
Full-Atom Protein Pocket Design via
Iterative Refinement

Zaixi Zhang1,2,4, Zepu Lu1,2, Zhongkai Hao3, Marinka Zitnik4, Qi Liu1,2∗
1 Anhui Province Key Lab of Big Data Analysis and Application,

School of Computer Science and Technology, University of Science and Technology of China
2 State Key Laboratory of Cognitive Intelligence, Hefei, Anhui, China

3 Dept. of Comp. Sci. and Tech., Institute for AI, THBI Lab, BNRist Center,
Tsinghua-Bosch Joint ML Center, Tsinghua, 4 Harvard University

{zaixi, zplu}@mail.ustc.edu.cn, hzj21@mails.tsinghua.edu.cn,
marinka@hms.harvard.edu, qiliuql@ustc.edu.cn

Abstract

The design and optimization of functional proteins that bind specific ligand
molecules is paramount in therapeutics and bio-engineering. A critical yet
formidable task in this endeavor is the design of the protein pocket, which is the
cavity region of the protein where the ligand binds. Current methods are plagued
by inefficient generation, inadequate context modeling of the ligand molecule, and
the inability to generate side-chain atoms. Here, we present the Full-Atom Iterative
Refinement (FAIR) method, designed to address these challenges by facilitating
the co-design of protein pocket sequences, specifically residue types, and their
corresponding 3D structures. FAIR operates in two steps, proceeding in a coarse-to-
fine manner (transitioning from protein backbone to atoms, including side chains)
for a full-atom generation. In each iteration, all residue types and structures are
simultaneously updated, a process termed full-shot refinement. In the initial stage,
the residue types and backbone coordinates are refined using a hierarchical context
encoder, complemented by two structure refinement modules that capture both
inter-residue and pocket-ligand interactions. The subsequent stage delves deeper,
modeling the side-chain atoms of the pockets and updating residue types to ensure
sequence-structure congruence. Concurrently, the structure of the binding ligand is
refined across iterations to accommodate its inherent flexibility. Comprehensive
experiments show that FAIR surpasses existing methods in designing superior
pocket sequences and structures, producing average improvement exceeding 10%
in AAR and RMSD metrics.

1 Introduction

Proteins are macromolecules that perform fundamental functions in living organisms. An essential
and challenging step in functional protein design, such as enzymes [52, 27] and biosensors [5, 18], is
to design protein pockets that bind specific ligand molecules. Protein pockets usually refer to residues
binding with the ligands in the protein-ligand complexes. Nevertheless, such a problem is very
challenging due to the tremendous search space of both sequence and structure and the small solution
space that satisfies the constraints of binding affinity, geometric complementarity, and biochemical
stability. Traditional approaches for pocket design use hand-crafted energy functions [42, 11] and
template-matching methods [67, 8, 48], which can be less accurate and lack efficiency.

∗Qi Liu is the corresponding author.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

Deep learning approaches, especially deep generative models, have made significant progress in
protein design [46, 17, 9, 20] using experimental and predicted 3D structure information to design
amino acid sequences [26, 30, 7, 14]. Despite their strong performance, these approaches are not
directly applicable to pocket design because the protein pocket structures to be designed are apriori
unknown [8]. To this end, generative models with the capability to co-design both the sequence
and structure of protein pockets are needed. In another area of protein design, pioneering research
developed techniques to co-design sequence and structure of complementarity determining regions
(CDRs) for antibodies (Y-shaped proteins that bind with specific pathogens) [29, 28, 39, 33, 56].
Nevertheless, these approaches are tailored specifically for antibodies and are unsuitable for the pocket
design of general proteins. For example, prevailing methods generate only protein backbone atoms
while neglecting side-chain atoms, which play essential roles in protein pocket-ligand interactions
[43]. Further, binding targets (antigens) considered by these methods are fixed, whereas binding
ligand molecules are more flexible and require additional modeling.

Here, we introduce a full-atom iterative refinement approach (FAIR) for protein pocket sequence-
structure co-design, addressing the limitations of prior research. FAIR consists of two primary
steps: initially modeling the pocket backbone atoms to generate coarse-grained structures, followed
by incorporating side-chain atoms for a complete full-atom pocket design. (1) In the first step,
since the pocket residue types and the number of side-chain atoms are largely undetermined, FAIR
progressively predicts and updates backbone atom coordinates and residue types via soft assignment
over multiple rounds. Sequence and structure information are jointly updated in each round for
efficiency, which we refer to as full-shot refinement. A hierarchical encoder with residue- and
atom-level encoders captures the multi-scale structure of protein-ligand complexes. To update the
pocket structure, FAIR leverages two structure refinement modules to predict the interactions within
pocket residues and between the pocket and the binding ligand in each round. (2) In the second
step, FAIR initializes residue types based on hard assignment and side-chain atoms based on the
results of the first step. The hierarchical encoder and structure refinement modules are similar to
the first step for the full-atom structure update. To model the influence of structure on residue types,
FAIR randomly masks a part of the pocket residues and updates the masked residue types based on
the neighboring residue types and structures in each round. After several rounds of refinement, the
residue type and structure update gradually converge, and the residue sequence-structure becomes
consistent. The ligand molecular structure is also updated along with the above refinement processes
to account for the flexibility of the ligand.

Overall, FAIR is an E(3)-equivariant generative model that generates. both pocket residue types and
the pocket-ligand complex 3D structure. Our study presents the following main contributions:

• New task: We preliminarily formulate protein pocket design as a co-generation of both the
sequence and full-atom structure of a protein pocket (i.e., co-design), conditioned on a binding
ligand molecule and the protein backbone (see Sec. 3.1).

• Novel method: FAIR is an end-to-end generative framework that generates both the pocket
sequence and structure through iterative refinement (see Sec. 3). It addresses the limitations of
previous approaches and takes into account side-chain effects, ligand flexibility, and sequence-
structure consistency to enhance prediction efficiency.

• Strong performance: FAIR outperforms existing methods on various protein pocket design
quality metrics, producing average improvements of 15.5% (AAR) and 13.5% (RMSD). FAIR’s
pocket-generation process is over ten times faster than traditional methods (see Sec. 4).

2 Related Work

Protein Design. Computational protein design has brought the capability of inventing proteins
with desired structures and functions [22, 35, 60]. Existing studies focus on designing amino acid
sequences that fold into target protein structures, i.e., inverse protein folding. Traditional approaches
mainly rely on hand-crafted energy functions to iteratively search for low-energy protein sequences
with heuristic sampling algorithms, which are inefficient, less accurate, and less generalizable
[1, 6]. Recent deep generative approaches have achieved remarkable success in protein design
[15, 26, 30, 7, 14, 51, 20, 3]. Some protein design methods also benefit from the latest advances in
protein structure prediction techniques, e.g., AlphaFold2 [31]. Nevertheless, they usually assume
the target protein structure is given, which is unsuitable for our pocket design case. Another

2

N C

O

R

Cα

P
o

ck
et

 s
eq

u
en

ce
-

st
ru

ct
u

re
 c

o
-d

es
ig

n

Full-atom structure including sidechains

Pocket residue type sequence: MTREIALE

Pocket

Ligand

Protein(a) (b)

Figure 1: (a) The residue structure, where the backbone atoms are Cα, N,C,O. R represents a side
chain that determines the residue types. (b) The protein pocket design problem. Pocket (colored in
black) consists of a subsequence of residues closest to the binding ligand molecule (formal definition
in Sec. 3.1). FAIR aims to co-design the full-atom structures and residue types of the pocket.

line of recent works proposes to co-design the sequence and 3D structure of antibodies as graphs
[29, 28, 39, 33, 56]. However, they are designed explicitly for antibody CDR topologies and are
primarily unable to consider side-chain atoms and the flexibility of binding targets. For more detailed
discussions on protein design, interested readers may refer to the comprehensive surveys [22, 35].

Pocket Design. Protein pockets are the cavity region of protein where the ligand binds to the
protein. In projects to design functional proteins such as biosensors [52, 27] and enzymes [5, 18],
pocket design is the central task [8, 48]. Compared with the general protein design/antibody design
problems, the pocket design brings unique challenges: (1) protein pocket has a smaller spatial scale
than whole proteins/antibodies. Therefore, the structure and interactions of side-chain atoms play
essential roles in pocket design and require careful modeling [36, 12]; (2) the influence and structural
flexibility of target ligand molecules need to be considered to achieve high binding affinity [42].
Traditional methods for pocket design are physics-based methods [42, 11] or template-matching
methods [67, 8, 48], which often suffer from the large computational complexity and limited accuracy.
So far, the pocket design problem has rarely been tackled with deep learning.

Structure-Based Drug Design. Structure-based drug design is another line of research inquiry that
explores 3D ligand molecule design inside protein pockets [49, 40, 37, 47, 70, 69, 19]. These studies
can be regarded as the dual problem of pocket design studied in our paper. However, the methods
primarily focus on generating 3D molecular graphs based on a fixed protein pocket structure and may
not be easily adapted to the pocket sequence-structure co-design problem examined in our study. We
refer interested readers to [71] for a comprehensive survey on structure-based drug design.

3 Full-Atom Protein Pocket Design

Next, we introduce FAIR, our method for pocket sequence-structure co-design. The problem is
first formulated in Sec. 3.1. We then describe the hierarchical encoder that captures residue- and
atom-level information in Sec. 3.2. Furthermore, we show the iterative refinement algorithms with
two main steps in Sec. 3.3. Finally, we show the procedures for model training and sampling in
Sec. 3.4 and demonstrate the E(3)-equivariance property of FAIR in Sec. 3.5.

3.1 Notation and Problem Statement

We aim to co-design residue types (sequences) and 3D structures of the protein pocket that can fit
and bind with the target ligand molecule. As shown in Figure 1, a protein-ligand binding complex
typically consists of a protein and a ligand molecule. The ligand molecule can be represented as a
3D point cloudM = {(xk,vk)}Nl

k=1 where xk denotes the 3D coordinates and vk denotes the atom
feature. The protein can be represented as a sequence of residues A = a1 · · ·aNs , where Ns is the
length of the sequence. The 3D structure of the protein can be described as a point cloud of protein
atoms {ai,j}1≤i≤Ns,1≤j≤ni and let x(ai,j) ∈ R3 denote the 3D coordinate of the pocket atoms. ni
is the number of atoms in a residue determined by the residue types. The first four atoms in any
residue correspond to its backbone atoms (Cα, N,C,O), and the rest are its side-chain atoms. In our
work, the protein pocket is defined as a set of residues in the protein closest to the binding ligand

3

molecule: B = b1 · · · bm. The pocket B can thus be represented as an amino acid subsequence of a
protein: B = ae1 · · ·aem where e = {e1, · · · , em} is the index of the pocket residues in the protein.
The index e can be formally given as: e = {i | min

1≤j≤ni,1≤k≤Nl

∥x(ai,j)− xk∥2 ≤ δ}, where ∥ · ∥2
is the L2 norm and δ is the distance threshold. According to the distance range of pocket-ligand
interactions [43], we set δ = 3.5 Å in the default setting. Note that the number of residues (i.e.,
m) varies for pockets due to varying structures of protein-ligand complexes. To summarize this
subsection, our preliminary problem statement is formulated as below:

Problem Statement: In FAIR, our objective is to learn a conditional generative model for full-atom
protein pocket generation conditioned on the protein backbone and the binding ligand. Given the
availability of existing protein pockets, we may leverage them for reference to construct residue
graphs and calculate geometric features. Our preliminary problem statement is formulated considering
practical situations such as enzyme optimization.

3.2 Hierarchical Encoder

Leveraging this intrinsic multi-scale protein structure [59], we adopt a hierarchical graph transformer
[44, 38, 68] to encode the hierarchical context information of protein-ligand complexes for pocket
sequence-structure co-design. The transformer includes both atom- and residue-level encoders, as
described below.

3.2.1 Atom-Level Encoder

The atom-level encoder considers all atoms in the protein-ligand complex and constructs a 3D context
graph connecting the Ka nearest neighboring atoms in A

⋃
M. The atomic attributes are firstly

mapped to node embeddings h
(0)
i with two MLPs, respectively, for protein and ligand molecule

atoms. The edge embeddings eij are obtained by processing pairwise Euclidean distances with
Gaussian kernel functions [53]. The 3D graph transformer consists of L Transformer layers [62]
with two modules in each layer: a multi-head self-attention (MHA) module and a position-wise
feed-forward network (FFN). Specifically, in the MHA module of the l-th layer (1 ≤ l ≤ L), the
queries are derived from the current node embeddings h(l)

i while the keys and values come from the
relational representations: r(l)ij = [h

(l)
j , e

(l)
ij] ([·, ·]) denotes concatenation) from neighboring nodes:

q
(l)
i = WQh

(l)
i , k

(l)
ij = WKr

(l)
ij , v

(l)
ij = WV r

(l)
ij , (1)

where WQ,WK and WV are learnable transformation matrices. Then, in each attention head
c ∈ {1, 2, . . . , C} (C is the total number of heads), the scaled dot-product attention mechanism
works as follows:

headci =
∑

j∈N (i)

Softmax

q
(l)
i

⊤
· k(l)

ij√
d

v
(l)
ij , (2)

where N (i) denotes the neighbors of the i-th atom in the constructed graph and d is the dimension
size of embeddings for each head. Finally, the outputs from different heads are further concatenated
and transformed to obtain the final output of MHA:

MHAi =
[
head1i , . . . ,head

C
i

]
WO, (3)

where WO is the output transformation matrix. The output of the atom-level encoder is a set of atom
representations {hi}. Appendix A includes the details of the atom-level encoder.

3.2.2 Residue-Level Encoder

The residue-level encoder only keeps the Cα atoms of residues and a coarsened ligand node at the
ligand’s center of mass to supplement binding context information (the coarsened ligand node is
appended at the end of the residue sequence as a special residue). Then, a Kr nearest neighbor graph
is constructed at the residue level. We use the original protein pocket backbone atoms for reference
to construct the Kr nearest neighbor graph and help calculate geometric features. The i-th residue
ai can be represented by a feature vector fres

ai
describing its geometric and chemical characteristics

such as volume, polarity, charge, hydropathy, and hydrogen bond interactions according to its residue

4

H
ie

ra
rc

hi
ca

l
En

co
de

r

T1 rounds of Backbone refinement

Sequence prediction

Structure refinement

H
ie

ra
rc

hi
ca

l
En

co
de

r

T2 rounds of Full-atom refinement

Structure refinement

Masked residue
type update

I F

Figure 2: Overview of FAIR with two main steps (T1 rounds of backbone refinement and T2 rounds
of full-atom refinement). FAIR co-designs pocket residue types and structures via iterative full-shot
refinement. The structure refinement is illustrated with the atoms in the dotted ovals as examples.

type ai. We concatenate the residue features with the sum of atom-level embeddings hk within
each residue to initialize the residue representations; the ligand node representation is initialized by
summing up all the ligand atom embeddings:

f̂res
i =

[
fres
ai

,
∑

j∈resi
hj

]
; f̂ lig

i =
∑

k∈M
hk. (4)

As for the edge features eresij , local coordinate frames are built for residues, and eresij are computed
according to the distance, direction, and orientation between neighboring residues [26]. Lastly, the
encoder takes the node and edge features into the residue-level graph transformer to compute the
residue-level representations. The residue-level graph transformer architecture is similar to that of the
atom-level encoder, and details are shown in Appendix A.

In summary, the output of our hierarchical encoder is a set of residue representations {fi} and atom
representations {hi}, which are used in the following subsections for structure refinement and residue
type prediction. Since our encoder is based on the atom/residue attributes and pairwise relative
distances, the obtained representations are E(3)-invariant 2.

3.3 Iterative Refinement

For efficiency, FAIR predicts pocket residue types and structures via an iterative full-shot refinement
scheme: all the pocket residue types and structures are updated together in each round. Since the
pocket residue types and the number of side-chain atoms are largely unknown at the beginning rounds,
FAIR is designed to have two main steps that follow a coarse-to-fine pipeline: FAIR firstly only
models the backbone atoms of pockets to generate the coarse-grained structures and then fine-adjusts
full-atom residues to achieve sequence-structure consistency. Figure 2 shows the overview of FAIR.

3.3.1 Backbone Refinement

Initialization. Before backbone refinement, the residue types to predict are initialized with uniform
distributions over all residue type categories. Since the residue types and the number of side-chain
atoms are unknown, we only initialize the 3D coordinates of backbone atoms (Cα, N,C,O) with
linear interpolations and extrapolations based on the known structures of nearest residues in the
protein. Details are shown in the Appendix A.4. Following previous research [8, 28, 33], we initialize
the ligand structures with the reference structures from the dataset in the generation process.

Residue Type Prediction. In each round of iterative refinement, we first encode the current protein-
ligand complex with the hierarchical encoder in Sec. 3.2. We then predict and update the sequences
and structures. To predict the probability of each residue type, we apply an MLP and SoftMax
function on the obtained pocket residue embeddings fi : pi = Softmax(MLP(fi)), where pi ∈ R20

is the predicted distribution over 20 residue categories. The corresponding residue features can then
be updated with weighted averaging: fres

bi
←

∑
j pi,jf

res
j , where pi,j and fres

j are the probability
and feature vector for the j-th residue category respectively.

Structure Refinement. Motivated by the force fields in physics [50] and the successful practice
in previous works [28, 33], we calculate the interactions between atoms for the coordinate update.

2E(3) is the group of Euclidean transformations: rotations, reflections, and translations.

5

According to previous works [32, 12, 10], the internal interactions within the protein and the external
interactions between protein and ligand are different. Therefore, FAIR uses two separate modules for
interaction predictions. Firstly, the internal interactions are calculated based on residue embeddings:

gij,kj = g(fi,fk, eRBF(∥x̂(bi,1)− x(ak,1)∥))j ·
x(bi,j)− x(ak,j)

∥x(bi,j)− x(ak,j)∥
, (5)

where eRBF(∥x̂(bi,1) − x(ak,1)∥) is the radial basis distance encoding of pairwise Cα distances,
the function g is a feed-forward neural network with four output channels for four backbone atoms,
and x(bi,j)−x(ak,j)

∥x(bi,j)−x(ak,j)∥ ∈ R3 is the normalized vector from the residue atom ak,j to bi,j . For the
stability of training and generation, we use original protein backbone coordinates to calculate the
RBF encodings. Similarly, for the external interactions between pocket B and ligandM, we have:

gij,s = g′(hbi,j ,hs, eRBF(∥x(bi,j)− xs∥)) ·
x(bi,j)− xs

∥x(bi,j)− xs∥
, (6)

which is calculated based on the atom representations. g′ is a feed-forward neural network with one
output channel. For the conciseness of expression, here we use hbi,j

and hs to denote the pocket and
ligand atom embeddings, respectively. Finally, the coordinates of pocket atoms x(bi,j) and ligand
molecule atoms xs are updated as follows:

x(bi,j)← x(bi,j) +
1

Kr

∑
k∈N (i)

gij,kj +
1

Nl

∑
s

gij,s, (7)

xs ← xs −
1

|B|
∑
i,j

gij,s, 1 ≤ i ≤ m, 1 ≤ j ≤ 4, 1 ≤ s ≤ Nl, (8)

where N (i) is the neighbors of the constructed residue-level Kr-NN graph; |B| denotes the number
of pocket atoms. Details of the structure refinement modules are shown in the Appendix A.

3.3.2 Full-Atom Refinement

Initialization and Structure Refinement. After rounds of backbone refinements, the predicted
residue type distribution and the backbone coordinates become relatively stable (verified in experi-
ments). We then apply the full-atom refinement procedures to determine the side-chain structures.
The residue types are initialized by sampling the predicted residue type pi from backbone refinement
(hard assignment). The number of side-chain atoms and the atom types can then be determined. The
coordinates of the side-chain atoms are initialized with the corresponding α-carbon coordinates. The
full-atom structure refinement is similar to backbone refinement (Sec. 3.3.1) with minor adjustments
to accommodate the side-chain atoms. We include the details in the Appendix A.

Residue Type Update. Since the structures and interactions of side-chain atoms can further influence
the residue types, proper residue type update algorithms are needed to achieve sequence-structure
consistency. Considering the hard assignment of residue types in the full-atom refinement, we
randomly sample and mask one residue in each protein pocket and update its residue type based on
the surrounding environment in each iteration. Specifically, we mask the residue types, remove the
sampled residues’ side-chain atoms in the input to the encoder, and use the obtained corresponding
residue types for residue type prediction. If the predicted result is inconsistent with the original
residue type, we will update the residue type with the newly predicted one and reinitialize the side-
chain structures. As our experiments indicate, the residue types and structures become stable after
several refinement iterations, and sequence-structure consistency is achieved.

3.4 Model Training and Sampling

The loss function for FAIR consists of two parts. We apply cross-entropy loss lce for (sampled)
pocket residues over all iterations for the sequence prediction. For the structure refinement, we adopt
the Huber loss lhuber for the stability of optimization following previous works [28, 56]:

Lseq =
1

T

∑
t

∑
i

lce(p
t
i, p̂i); (9)

Lstruct =
1

T

∑
t

∑
i

lhuber(x(bi)
t, x̂(bi)) +

∑
j

lhuber(x
t
j , x̂j)

 , (10)

6

where T = T1 + T2 is the total rounds of refinement. p̂i, x̂(bi), and x̂j are the ground-truth residue
types, residue coordinates, and ligand coordinates. pti,x(bi)

t, and xt
j are the predicted ones at the

t-th round. In the training process, we aim to minimize the sum of the above two loss functions
L = Lseq +Lstruct similar to previous works [56, 34]. After the training of FAIR, we can co-design
pocket sequences and structures. Algorithm 1 and 2 in Appendix A outline model training and
sampling.

3.5 Equivariance

FAIR is E(3)-equivariant, which is a desirable property of generative protein models [33, 64]:

Theorem 1. Denote the E(3)-transformation as Tg and the generative process of FAIR as
{(bi,x(bi))}mi=1 = pθ(A \ B,M), where {(bi,x(bi))}mi=1 indicates the designed pocket sequence
and structure. We have {(bi, Tg · x(bi))}mi=1 = pθ(Tg · (A \ B), Tg · M).

Proof. The main idea is that the E(3)-invariant encoder and E(3)-equivariant structure refinement
lead to an E(3)-equivariant generative process of FAIR. We give the full proof in Appendix A.

4 Experiments

We proceed by describing the experimental setups (Sec. 4.1). We then assess our method for ligand-
binding pocket design (Sec. 4.2) on two datasets. We also perform further in-depth analysis of FAIR,
including sampling efficiency analysis and ablations in Sec. 4.3.

4.1 Experimental Setting

Datasets. We consider two widely used datasets for experimental evaluations. CrossDocked dataset
[16] contains 22.5 million protein-molecule pairs generated through cross-docking. We filter out
data points with binding pose RMSD greater than 1 Å, leading to a refined subset with around 180k
data points. For data splitting, we use mmseqs2 [58] to cluster data at 30% sequence identity, and
randomly draw 100k protein-ligand structure pairs for training and 100 pairs from the remaining
clusters for testing and validation, respectively. Binding MOAD dataset [21] contains around 41k
experimentally determined protein-ligand complexes. We further filter and split the Binding MOAD
dataset based on the proteins’ enzyme commission number [4], resulting in 40k protein-ligand pairs
for training, 100 pairs for validation, and 100 pairs for testing following previous work [54]. More
data split schemes based on graph clustering [66, 65] may be explored.

Considering the distance ranges of protein-ligand interactions [43], we redesign all the residues
that contain atoms within 3.5 Å of any binding ligand atoms, leading to an average of around eight
residues for each pocket. We sample 100 sequences and structures for each protein-ligand complex
in the test set for a comprehensive evaluation.

Baselines and Implementation. FAIR is compared with five state-of-the-art representative baseline
methods. PocketOptimizer [45] is a physics-based method that optimizes energies such as packing
and binding-related energies for ligand-binding protein design. DEPACT [8] is a template-matching
method that follows a two-step strategy [67] for pocket design. It first searches the protein-ligand
complexes in the database with similar ligand fragments. It then grafts the associated residues into the
protein pocket with PACMatch [8]. HSRN [28], Diffusion [39], and MEAN [33] are deep-learning-
based models that use auto-regressive refinement, diffusion model, and graph translation method
respectively for protein sequence-structure co-design. They were originally proposed for antibody
design, and we adapted them to our pocket design task with proper modifications (see Appendix. B
for more details).

We use AMBER ff14S force field [41] for energy computation and the Dunbrack rotamer library [55]
for rotamer sampling in PocketOptimizer. For the template-based method DEPACT, the template
databases are constructed based on the training datasets for fair comparisons. For the deep-learning-
based models, including our FAIR, we train them for 50 epochs and select the checkpoint with the
lowest loss on the validation set for testing. We use the Adam optimizer with a learning rate of 0.0001
for optimization. In FAIR, the default setting sets T1 and T2 as 5 and 10. Descriptions of baselines
and FAIR are provided in the Appendix. B.

7

Table 1: Evaluation of different approaches on the pocket design task.

Model CrossDocked Binding MOAD
AAR (↑) RMSD (↓) Vina (↓) AAR (↑) RMSD (↓) Vina (↓)

PocketOptimizer 27.89±14.9% 1.75±0.08 -6.905±2.39 28.78±11.3% 1.68±0.12 -7.829±2.41
DEPACT 22.58±8.48% 1.97±0.14 -6.670±2.13 26.12±8.97% 1.76±0.15 -7.526±2.05

HSRN 31.62±10.4% 2.15±0.17 -6.565±1.95 33.70±10.1% 1.83±0.18 -7.349±1.93
Diffusion 34.62±13.7% 1.68±0.12 -6.725±1.83 36.94±12.9% 1.47±0.09 -7.724±2.36
MEAN 35.46±8.15% 1.76±0.09 -6.891±1.86 37.16±14.7% 1.52±0.09 -7.651±1.97

FAIR 40.17±12.6% 1.42±0.07 -7.022±1.75 43.75±15.2% 1.35±0.10 -7.978±1.91

Performance Metrics. To evaluate the generated sequences and structures, we employ Amino Acid
Recovery (AAR), defined as the overlapping ratio between the predicted 1D sequences and ground
truths, and Root Mean Square Deviation (RMSD) regarding the 3D predicted structure of residue
atoms. Due to the different residue types and numbers of side-chain atoms in the generated pockets,
we calculate RMSD with respect to backbone atoms following [28, 33]. To measure the binding
affinity between the protein pocket and ligand molecules, we calculate Vina Score with QVina [61, 2].
The unit is kcal/mol; a lower Vina score indicates better binding affinity. Before feeding to Vina, all
the generated protein structures are firstly refined by AMBER force field [41] in OpenMM [13] to
optimize the structures. For the baseline methods that predict backbone structures only (Diffusion
and MEAN), we use Rosetta [1] to do side-chain packing following the instructions in their papers.

4.2 Ligand-Binding Pocket Design

Comparison with Baselines. Table 1 shows the results of different methods on the CrossDocked
and Binding MOAD dataset. FAIR overperforms previous methods with a clear margin on AAR,
RMSD, and Vina scores, which verifies the strong ability of FAIR to co-design pocket sequences and
structures with high binding affinity. For example, the average improvements on AAR and RMSD are
15.5% and 13.5% respectively. Compared with the energy-based method PocketOptimizer and the
template-matching-based method DEPACT, deep-learning-based methods such as FAIR have better
performance due to their stronger ability to model the complex sequence-structure dependencies
and pocket-ligand interactions. However, these deep-learning-based methods still have limitations
that restrict their performance improvement. For example, the autoregressive generation manner in
HSRN inevitably incurs error accumulation; Diffusion and MEAN fail to model the influence of
side chain atoms; all these methods ignore the flexibility of ligands. In contrast, FAIR addresses the
limitations with properly designed modules, further validated in Sec. 4.3. Moreover, FAIR performs
relatively better on Binding MOAD than the CrossDocked dataset, which may be explained by the
higher quality and diversity of Binding MOAD [21] (e.g. Vina score on CrossDocked -7.022 vs.
-7.978 on Binding MOAD). For example, Binding MOAD has 40k unique protein-ligand complexes,
while CrossDocked only contains 18k complexes.

Comparison of Generated and Native Sequences. Figure 4(a) shows the residue type distributions
of the designed pockets and the native ones from two datasets. Generally, we observe that the
distributions align very well. Some residue types, such as Tyrosine and Asparagine, have been used
more frequently in designed than naturally occurring sequences. In contrast, residue types with
obviously reduced usages in the designed sequences include Lysine, Isoleucine, and Leucine.

Convergence of Iterative Refinement Process. During the iterations of FAIR, we monitor the ratio
of unconverged residues (residue types different from those in the final designed sequences) and
AAR, shown in Figure 4(b) (T1 = 5 and T2 = 15). We observe that both curves converge quickly
during refinement. We find that the AAR becomes stable in just several iterations (typically less
than 3 iterations in our experiments) of backbone refinement and then gradually increases with the
complete atom refinement, validating the effectiveness of our design. We show the curves of RMSD
in Appendix C.3, which also converges rapidly. Therefore, we set T1 = 5 and T2 = 10 for efficiency
as default setting.

Case Studies. In Figure. 3, we visualize two examples of designed pocket sequences and structures
from the CrossDocked dataset (PDB: 2pc8) and the Binding MOAD dataset (PDB: 6p7r), respectively.
The designed sequences recover most residues, and the generated structures are valid and realistic.
Moreover, the designed pockets exhibit comparable or higher binding affinities (lower Vina scores)
with the target ligand molecules than the reference pockets in the test set.

8

Reference (2pc8) Reference (6p7r)Designed (2pc8) Designed (6p7r)

Pocket Seq: EYHNNEYFQW
Vina Score: -5.98

Pocket Seq: YYFKVKM
Vina Score: -7.33

Pocket Seq: DEHNDYYEQW
Vina Score: -7.12

Pocket Seq: FYMKGKM
Vina Score: -7.74

Figure 3: Case studies of Pocket design. We show the reference and designed structures/sequences of
two protein pockets from the CrossDocked (PDB: 2pc8) and Binding MOAD datasets (PDB: 6p7r).

4.3 Additional Analysis of FAIR’s Performance

Sampling Efficiency Analysis. To evaluate the efficiency of FAIR, we considered the generation
time of different approaches using a single V100 GPU on the same machine. Average runtimes are
shown in Figure 4(c). First, the generation time of FAIR is more than ten times faster (FAIR: 5.6s vs.
DEPACT: 107.2s) than traditional PocketOptimizer and DEPACT methods. Traditional methods are
time-consuming because they require explicit energy calculations and combinatorial enumerations.
Second, FAIR is more efficient than the autoregressive HSRN and diffusion methods. The MEAN
sampling time is comparable to FAIR since both use full-shot decoding schemes. However, FAIR has
the advantage of full-atom prediction over MEAN.

Local Geometry of Generated Pockets. Since RMSD values in Tables 1 and 2 reflect only the
global geometry of generated protein pockets, we also consider the RMSD of bond lengths and angles
of predicted pockets to evaluate their local geometry [33]. We measure the average RMSD of the
covalent bond lengths in the pocket backbone (C-N, C=O, and C-C). We consider three conventional
dihedral angles in the backbone structure, i.e., ϕ, ψ, ω [57] and calculate the average RMSD of their
cosine values. The results in Table 3 of Appendix C.3 show that FAIR achieves better performance
regarding the local geometry than baseline methods. The RMSD of bond lengths and angles drop
20% and 8% respectively with FAIR.

Ablations. In Table 2, we evaluate the effectiveness and necessity of the proposed modules in FAIR.
Specifically, we removed the residue-level encoder, the masked residue type update procedure, the
full-atom refinement, and the ligand molecule context, denoted as w/o the encoder/consistency/full-
atom/ligand. The results in Table 2 demonstrate that the removal of any of these modules leads
to a decrease in performance. We observe that the performance of FAIR w/o hierarchical encoder
drops the most. This is reasonable, as the hierarchical encoder captures essential representations for
sequence/structure prediction. Moreover, the masked residue type update procedure helps ensure
sequence-structure consistency. Additionally, the full-atom refinement module and the binding ligand
are essential for modeling side-chain and pocket-ligand interactions, which play important roles in
protein-ligand binding.

Further, we replaced the iterative full-shot refinement modules in FAIR with the autoregressive
decoding method used in HSRN [28] as a variant of FAIR. However, this variant’s performance is
also worse than FAIR’s. As discussed earlier, autoregressive generation can accumulate errors and is
more time-consuming than the full-shot refinement in FAIR. For example, AAR drops from 40.17%
to 31.04% on CrossDocked with autoregressive generation.

Table 2: Ablation studies of FAIR.

Model CrossDocked Binding MOAD
AAR (↑) RMSD (↓) Vina (↓) AAR (↑) RMSD (↓) Vina (↓)

w/o hier encoder 25.30±9.86% 2.36±0.24 -6.694±2.28 29.21±10.8% 1.82±0.14 -7.235±2.10
w/o consistency 36.75±9.21% 1.49±0.08 -6.937±1.72 37.40±15.0% 1.49±0.12 -7.752±1.94
w/o full-atom 35.52±10.4% 1.62±0.13 -6.412±2.37 35.91±13.5% 1.54±0.12 -7.544±2.23

w/o ligand 33.16±15.3% 1.71±0.11 -6.353±1.91 34.54±14.6% 1.50±0.09 -7.271±1.79
autoregressive 31.04±14.2% 1.56±0.16 -6.874±1.90 33.65±12.7% 1.46±0.11 -7.765±1.84

FAIR 40.17±12.6% 1.42±0.07 -7.022±1.75 43.75±15.2% 1.35±0.10 -7.978±1.91

9

A R N D C Q E G H I L K M F P S T W Y V0.00

0.02

0.04

0.06

0.08

0.10

Pr
ob

ab
ili

ty

Test Set
FAIR

(a)

1 5 10 15 20
Iteration Steps

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Unconverged Residue Types
AAR

(b)

CrossDocked MOAD

102

103

R
un

tim
e

(s
)

Optimizer
DEPACT
HSRN
Diffusion
MEAN
FAIR

(c)

Figure 4: (a) The distributions of residue types in the designed pockets and the test sets. (b) The
ratio of unconverged residues (residue types different from those in the final designed sequences)
and AAR (Amino Acid Recovery) during the iterations of FAIR on the CrossDocked dataset. (c)
Comparisons of average generation time for 100 pockets with baseline methods.

5 Limitations and Future Research

While we have made significant strides in addressing the limitations of prior research, several avenues
remain for future research. First, we preliminarily formulate the protein pocket co-design problem
in this paper. In the future, more realistic problem formulations may be constructed according to
the requirements of different scenarios. Second, beyond the design of protein pockets, optimizing
properties such as the binding affinity of existing pockets is crucial, especially for therapeutic
applications. In forthcoming research, we aim to combine reinforcement learning and Bayesian
optimization with FAIR to refine pocket design. Third, leveraging physics-based and template-
matching methodologies can pave the way for the development of hybrid models that are both
interpretable and generalizable. For instance, physics-based techniques can be employed to sample
various ligand conformations during ligand initialization. The inherent protein-ligand interaction
data within templates can guide pocket design. Lastly, integrating FAIR into protein/enzyme design
workflows has the potential to be immensely beneficial for the scientific community. Conducting wet-
lab experiments to assess the efficacy of protein pockets designed using FAIR would be advantageous.
Insights gleaned from these experimental outcomes can be instrumental in refining our model, thereby
establishing a symbiotic relationship between computation and biochemical experiments.

6 Conclusion

We develop a full-atom iterative refinement framework (FAIR) for protein pocket sequence and 3D
structure co-design. Generally, FAIR has two refinement steps (backbone refinement and full-atom
refinement) and follows a coarse-to-fine pipeline. The influence of side-chain atoms, the flexibility
of binding ligands, and sequence-structure consistency are well considered and addressed. We
empirically evaluate our method on cross-docked and experimentally determined datasets to show the
advantage over existing physics-based, template-matching-based, and deep generative methods in
efficiently generating high-quality pockets. We hope our work can inspire further explorations of
pocket design with deep generative models and benefit the broad community.

7 Acknowledgements

This research was partially supported by grants from the National Key Research and Development
Program of China (No. 2021YFF0901003) and the University Synergy Innovation Program of Anhui
Province (GXXT-2021-002). We wish to express our sincere appreciation to Dr. Yaoxi Chen and
Yifei Hu for their constructive discussions, which greatly enrich this research.

References

[1] Rebecca F Alford, Andrew Leaver-Fay, Jeliazko R Jeliazkov, Matthew J O’Meara, Frank P
DiMaio, Hahnbeom Park, Maxim V Shapovalov, P Douglas Renfrew, Vikram K Mulligan, Kalli
Kappel, et al. The rosetta all-atom energy function for macromolecular modeling and design.
Journal of chemical theory and computation, 13(6):3031–3048, 2017.

10

[2] Amr Alhossary, Stephanus Daniel Handoko, Yuguang Mu, and Chee-Keong Kwoh. Fast,
accurate, and reliable molecular docking with quickvina 2. Bioinformatics, 31(13):2214–2216,
2015.

[3] Ivan Anishchenko, Samuel J Pellock, Tamuka M Chidyausiku, Theresa A Ramelot, Sergey
Ovchinnikov, Jingzhou Hao, Khushboo Bafna, Christoffer Norn, Alex Kang, Asim K Bera, et al.
De novo protein design by deep network hallucination. Nature, 600(7889):547–552, 2021.

[4] Amos Bairoch. The enzyme database in 2000. Nucleic acids research, 28(1):304–305, 2000.

[5] Matthew J Bick, Per J Greisen, Kevin J Morey, Mauricio S Antunes, David La, Banumathi
Sankaran, Luc Reymond, Kai Johnsson, June I Medford, and David Baker. Computational
design of environmental sensors for the potent opioid fentanyl. Elife, 6:e28909, 2017.

[6] F Edward Boas and Pehr B Harbury. Potential energy functions for protein design. Current
opinion in structural biology, 17(2):199–204, 2007.

[7] Yue Cao, Payel Das, Vijil Chenthamarakshan, Pin-Yu Chen, Igor Melnyk, and Yang Shen.
Fold2seq: A joint sequence (1d)-fold (3d) embedding-based generative model for protein design.
In International Conference on Machine Learning, pages 1261–1271. PMLR, 2021.

[8] Yaoxi Chen, Quan Chen, and Haiyan Liu. Depact and pacmatch: A workflow of designing de
novo protein pockets to bind small molecules. Journal of Chemical Information and Modeling,
62(4):971–985, 2022.

[9] Justas Dauparas, Ivan Anishchenko, Nathaniel Bennett, Hua Bai, Robert J Ragotte, Lukas F
Milles, Basile IM Wicky, Alexis Courbet, Rob J de Haas, Neville Bethel, et al. Robust deep
learning–based protein sequence design using proteinmpnn. Science, 378(6615):49–56, 2022.

[10] Christopher M Dobson. Protein folding and misfolding. Nature, 426(6968):884–890, 2003.

[11] Jiayi Dou, Lindsey Doyle, Per Jr Greisen, Alberto Schena, Hahnbeom Park, Kai Johnsson,
Barry L Stoddard, and David Baker. Sampling and energy evaluation challenges in ligand
binding protein design. Protein Science, 26(12):2426–2437, 2017.

[12] Xing Du, Yi Li, Yuan-Ling Xia, Shi-Meng Ai, Jing Liang, Peng Sang, Xing-Lai Ji, and Shu-Qun
Liu. Insights into protein–ligand interactions: mechanisms, models, and methods. International
journal of molecular sciences, 17(2):144, 2016.

[13] Peter Eastman, Jason Swails, John D Chodera, Robert T McGibbon, Yutong Zhao, Kyle A
Beauchamp, Lee-Ping Wang, Andrew C Simmonett, Matthew P Harrigan, Chaya D Stern, et al.
Openmm 7: Rapid development of high performance algorithms for molecular dynamics. PLoS
computational biology, 13(7):e1005659, 2017.

[14] Noelia Ferruz and Birte Höcker. Controllable protein design with language models. Nature
Machine Intelligence, 4(6):521–532, 2022.

[15] Noelia Ferruz, Steffen Schmidt, and Birte Höcker. Protgpt2 is a deep unsupervised language
model for protein design. Nature communications, 13(1):4348, 2022.

[16] Paul G Francoeur, Tomohide Masuda, Jocelyn Sunseri, Andrew Jia, Richard B Iovanisci, Ian
Snyder, and David R Koes. Three-dimensional convolutional neural networks and a cross-
docked data set for structure-based drug design. Journal of chemical information and modeling,
60(9):4200–4215, 2020.

[17] Wenhao Gao, Sai Pooja Mahajan, Jeremias Sulam, and Jeffrey J Gray. Deep learning in protein
structural modeling and design. Patterns, 1(9):100142, 2020.

[18] Anum A Glasgow, Yao-Ming Huang, Daniel J Mandell, Michael Thompson, Ryan Ritterson,
Amanda L Loshbaugh, Jenna Pellegrino, Cody Krivacic, Roland A Pache, Kyle A Barlow, et al.
Computational design of a modular protein sense-response system. Science, 366(6468):1024–
1028, 2019.

[19] Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equiv-
ariant diffusion for target-aware molecule generation and affinity prediction. In International
Conference on Learning Representations, 2023.

[20] Chloe Hsu, Robert Verkuil, Jason Liu, Zeming Lin, Brian Hie, Tom Sercu, Adam Lerer, and
Alexander Rives. Learning inverse folding from millions of predicted structures. ICML, 2022.

11

[21] Liegi Hu, Mark L Benson, Richard D Smith, Michael G Lerner, and Heather A Carlson.
Binding moad (mother of all databases). Proteins: Structure, Function, and Bioinformatics,
60(3):333–340, 2005.

[22] Po-Ssu Huang, Scott E Boyken, and David Baker. The coming of age of de novo protein design.
Nature, 537(7620):320–327, 2016.

[23] Wenbing Huang, Jiaqi Han, Yu Rong, Tingyang Xu, Fuchun Sun, and Junzhou Huang. Equiv-
ariant graph mechanics networks with constraints. arXiv preprint arXiv:2203.06442, 2022.

[24] Peter J Huber. Robust estimation of a location parameter. Breakthroughs in statistics: Method-
ology and distribution, pages 492–518, 1992.

[25] Du Q Huynh. Metrics for 3d rotations: Comparison and analysis. Journal of Mathematical
Imaging and Vision, 35(2):155–164, 2009.

[26] John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Generative models for
graph-based protein design. Advances in neural information processing systems, 32, 2019.

[27] Lin Jiang, Eric A. Althoff, Fernando R. Clemente, Lindsey Doyle, Daniela Röthlisberger,
Alexandre Zanghellini, Jasmine L. Gallaher, Jamie L. Betker, Fujie Tanaka, Carlos F. Barbas,
Donald Hilvert, Kendall N. Houk, Barry L. Stoddard, and David Baker. De novo computational
design of retro-aldol enzymes. Science, 319(5868):1387–1391, 2008.

[28] Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Antibody-antigen docking and design via
hierarchical structure refinement. In ICML, pages 10217–10227. PMLR, 2022.

[29] Wengong Jin, Jeremy Wohlwend, Regina Barzilay, and Tommi Jaakkola. Iterative refinement
graph neural network for antibody sequence-structure co-design. ICLR, 2022.

[30] Bowen Jing, Stephan Eismann, Patricia Suriana, Raphael JL Townshend, and Ron Dror. Learn-
ing from protein structure with geometric vector perceptrons. ICLR, 2021.

[31] John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-
neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.
Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021.

[32] Judith Klein-Seetharaman, Maki Oikawa, Shaun B Grimshaw, Julia Wirmer, Elke Duchardt,
Tadashi Ueda, Taiji Imoto, Lorna J Smith, Christopher M Dobson, and Harald Schwalbe.
Long-range interactions within a nonnative protein. Science, 295(5560):1719–1722, 2002.

[33] Xiangzhe Kong, Wenbing Huang, and Yang Liu. Conditional antibody design as 3d equivariant
graph translation. ICLR, 2023.

[34] Xiangzhe Kong, Wenbing Huang, and Yang Liu. End-to-end full-atom antibody design. arXiv
preprint arXiv:2302.00203, 2023.

[35] Ivan V Korendovych and William F DeGrado. De novo protein design, a retrospective. Quarterly
reviews of biophysics, 53:e3, 2020.

[36] Brian Kuhlman and Philip Bradley. Advances in protein structure prediction and design. Nature
Reviews Molecular Cell Biology, 20(11):681–697, 2019.

[37] Meng Liu, Youzhi Luo, Kanji Uchino, Koji Maruhashi, and Shuiwang Ji. Generating 3d
molecules for target protein binding. ICML, 2022.

[38] Shengjie Luo, Tianlang Chen, Yixian Xu, Shuxin Zheng, Tie-Yan Liu, Liwei Wang, and Di He.
One transformer can understand both 2d & 3d molecular data. ICLR, 2022.

[39] Shitong Luo, Yufeng Su, Xingang Peng, Sheng Wang, Jian Peng, and Jianzhu Ma. Antigen-
specific antibody design and optimization with diffusion-based generative models. NeurIPS,
2022.

[40] Youzhi Luo and Shuiwang Ji. An autoregressive flow model for 3d molecular geometry
generation from scratch. In ICLR, 2021.

[41] James A Maier, Carmenza Martinez, Koushik Kasavajhala, Lauren Wickstrom, Kevin E Hauser,
and Carlos Simmerling. ff14sb: improving the accuracy of protein side chain and backbone
parameters from ff99sb. Journal of chemical theory and computation, 11(8):3696–3713, 2015.

[42] Christoph Malisi, Marcel Schumann, Nora C Toussaint, Jorge Kageyama, Oliver Kohlbacher,
and Birte Höcker. Binding pocket optimization by computational protein design. PloS one,
7(12):e52505, 2012.

12

[43] Gilles Marcou and Didier Rognan. Optimizing fragment and scaffold docking by use of
molecular interaction fingerprints. Journal of chemical information and modeling, 47(1):195–
207, 2007.

[44] Erxue Min, Runfa Chen, Yatao Bian, Tingyang Xu, Kangfei Zhao, Wenbing Huang, Peilin
Zhao, Junzhou Huang, Sophia Ananiadou, and Yu Rong. Transformer for graphs: An overview
from architecture perspective. arXiv preprint arXiv:2202.08455, 2022.

[45] Jakob Noske, Josef Paul Kynast, Dominik Lemm, Steffen Schmidt, and Birte Höcker. Pocketop-
timizer 2.0: A modular framework for computer-aided ligand-binding design. Protein Science,
32(1):e4516, 2023.

[46] Sergey Ovchinnikov and Po-Ssu Huang. Structure-based protein design with deep learning.
Current opinion in chemical biology, 65:136–144, 2021.

[47] Xingang Peng, Shitong Luo, Jiaqi Guan, Qi Xie, Jian Peng, and Jianzhu Ma. Pocket2mol:
Efficient molecular sampling based on 3d protein pockets. ICML, 2022.

[48] Nicholas F Polizzi and William F DeGrado. A defined structural unit enables de novo design of
small-molecule–binding proteins. Science, 369(6508):1227–1233, 2020.

[49] Matthew Ragoza, Tomohide Masuda, and David Ryan Koes. Generating 3d molecules condi-
tional on receptor binding sites with deep generative models. Chemical science, 13(9):2701–
2713, 2022.

[50] Anthony K Rappé, Carla J Casewit, KS Colwell, William A Goddard III, and W Mason
Skiff. Uff, a full periodic table force field for molecular mechanics and molecular dynamics
simulations. Journal of the American chemical society, 114(25):10024–10035, 1992.

[51] Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin, Jason Liu, Demi Guo,
Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Biological structure and function emerge from
scaling unsupervised learning to 250 million protein sequences. Proceedings of the National
Academy of Sciences, 118(15):e2016239118, 2021.

[52] Daniela Röthlisberger, Olga Khersonsky, Andrew M Wollacott, Lin Jiang, Jason DeChancie,
Jamie Betker, Jasmine L Gallaher, Eric A Althoff, Alexandre Zanghellini, Orly Dym, et al.
Kemp elimination catalysts by computational enzyme design. Nature, 453(7192):190–195,
2008.

[53] Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne van den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In European semantic
web conference, pages 593–607. Springer, 2018.

[54] Arne Schneuing, Yuanqi Du, Charles Harris, Arian Jamasb, Ilia Igashov, Weitao Du, Tom
Blundell, Pietro Lió, Carla Gomes, Max Welling, Michael Bronstein, and Bruno Correia.
Structure-based drug design with equivariant diffusion models. arXiv preprint arXiv:2210.13695,
2022.

[55] Maxim V Shapovalov and Roland L Dunbrack Jr. A smoothed backbone-dependent rotamer
library for proteins derived from adaptive kernel density estimates and regressions. Structure,
19(6):844–858, 2011.

[56] Chence Shi, Chuanrui Wang, Jiarui Lu, Bozitao Zhong, and Jian Tang. Protein sequence and
structure co-design with equivariant translation. ICLR, 2023.

[57] Ryan K Spencer, Glenn L Butterfoss, John R Edison, James R Eastwood, Stephen White-
lam, Kent Kirshenbaum, and Ronald N Zuckermann. Stereochemistry of polypeptoid chain
configurations. Biopolymers, 110(6):e23266, 2019.

[58] Martin Steinegger and Johannes Söding. Mmseqs2 enables sensitive protein sequence searching
for the analysis of massive data sets. Nature biotechnology, 35(11):1026–1028, 2017.

[59] H Stephen Stoker. General, organic, and biological chemistry. Cengage Learning, 2015.

[60] Arthur G Street and Stephen L Mayo. Computational protein design. Structure, 7(5):R105–R109,
1999.

[61] Oleg Trott and Arthur J Olson. Autodock vina: improving the speed and accuracy of docking
with a new scoring function, efficient optimization, and multithreading. Journal of computational
chemistry, 31(2):455–461, 2010.

13

[62] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[63] Ruibin Xiong, Yunchang Yang, Di He, Kai Zheng, Shuxin Zheng, Chen Xing, Huishuai Zhang,
Yanyan Lan, Liwei Wang, and Tieyan Liu. On layer normalization in the transformer architecture.
In International Conference on Machine Learning, pages 10524–10533. PMLR, 2020.

[64] Minkai Xu, Lantao Yu, Yang Song, Chence Shi, Stefano Ermon, and Jian Tang. Geodiff: A
geometric diffusion model for molecular conformation generation. ICLR, 2022.

[65] Xihong Yang, Jiaqi Jin, Siwei Wang, Ke Liang, Yue Liu, Yi Wen, Suyuan Liu, Sihang Zhou,
Xinwang Liu, and En Zhu. Dealmvc: Dual contrastive calibration for multi-view clustering. In
Proceedings of the 31th ACM International Conference on Multimedia, 2023.

[66] Xihong Yang, Cheng Tan, Yue Liu, Ke Liang, Siwei Wang, Sihang Zhou, Jun Xia, Stan Z Li,
Xinwang Liu, and En Zhu. Convert: Contrastive graph clustering with reliable augmentation.
In Proceedings of the 31th ACM International Conference on Multimedia, 2023.

[67] Alexandre Zanghellini, Lin Jiang, Andrew M Wollacott, Gong Cheng, Jens Meiler, Eric A
Althoff, Daniela Röthlisberger, and David Baker. New algorithms and an in silico benchmark
for computational enzyme design. Protein Science, 15(12):2785–2794, 2006.

[68] Zaixi Zhang, Qi Liu, Qingyong Hu, and Chee-Kong Lee. Hierarchical graph transformer with
adaptive node sampling. Advances in Neural Information Processing Systems, 2022.

[69] Zaixi Zhang, Qi Liu, Chee-Kong Lee, Chang-Yu Hsieh, and Enhong Chen. An equivariant
generative framework for molecular graph-structure co-design. Chemical Science, 14(31):8380–
8392, 2023.

[70] Zaixi Zhang, Yaosen Min, Shuxin Zheng, and Qi Liu. Molecule generation for target protein
binding with structural motifs. In ICLR, 2023.

[71] Zaixi Zhang, Jiaxian Yan, Qi Liu, Enhong Chen, and Marinka Zitnik. A systematic survey in
geometric deep learning for structure-based drug design. arXiv preprint arXiv:2306.11768,
2023.

14

A Details on FAIR Model

A.1 Training and Sampling Algorithms

Here, we show the pseudo-codes of the training and sampling of FAIR in the Algorithm. 1 and 2.

Algorithm 1 Training of FAIR

Input: protein sequences A = a1 · · ·aNs and structures {x(ai)}Ns
i=1, ligand moleculeM.

Initialize the coordinates of pocket residues {x(bi)}.
Add Gaussian noise to the ligand molecular structure {xj}.
Initialize the sequences of pocket residues with uniform distributions over 20 residue categories.
Lpred = 0;Lstruct = 0.
Backbone refinement
for t in 1, · · · T1:

Obtain the residue embeddings {fi} and atom embeddings {hi} with the hierarchical encoder.
Predict residue types and update coordinates with structure refinement modules.
Lseq+ =

∑
i lce(p

t
i, p̂i).

Lstruct+ =
∑

i lhuber(x(bi)
t, x̂(bi)) +

∑
j lhuber(x

t
j , x̂j).

end for
Sample residue types from the predicted residue type distributions.
Initialize the coordinates of side-chain atoms with the coordinates of corresponding Cα.
Full-atom refinement
for t in 1, · · · T2:

Randomly mask a subset of pocket residues.
Obtain the residue embeddings {fi} and atom embeddings {hi} with the hierarchical encoder.
Predict the residue types of masked residues.
Lseq+ =

∑
i lce(p

t
i, p̂i).

Reinitialize the masked residue if its residue type conflicts with the predicted result.
Update coordinates with structure refinement modules.
Lstruct+ =

∑
i lhuber(x(bi)

t, x̂(bi)) +
∑

j lhuber(x
t
j , x̂j).

end for
Minimize 1

T (Lseq + Lstruct).

Algorithm 2 Sampling of FAIR

Input: protein sequences A = a1 · · ·aNs
and structures {x(ai)}Ns

i=1, ligand moleculeM.
Initialize the coordinates of pocket residues {x(bi)}.
Initialize the sequences of pocket residues with uniform distributions over 20 residue categories.
Backbone refinement
for t in 1, · · · T1:

Obtain the residue embeddings {fi} and atom embeddings {hi} with the hierarchical encoder.
Predict residue types and update coordinates with structure refinement modules.

end for
Sample residue types from the predicted residue type distributions.
Initialize the coordinates of side-chain atoms with the coordinates of corresponding Cα.
Full-atom refinement
for t in 1, · · · T2:

Randomly mask a subset of pocket residues.
Obtain the residue embeddings {fi} and atom embeddings {hi} with the hierarchical encoder.
Predict the residue types of masked residues.
Reinitialize the masked residue if its residue type conflicts with the predicted result.
Update coordinates with structure refinement modules.

end for

15

A.2 Additional Information on Hierarchical Graph Transformer Encoder

Our hierarchical encoder includes the atom-level encoder and the residue-level encoder. The powerful
3D graph transformer is used as the model backbone. Here, we first provide additional information
on the graph transformer. Residue-level node and edge feature representations follow prior research
[26, 28].

Graph transformer architecture. The atom/residue-level encoder contains L graph transformer
layers. Let h(l) be the set of node representations at the l-th layer. In each graph transformer layer,
there is a multi-head self-attention (MHA) and a feed-forward block (FFN). The layer normalization
(LN) is applied before the two blocks [63, 68]. The details of MHA have been shown in Sec 3.2, and
the graph transformer layer is formally characterized as:

h′(l−1) = MHA(LN(h(l−1))) + h(l−1) (11)

h(l) = FFN(LN(h′(l−1))) + h′(l−1), (0 ≤ l < L). (12)

Residue-level node features. The residue-level encoder only keeps the Cα atoms to represent
residues and constructs a Kr nearest neighbor graph at the residue level. We use the original protein
pocket backbone atoms for reference to construct the Kr nearest neighbor graph and help calculate
geometric features. Each residue node is represented by six features: polarity fp ∈ {0, 1}, hydropathy
fh ∈ [−4.5, 4.5], volume fv ∈ [60.1, 227.8], charge fc ∈ {−1, 0, 1}, and whether it is a hydrogen
bond donor fd ∈ {0, 1} or acceptor fa ∈ {0, 1}. We expand hydropathy and volume features into
radial basis with interval sizes 0.1 and 10, respectively. Overall, the dimension of the residue-level
feature vector fi is 112.

Residue-level edge features. For the i-th residue, we let x(ai,1) denote the coordinate of its Cα and
define its local coordinate frame Oi = [ci,ni, ci × ni] as:

ui =
x(ai,1)− x(ai−1,1)

∥x(ai,1)− x(ai−1,1)∥
, ci =

ui − ui+1

∥ui − ui+1∥
, ni =

ui × ui+1

∥ui × ui+1∥
. (13)

Based on the local frame, the edge features between residues i and j can be computed as:

eresij = Concat

(
Epos(i−j), eRBF(∥x(ai,1)−x(aj,1)∥), O⊤

i

x(aj,1)− x(ai,1)

∥x(ai,1)− x(aj,1)∥
, q(O⊤

i Oj)

)
.

(14)
The edge feature eresij contains four parts. The positional encoding Epos(i− j) encodes the relative
sequence distance between two residues. The second term eRBF(·) is a distance encoding with radial
basis functions. The third term is a direction encoding corresponding to the relative direction of
x(aj,1) in the local frame of the i-th residue. The last term q(O⊤

i Oj) is the orientation encoding of
the quaternion representation q(·) of the spatial rotation matrix O⊤

i Oj [25]. Overall, the dimension
of the residue-level edge feature eresij is 39.

A.3 More Details of the Full-atom Structure Refinement

The full-atom structure refinement is similar to the backbone structure refinement in Sec. 3.3.1 with
minor modifications to accommodate side-chain atoms. We consider the internal interactions within
the protein and the external interactions between ligand molecules and protein residues. Firstly, the
internal interactions within the protein are calculated based on residue embeddings:

gij,kj = g(fi,fk, eRBF(∥x̂(bi,1)− x(ak,1)∥))j ·
x(bi,j)− x̄(ak)

∥x(bi,j)− x̄(ak)∥
, (15)

where eRBF(∥x̂(bi,1)−x(ak,1)∥) is the radial basis distance encoding of pairwise Cα distances, the
function g is a feed-forward neural network with 14 channels for all side-chain atoms (the maximum
number of atoms in a residue is 14). Due to the different numbers of side-chain atoms in different
kinds of residues, the normalized direction vector here is x(bi,j)−x̄(ak)

∥x(bi,j)−x̄(ak)∥ ∈ R3 where x̄(ak) is the
average coordinates of residue ak. The external interactions between pocket B and ligandM is the
same as the backbone refinement:

gij,s = g′(hbi,j
,hs, eRBF(∥x(bi,j)− xs∥)) ·

x(bi,j)− xs

∥x(bi,j)− xs∥
, (16)

16

which is calculated based on the atom representations. For the conciseness of expression, here we use
hbi,j and hs to denote the pocket and ligand atom embeddings, respectively. Finally, the coordinates
of pocket atoms x(bi,j) and ligand molecule atoms xs are updated as follows:

x(bi,j)← x(bi,j) +
1

Kr

∑
k∈N (i)

gij,kj +
1

Nl

∑
s

gij,s, (17)

xs ← xs −
1

|B|
∑
i,j

gij,s, 1 ≤ i ≤ m, 1 ≤ j ≤ ni, 1 ≤ s ≤ Nl, (18)

where N (i) indicates the neighbors in the constructed residue-level Kr-NN graph; |B| denotes the
number of pocket atoms.

A.4 Structure initialization based on interpolation and extrapolation

…

…

Residues with known structure

Linear interpolation

Linear extrapolation

Figure 5: Structure initialization based on interpolation and extrapolation

Figure 5 illustrates our structure initialization strategy. We initialize the residue coordinates with
linear interpolations and extrapolations based on the nearest residues with known structures in the
protein. Denote the sequence of residues as A = a1 · · ·aNs , where Ns is the length of the sequence.
Let Z(ai) ∈ R3×4 denote the backbone coordinates of the i-th residue. If we want to initialize
the coordinates of the i-th residue, we take the following initialization strategy: (1) We use linear
interpolation if there are residues with known coordinates at both sides of the i-th residue. Specifically,
assume p and q are the indexes of the nearest residues with known coordinates at each side of the i-th
residue (p < i < q), we have: Z(ai) =

1
q−p [(i− p)Z(aq) + (q − i)Z(ap)]. (2) We conduct linear

extrapolation if the i-th residue is at the ends of the chain, i.e., no residues with known structures
at one side of the i-th residue. Specifically, let p and q denote the index of the nearest and the
second nearest residue with known coordinates. The position of the i−th residue can be initialized as
Z(ai) = Z(ap) +

i−p
p−q (Z(ap)−Z(aq)). We initialize the side-chain atoms’ coordinates with the

coordinate of their corresponding Cα. In practice, we can further apply local geometric constraints to
the initialized backbone atoms in each residue.

A.5 Equivariance.

FAIR has the desirable property of E(3)-equivariance as follow:

Theorem 1. Denote the E(3)-transformation as Tg and the generative process of FAIR as
{(bi,x(bi))}mi=1 = pθ(A \ B,M), where {(bi,x(bi))}mi=1 indicates the designed pocket seqeuce
and structure. We have {(bi, Tg · x(bi))}mi=1 = pθ(Tg · (A \ B), Tg · M).

The E(3)-transformation on the euclidean coordinate x ∈ R3 can be represented as: Tg ·x = Ox+ t,
where O ∈ R3 is the orthogonal transformation matrix, t ∈ R3 is the translation vector. Before we
give the proof, we present the following lemmas.

Lemma 1. The hierarchical graph transformer encoder is E(3)-invariant.

Proof. As shown in Sec. 3.2, the input to the hierarchical graph transformer encoders are scalar node
features and pairwise distances, and the output is atom and residue scalar features. Therefore, the
hierarchical encoder is E(3)-invariant by construction.

17

Lemma 2. The backbone and full-atom structure refinement are E(3)-equivariant.

Proof. Firstly, with the E(3)-invariant encoder, the obtained residue embeddings {fi}, atom embed-
dings {hi}, and the output of functions g and g′ are E(3)-invariant. Furthermore, ∀Tg ∈ E(3), it is easy
to have Tg · (x(bi,j)−x(ak,j)) = Ox(bi,j)+ t−Ox(ak,j)− t = O(x(bi,j)−x(ak,j)). Similarly,
we have Tg · (x(bi,j)−xs) = O(x(bi,j)−xs) and Tg · (x(bi,j)− x̄(ak)) = O(x(bi,j)− x̄(ak)).
Let x(bi,j)′ denote the updated pocket coordinates in Equation. 7 and 17. It is then possible to derive
that the updated pocket coordinates are E(3)-equivariant as follows:

Tg · x(bi,j) + Tg ·
1

Kr

∑
k∈N (i)

gij,kj + Tg ·
1

Nl

∑
s

gij,s (19)

= Ox(bi,j) + t+O
1

Kr

∑
k∈N (i)

gij,kj +O
1

Nl

∑
s

gij,s (20)

= O[x(bi,j) +
1

Kr

∑
k∈N (i)

gij,kj +
1

Nl

∑
s

gij,s] + t (21)

= Tg · x(bi,j)′. (22)

Similarly, for the updated ligand coordinates, we have:

Tg · xs − Tg ·
1

|B|
∑
i,j

gij,s (23)

= Oxs + t−O 1

|B|
∑
i,j

gij,s (24)

= O[xs −
1

|B|
∑
i,j

gij,s] + t (25)

= Tg · x′
s. (26)

Here, we use x′
s to denote the updated ligand coordinates in Equation. 8 and 18. Therefore, the

structure refinement modules in backbone and full-atom refinement are E(3)-equivariant.

Proof. The predicted residue types are obtained by applying softmax and MLPs on the hidden
representations from the E(3)-invariant encoder. With the above lemmas, Theorem 1 can be proved
since the E(3)-invariant encoder and the E(3)-equivariant structure refinement constitute the E(3)-
equivariant generative process of FAIR. Formally, we have:

{(bi, Tg · x(bi))}mi=1 = pθ(Tg · (A \ B), Tg · M), (27)

which concludes Theorem 1.

A.6 Huber Loss

In Equation 10, we use Huber loss [24] as the structure refinement loss for the stability of optimization,
which is defined as follows:

lhuber(x, y) =

{
0.5 (x− y)2, if |x− y| < ϵ,
ϵ · (|x− y| − 0.5 · ϵ), else, (28)

where x and y represent the predicted and ground-truth coordinates. The Huber loss has the following
property: if the L1 norm of |x− y| is smaller than ϵ, it is MSE loss, otherwise it is L1 loss. At the
beginning of the model training, the deviation between the predicted and ground-truth coordinates is
large, and the L1 term makes the loss less sensitive to outliers than MSE loss. The deviation is small
when the training is almost complete, and the MSE loss is near 0. In practice, we find that directly
using MSE loss sometimes leads to NaN at the beginning of the training, while Huber loss makes the
training procedure more stable. Following the suggestion of previous works [28, 33], we set ϵ = 1 in
all our experiments.

18

B Implementation Details

PocketOptimizer [45] 3 is a physic-based computational protein design method that predicts muta-
tions in the binding pockets of proteins to increase affinity for a specific ligand. Its previous version
is [42]. Generally, there are four main steps in PocketOptimizer: structure preparation, flexibility
sampling, energy calculations, and computation of design solutions. Specifically for the energy
calculations, both packing-related energies and binding-related energies are considered. As for the
output design solutions, we select the top 100 designs identified by PocketOptimizer based on integer
linear programming for downstream metric calculations. Following the suggestions in the original
paper, we use AMBER ff14S force field [41] for energy computation and the Dunbrack rotamer
library [55] for rotamer sampling for PocketOptimizer in our implementation.

DEPACT [8] 4 is a template-matching method that follows the two-step strategy of RosettaMatch
[67] for pocket design and has better performance. It first searches the protein-ligand complexes in
the database with similar ligand fragments and constructs a cluster model (a set of pocket residues).
It then grafts the cluster model into the protein pocket with PACMatch, which places residues in
pocket clusters on protein scaffolds by matching key atoms in the cluster model with key atoms of the
protein scaffold. The qualities of the generated pockets are evaluated and ranked based on a statistical
scoring function. We take the top 100 designed pockets for evaluation. The template databases are
constructed in our experiments based on the corresponding training datasets for fair comparisons.

HSRN [28] 5 was originally developed for antibody design. It autoregressively predicts the residue
sequence and docks the generated structure. To adapt HSRN to our pocket design task, we replace
the antigen with the target ligand molecule to provide the context information. We finetune HSRN’s
hyperparameters based on its performance on the validation set. The hidden size in the message-
passing network is 256, the number of layers is 4, and the number of RBF kernels is 16.

Diffusion [39] 6 jointly models both the sequence and structure of an antibody using diffusion
probabilistic estimates and an equivariant neural network. The diffusion model first aggregates
information from the antigen and the antibody during generation. It then iteratively updates each
amino acid’s type, position, and orientation. Since the side-chain atoms are not modeled, they are
reconstructed at the last step with side-chain packing. To adapt Diffusion to our pocket design task,
we replace the antigen with the target ligand molecule to provide the context information. We adjust
the key hyperparameters based on the results of the validation sets. The number of layers, hidden
dimension, and diffusion steps are 6, 128, and 100, respectively.

MEAN [33] 7 tackles antibody design as a conditional graph translation problem with the modified
GMN [23] as encoders. Specifically, MEAN co-designs antibody sequence and structure via a multi-
round progressive full-shot scheme, which is more efficient than auto-regressive or diffusion-based
approaches. However, it only models protein backbone atoms and neglects side chains, which are
important for protein-protein and protein-ligand interactions. To adapt MEAN to our pocket design
task, we replace the antigen with the target ligand molecule to provide the context information. The
hyperparameters are finetuned based on the validation set for better performance. We set the hidden
size as 128, the number of layers as 3, and the number of iterations for decoding as 3.

FAIR is our full atom pocket sequence-structure co-design method. The number of layers for the
atom and residue-level encoder are 6 and 2, respectively. Ka and Kr are set as 24 and 8 respectively.
The number of attention heads is set as 4; The hidden dimension d is set as 128. The standard
deviation of the Gaussian noise added to the ligand coordinates in model training is 0.1.

3https://github.com/Hoecker-Lab/pocketoptimizer
4https://github.com/chenyaoxi/DEPACT_PACMatch
5https://github.com/wengong-jin/abdockgen
6https://github.com/luost26/diffab
7https://github.com/THUNLP-MT/MEAN

19

1 5 10 15 20
Iteration Steps

0.0

0.2

0.4

0.6

0.8

1.0

R
at

io

Unconverged Residue Types
AAR

(a)

1 5 10 15 20
Iteration Steps

1.4

1.6

1.8

2.0

R
M

SD

(b)

1 5 10 15 20
Iteration Steps

1.4

1.6

1.8

2.0

2.2

R
M

SD

(c)

Figure 6: (a) The ratio of unconverged residue types and AAR during the iterations of FAIR on
Binding MOAD; (b) The convergence plot of RMSD on CrossDocked; (c) The convergence plot of
RMSD on Binding MOAD.

C More Experimental Results

C.1 Pocket Generation without Backbone Reference

In FAIR, the original protein backbone coordinates are leveraged for residue-level KNN graph
construction for training and generation stability. However, FAIR can also work well without protein
backbone coordinates as a reference. In our supplementary experiments, FAIR can still achieve
comparable performance.

C.2 Convergence of Iterative Refinement

We show the RMSD curves in Table 6 (b) & (c). We observe the RMSD converges rapidly as
the protein pocket is refined. The curve has fluctuations near step 5, potentially caused by the
initialization of the side-chain atom at the beginning of full-atom refinement. The coordinates of
side-chain atoms are randomly initialized near the Cα and may distort the backbone atoms with the
structural refinement. However, the RMSD of FAIR becomes steady quickly after step 10, which
again shows the effectiveness of FAIR.

C.3 Local Geometry of the Generated Pockets

Since the RMSD used in Tables 1 and 2 reflects only the correctness of global geometry in generated
protein pockets, we also calculate the RMSD of bond lengths and angles in the designed pocket to
validate the local geometry following previous work [33]. We measure the average RMSD of the
covalent bond lengths in the pocket backbone (C-N, C=O, and C-C). The three conventional dihedral
angles in the backbone structure, i.e., ϕ, ψ, ω [57] are considered, and the average RMSD of their
cosine values are calculated. The results in Table 3 demonstrate that FAIR still achieves much better
performance regarding the local geometry than the baseline methods.

Table 3: The average RMSD of bond lengths and dihedral angles of the generated backbone structures
on the two datasets.

Models Bond lengths Angles (ϕ, ψ, ω)

PocketOptimizer 0.47 0.328
DEPACT 0.68 0.360

HSRN 0.76 0.437
Diffusion 0.49 0.344
MEAN 0.44 0.312
FAIR 0.35 0.287

C.4 Hyperparameter Analysis

Here, we evaluate the influence of hyperparameter choices on FAIR performance. We focus on two
hyperparameters, T1 and T2, for iterative refinements. In Figure 7, we observe that the performance

20

of FAIR is stable when T1 and T2 are larger than 5 and 10, respectively, indicating the refinement
processes gradually converge. We set T1 and T2 to 5 and 10 throughout our experiments.

2 4 6 8
T1

15

20

25

30

35

40

45

A
A

R
(%

)

CrossDocked
Binding MOAD

(a)

2 4 6 8
T1

1.35

1.40

1.45

1.50

R
M

SD

CrossDocked
Binding MOAD

(b)

2 4 6 8
T1

8.5

8.0

7.5

7.0

6.5

Vi
na

CrossDocked
Binding MOAD

(c)

4 6 8 10 12 14
T2

36

38

40

42

44

A
A

R
(%

)

CrossDocked
Binding MOAD

(d)

4 6 8 10 12 14
T2

1.30

1.35

1.40

1.45

1.50

1.55

R
M

SD

CrossDocked
Binding MOAD

(e)

4 6 8 10 12 14
T2

8.5

8.0

7.5

7.0

6.5

Vi
na

CrossDocked
Binding MOAD

(f)

Figure 7: Hyperparameter analysis with respect to T1 (first row) and T2 (second row).

21

	Introduction
	Related Work
	Full-Atom Protein Pocket Design
	Notation and Problem Statement
	Hierarchical Encoder
	Atom-Level Encoder
	Residue-Level Encoder

	Iterative Refinement
	Backbone Refinement
	Full-Atom Refinement

	Model Training and Sampling
	Equivariance

	Experiments
	Experimental Setting
	Ligand-Binding Pocket Design
	Additional Analysis of FAIR's Performance

	Limitations and Future Research
	Conclusion
	Acknowledgements
	Details on FAIR Model
	Training and Sampling Algorithms
	Additional Information on Hierarchical Graph Transformer Encoder
	More Details of the Full-atom Structure Refinement
	Structure initialization based on interpolation and extrapolation
	Equivariance.
	Huber Loss

	Implementation Details
	More Experimental Results
	Pocket Generation without Backbone Reference
	Convergence of Iterative Refinement
	Local Geometry of the Generated Pockets
	Hyperparameter Analysis

