutual Interactors achieves a recall-at-25 of 0.096, a 50.7% increase in perfor-
mance over the next best method, random walks. Mutual Interactors can naturally be extended to
incorporate other sources of protein data.27 In Section C.4, we describe a parametric Mutual Inter-
actors model that incorporates functional profiles from the Gene Ontology when evaluating mutual
interactors. Instead of learning a weight wz for every protein z, this model learns one scalar-valued
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function mapping gene ontology embeddings to mutual interactor weights. We show that paramet-
ric Mutual Interactors performs on par with the original Mutual Interactors model, outperforming
baseline methods by 45.5% in recall-at-25 (see Figure C4).

The experimental data we use to construct molecular interaction networks is often incomplete
or noisy: it is estimated that state-of-the-art interactomes are missing 80% of all the interactions in
human cells.16 In light of this, we test if our method is tolerant of data incomplete networks. We
find that Mutual Interactors exhibits stable performance up to the removal of 50% of known PPI
interactions. Mutual Interactors’s performance with only half of all known interactions exceeds the
performance of existing methods that use all known interactions (Figure 2b).

We perform an ablation study to assess the benefits of meta-learning mutual interactor weights
wz (see Figure D8 ). In the study, we compare our model with Constant Mutual Interactors where
wz = 1 8z. On tasks for which we have a large dataset of phenotypes (i.e. disease protein prediction
and molecular function prediction in humans), meta-learning wz improves performance by up to
16.6% in recall-at-25. However, on tasks for which data is scarce (i.e. drug-target prediction and
non-human molecular function prediction) learning wz does not provide a significant benefit. For
these tasks, we report performance on constant Mutual Interactors where wz = 1 8z.

Learned weights provide insight into the function and druggability of mutual interactors. Next
we analyze the mutual interactor weights learned by our method. Recall that Mutual Interactors
learns a weight wz for every protein z in the interactome. This allows Mutual Interactors to down-
weight spurious mutual interactors when evaluating a candidate disease-protein association. Here,
we study what insights into biological mechanisms these weights reveal. We find that normalized
Mutual Interactors weight wzp

dz
is correlated with neither degree (r = 0.0359) nor triangle clustering

coefficient (r = 0.0127) (see Figure D9). However, we do find that proteins with high weight are
often involved in cell-cell signaling. We perform a functional enrichment analysis on the 75 proteins
with the highest normalized weight wzp

dz
. Of the fifteen functional classes most enriched in these

proteins, ten including signaling receptor activity and cell surface receptor signaling pathway are
directly related to transmembrane signaling and the other five including plasma membrane part are
tangentially related to signaling (see Figure D6). Further, we find that highly-weighted proteins are
often targeted by drugs. Among the 500 proteins with the highest degree-normalized weight, 33.6%
are targeted by a drug in the DrugBank database.18 By contrast only 10.9% of proteins in the wider
protein-protein interaction network are targeted by those drugs. This represents a significant increase
(p  6.43 ⇥ 10�24, Kolmogorov-Smirnov test). Although no drug-target interaction data was used,
training our method to predict disease proteins gives us insights into which proteins are druggable.

5. Identifying drug targets with Mutual Interactors
The development of methods that can identify drug targets is an important area of research,30–33 in
this section we show how our method can also be used for this task. Recall that mutual interactors
between proteins targeted by the same drug are statistically overrepresented in the protein-protein
interaction network (see Figure 3a). Like with disease-protein associations, Mutual Interactors can
score candidate drug-target interactions by evaluating the mutual interactors between the candidate
target protein and other proteins already known to be targeted by the drug (see Section 3.1 for a tech-
nical description of the approach). When we simulate drug-target identification with ten-fold cross
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the direct interactor score (in red) is computed and plotted for comparison (see Section B.3). (a) (b) Drug target identification. Shown is mean recall-at-25 across 190
drugs. (c) The side-effect similarity of drugs29 (y-axis) is linearly related to the similarity of Mutual Interactors’ predictions for those drugs (x-axis). (d) Mutual Interactors
neighborhood for proteins targeted by Caffeine. The neighborhood includes caffeine-targeted proteins (red triangles), Mutual Interactors’ top predictions for novel caffeine
targets (orange triangles), and the mutual interactors between them (blue circles). Mutual interactors are sized proportional to their learned Mutual Interactors weight, wz

(see 3.1). (e) The fraction of a drug’s targets recovered within the top 25 predictions (recall-at-25) vs. the maximum Jaccard similarity between the drug’s targets and targets
of other drugs in the training set used for machine learning. Bars indicate average recall-at-25 in each bucket.

validation on the drugs and targets in the DrugBank database,18 we find that our method outperforms
existing network-based methods of drug-target identification (recall-at-25=0.374), including graph
neural networks (recall-at-25=0.329) and random walks (recall-at-25=0.166). We also compare Mu-
tual Interactors with probabilistic non-negative matrix factorization (NMF).30–32 On aggregate, our
method’s performance is comparable to NMF’s. However, on the hardest examples, drugs that share
few targets with the drugs in the training set, our method (recall-at-25=0.381) significantly out-
performs NMF (recall-at-25=0.006) (see Figure 3e). Further, our method provides insight into the
side-effects caused by off-target binding. For each drug in DrugBank, we use Mutual Interactors to
identify potential protein targets that are not already known targets of the drug. Pairs of drugs for
which our method makes similar target predictions tend to have similar side effects34–37 (Figure 3c).
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Fig. 4: Predicting protein functions across species and molecular networks using mutual interactors. Overall protein function prediction performance across four
species and six molecular networks. We predict Molecular Function Ontology38 terms using PPI, signaling, and genetic interaction networks for human, yeast S. cerevisiae,
mouse M. musculus, and thale cress A. thaliana. We show average maximum F -measure.39 A perfect predictor would be characterized by Fmax = 1. Confidence intervals
(95%) were determined using bootstrapping with n = 1,000 iterations. N – number of nodes, M – number of edges, <k> – average node degree.

6. Predicting molecular function across species and molecular networks

Molecules associated with the same molecular function (e.g., RNA polymerase I activity) or involved
in the same biological process (e.g., nucleosome mobilization) tend to share mutual interactors in
molecular networks of various type and species (see Figure D1a-b). For example, the eleven proteins
involved in the formation of the secondary messenger cAMP (cyclase activity, GO:0009975) do
not interact directly with one another in the protein-protein interaction network, but almost all of
them interact with the same group of twenty-five mutual interactors (see Figure D3). Using the
Mutual Interactor principle, we can predict the molecular functions and biological processes of
molecules. Via ten-fold cross validation, we compare Mutual Interactors to existing methods of
molecular function prediction, including Graph Neural Networks40 and Random Walks.26 Across all
four species and in three different molecular networks (protein-protein interaction, signaling, and
genetic interaction), we find that Mutual Interactors is the strongest predictor of both molecular
function (see Figure 4) and biological process (see Figure D2).

7. Conclusion

This work demonstrates the importance of rooting biomedical network science methods in princi-
ples that are empirically validated in biological data, rather than borrowed from other domains. This
need for more domain-specific methodology in biomedical network science is also demonstrated
by Kovács et al., who find that social network principles do not apply for link prediction in PPI
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networks.41 This study complements these findings: with experiments across three different kinds of
molecular networks (protein-protein interaction, signaling and genetic interaction), and four species
(H. sapiens, S. cerevisiae, A. thaliana, M. musculus) we show that a method designed specifically for
biological data can better predict disease-protein associations, drug-target interactions and molecular
function than can general methods of greater complexity. The power of Mutual Interactors to pre-
dict molecular phenotypes lies not in it’s algorithmic complexity—it outperforms far more involved
methods—but rather in the simple, yet fundamental, principle that underpins it. Motivated by our
findings that molecules with similar phenotypes tend to share mutual interactors, we formalize the
Mutual Interactor principle mathematically with machine learning. Mutual Interactors is fast, easy
to implement, and robust to incomplete network data—its foundational formulation makes it ripe
for extension to new domains and problems.

Supplementary Material and Code. Supplementary materials are available online at: https:
//cs.stanford.edu/people/sabrieyuboglu/psb-mi.pdf. Code is available online
at: https://github.com/seyuboglu/milieu.
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