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Fig. 1. We design and develop DrugExplorer for domain users to understand and assess graph neural network-based drug repurposing.
The design process follows the nested model of visualization design and extends it by adding user-centric XAI design considerations.
As in the nested block and guideline model (NBGM) [39], the four nested layers are drawn separately for visual simplicity.

Abstract— Whether AI explanations can help users achieve specific tasks efficiently (i.e., usable explanations) is significantly influenced
by their visual presentation. While many techniques exist to generate explanations, it remains unclear how to select and visually present
AI explanations based on the characteristics of domain users. This paper aims to understand this question through a multidisciplinary
design study for a specific problem: explaining graph neural network (GNN) predictions to domain experts in drug repurposing, i.e.,
reuse of existing drugs for new diseases. Building on the nested design model of visualization, we incorporate XAI design considerations
from a literature review and from our collaborators’ feedback into the design process. Specifically, we discuss XAI-related design
considerations for usable visual explanations at each design layer: target user, usage context, domain explanation, and XAI goal at the
domain layer; format, granularity, and operation of explanations at the abstraction layer; encodings and interactions at the visualization
layer; and XAI and rendering algorithm at the algorithm layer. We present how the extended nested model motivates and informs the
design of DrugExplorer, an XAI tool for drug repurposing. Based on our domain characterization, DrugExplorer provides path-based
explanations and presents them both as individual paths and meta-paths for two key XAI operations, why and what else. DrugExplorer
offers a novel visualization design called MetaMatrix with a set of interactions to help domain users organize and compare explanation
paths at different levels of granularity to generate domain-meaningful insights. We demonstrate the effectiveness of the selected visual
presentation and DrugExplorer as a whole via a usage scenario, a user study, and expert interviews. From these evaluations, we derive
insightful observations and reflections that can inform the design of XAI visualizations for other scientific applications.

Index Terms—Visual Explanation, XAI, Graph Neural Network, Visualization Design Model, Drug Repurposing

1 INTRODUCTION

Recent years witnessed a rapid expansion of Artificial Intelligence (AI)
techniques in various domains and a growing need for eXplainable
Artificial Intelligence (XAI). While a variety of algorithms have been
proposed to generate explanations, there is no guarantee that these
explanations are always usable in the applied domain, i.e., whether
domain users can use AI explanations to complete desired tasks effi-
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ciently. Even though some studies demonstrate the positive effects of
AI explanations [38], others report that AI explanations fail to generate
actionable insights and even manipulate user trust [1, 75]. Recently, AI
researchers started to recognize usability as an indispensable require-
ment for AI explanations [59, 87].

Usable AI explanations not only require accurate, stable, and
faithful algorithms, but also need well-designed user interfaces that
bridge the capabilities of algorithms to the needs of users in applica-
tion domains [15, 36, 68, 69]. Researchers have advocated for user-
centered XAI, within which usable explanations are extensively dis-
cussed [15, 36, 40, 68, 69]. These studies provide valuable frameworks
and guidelines for designing explanation interfaces, either by borrow-
ing lessons from social science and psychology [40, 68] or conducting
empirical studies with real users [15,36]. However, these studies mainly
discuss the design of general user interfaces without a specific investi-
gation about interactive visualizations, which is a crucial component in
explanation interfaces.

Given the importance of visualization in AI, a growing number of
AI visualization tools have been proposed. Most existing AI visu-



alization tools are developed for AI developers and AI practitioners
rather than domain users who have limited expertise in AI [82]. Stud-
ies that target domain users [14, 72] often concentrate on proposing
novel visualization designs and coordinated views to make sense of
complicated data. A specific explanation is usually selected before the
design study based on its popularity in the ML community without con-
sidering how the domain characteristics and user needs may influence
the selection and visualization of explanations. However, many user
studies demonstrated that the visual presentation of explanations could
significantly influence humans in using AI, ranging from confidence
level to performance accuracy [4, 8, 18]. While the visualization field
has accumulated extensive experience in developing visualization tools
for domain users and summarized many insightful visualization mod-
els [11, 39, 43, 57, 65], the visualization designs are mainly driven by
domain problems. It remains unclear how to effectively investigate and
fulfill users’ needs for usable explanations through the visualization
design process.

This paper presents a design study where we investigated how to
select and visualize AI explanations for domain users. We focus on
one particular scientific application of AI, i.e., graph neural networks
(GNN) in drug repurposing, which enables us to closely work with
both domain and AI experts, iterate designs based on user feedback,
and conduct evaluations on real datasets and tasks. Our design study
follows the nested model and the nested block and guideline model
(NBGM) [39, 43] 1 since they provide explicit mechanisms to cap-
ture and justify design decision rationales. We incorporate a diverse
set of user-centric XAI design considerations into different layers of
the design processes, based on our literature review and collaborators’
feedback in our iterative design study, as shown in Fig. 1. This de-
sign process decouples the explanation abstraction from the XAI
algorithm, aiming to provide explanation visualizations and in-
teractions that better reflect the domain characterization. Based
on the domain characterization (target user, usage context, XAI goal,
domain explanation), DrugExplorer provides path-based explanations
and presents them both at both instance level and group level for two
key XAI operations, why and what else. We also propose a novel
visualization design MetaMatrix to help domain users organize and
compare explanation paths at different levels of granularity to generate
domain-meaningful insights for their XAI goals.

This paper makes three main contributions:
• We design and develop an interactive visualization tool, DrugEx-

plorer, to assist domain users in GNN-based drug repurposing.
• We present the design process of DrugExplorer, which applies the

nested model to the selection and visualization of AI explanations
by incorporating a diverse set of user-centric XAI considerations.

• We evaluate DrugExplorer and share observations and insights
that are generalizable and valuable for the development of future
domain-specific XAI visualization tools.

2 STUDY CONTEXT: GRAPH NEURAL NETWORKS IN DRUG
REPURPOSING

Drug repurposing is an effective strategy to identify new therapeutic
uses of existing drugs. Compared to developing a new drug from
scratch, which typically takes 13-15 years and 2-3 billion dollars on
average, repurposed drugs can potentially get to market in half the
time and at one-quarter of the cost [45]. However, despite considerable
advances, current examples of successful drug repurposing mainly
came about through serendipity.

Recently, GNNs have emerged as a promising approach in computa-
tional drug repurposing. However, predicted candidate drugs require
rigorous and systematic validation, including in vitro experiments, in
vivo experiments, and clinical trials. Given limited resources, a critical
task for domain experts is to decide which candidate drugs to investigate
further and which ones to leave out.

1Unless specified otherwise, the nested model refers to both its original
version and its extension: the nested block and guideline model (NBGM).

3 RELATED WORK

3.1 User-centric XAI

User-centric XAI investigates how humans interpret, interact with, and
use XAI. Here, we review user-centric XAI studies that inform the
design of explanation interfaces for non-AI-expert end users.

To guide the design of explanation interfaces, some researchers em-
pirically study users’ behavior and needs when using XAI. For example,
Chen et al. [15] found that interactive explanations were more effective
than static ones at improving user comprehension, but with the cost
of longer decision time. Feng and Boyd-Craber [18] observed that
users used different game playing strategies with highlight-, guess-, and
evidence-based explanations. On the other hand, by conducting case
studies and expert interviews, Zytek et al. [87] summarized a list of us-
ability challenges of AI in high-stakes decision-making. Liao et al. [36]
present user needs for explainability as a set of prototypical questions.

Another parallel research aims to summarize guidelines and form
frameworks by reviewing literature in related files such XAI, human-AI
interaction, psychology, and social science [6, 12, 34, 42, 58, 68]. For
example, Chari et al. [12] proposed Explanation Ontology, which can
help designers identify the components that an XAI system should and
can provide to its end users. Mohseni et al. [42] presented a framework
that categorizes the design goals of XAI and provides guidelines to
evaluate these goals at each stage of the design process. Most rele-
vant to our study is the conceptual framework contributed by Wang et
al. [68]. This framework maps algorithm-generated explanations to
human decision-making theories, aiming to mitigate biased decision
by helping users select appropriate explanation types and represen-
tations for domain-specific XAI applications. Despite the valuable
guidelines provided, the proposed framework failed to include how the
characteristics of the domain problem can influence the selection of AI
explanations. Moreover, the framework only covered simple visualiza-
tions (e.g., bar charts, heat maps) and provided limited guidance for the
typical multi-step visualization design process.

Focusing on visualization design for usable explanations, this paper
adapts the nested model [39, 43] to design usable visual explanation
interfaces. We discuss the threats and validation methods for usable
visual explanations at each level of the design framework.

3.2 Visualizations for XAI

Interactive visualizations have been widely used as a medium for ex-
planation [14, 23, 82], since they excel at communication and summa-
rization of complex information.

Most existing AI visualization tools are developed for AI developers
and AI practitioners [23,82]. These tools succeed on a range of tasks, in-
cluding data augmentation and cleaning [13,78], model debugging [10],
and model comparison and selection [71–73]. However, domain users
have different expertise and analysis goals than AI experts. As a result,
these tools can generally not be directly applied for domain users.

Some recent studies take into account the needs of domain users
for the development of XAI visualization tools [14, 33, 41]. These
studies contribute novel visualization designs and coordinated views
to help domain users make sense of complicated data and generate
domain-meaningful insights. However, these tools usually employed
one particular explanation technique and representation selected based
on either popularity or state-of-the-art. As a result, they don’t consider
the selection of explanations in the design process. However, these tools
usually left the selection of XAI outside the design process, choosing
an explanation technique and representation based on its popularity in
the ML community. Furthermore, existing visualization models [11,
39, 43, 57, 65] propose no explicit design guidelines for AI explanation
selection and representation.

This study incorporates the selection of explanation techniques and
representations into the design of an XAI visualization tool. We extend
the nested design model, with a particular focus on how the characteris-
tics of the domain problem shape the selection of explanations and the
design of visualizations.



3.3 AI and Visualization in Drug Repurposing

Recent advances in AI have presented impressive capabilities to repur-
pose drugs at unprecedented speed, scale, and accuracy. AI-assisted
drug repurposing attracts increasing research interest, especially for
treating emerging and challenging diseases, such as COVID-19 [21]. A
widely-used AI model for drug repurposing is GNNs. Many research
efforts have been undertaken in GNN-based drug repurposing, includ-
ing construction of knowledge graphs that comprehensively summarize
the existing biomedical knowledge [25, 84], and development of GNN
models that can effectively learn from large knowledge graphs [21, 60].

Even though current GNN-based drug repurposing approaches show
promising performance, they usually provide limited explanations,
which are important to validate new findings and extend human under-
standing of how drugs act in different diseases [27]. This gap partly
comes from the complicated nature of drug discovery, as well as the
challenges of conducting multidisciplinary research across the fields
of visualization, biomedicine, AI, and human-computer interaction. A
vast array of XAI techniques have been proposed to generate explana-
tions for GNN predictions [2,55,79]. Meanwhile, many visual analytics
tools have been proposed to present complex biological pathways and
assist domain users in drug discovery [32, 35, 47–49, 54]. However,
how to combine these XAI and visualization techniques to facilitate
human-AI collaboration in drug repurposing is still an open question.

This study builds upon prior studies in GNN-based drug repurposing
and GNN explainability. While the visualization design is largely
inspired by previous studies on visual analytics of graphs and biological
pathways, our focus is on defining the designing process for visualizing
AI explanations for domain experts.

4 INCORPORATING XAI DESIGN CONSIDERATIONS INTO THE
NESTED MODEL OF VISUALIZATION DESIGN

This section introduces the motivation and the methodology for in-
corporating XAI considerations into the visualization design process.

4.1 Overview

Our design study included two stages and was conducted by a mul-
tidisciplinary team with diverse backgrounds in visualization, XAI,
and biomedicine. In the first stage, we investigated the needs and
challenges in explaining AI-based drug repurposing to domain experts
with a prototype tool for a specific disease, SARS-CoV-2 (Figure S3,
Supplementary Material). This prototype was driven by an initial set of
requirements and an explanation method (i.e., GNNExplainer [79]) pro-
vided by the XAI researchers, who are also co-authors of this paper. In
the second stage, we designed and developed DrugExplorer for general
drug repurposing based on the feedback in stage one. The team met on
a regular basis to discuss the visualization results of GNN explanations
and predictions and iterate the design based on expert feedback.

The design study reveals the challenge of directly applying exist-
ing design study models. In particular, current visualization models
are usually driven by domain problems and provide little guidance
about 1) how to investigate experts’ needs for AI explanations and
2) how these needs influence visualization design decisions. To in-
corporate XAI considerations in our visualization design, we choose
the nested model among existing visualization models to highlight
design decisions rather than the design process (e.g., [57]) or archi-
tecture (e.g., [11, 65]). The nested model provides a clear structure to
describe and justify design decisions (i.e., design decisions are cate-
gorized into four nested layers and connected via design guidelines).
Therefore, it serves as a useful backbone structure to incorporate XAI
design considerations into our design decisions. To guide the design
process with representative XAI considerations, we first extracted all
the XAI-related design considerations from nine XAI design frame-
works [12, 17, 19, 24, 28, 34, 36, 42, 68]. We then merged similar design
considerations and removed design considerations that are not related
to domain users (e.g., design considerations targeted at AI novices).
We carefully fit these design considerations into the four layers of the
nested model. We tested and modified these considerations throughout

Table 1. User-centric XAI considerations in the visualization design.

Block Notes Ref

Domain

Target
User

users’ research field, AI expertise,
and role in using AI systems

[12, 19, 24,
34, 36, 42]

Usage
Context

when and where will the AI explana-
tions be used (e.g., time sensitivity)

XAI
Goal

domain-related problems that the
users aim to solve using AI expla-
nations

Domain
Explanation

how a human expert would reason
about a phenomenon in the applied
domain

user men-
tal model
in [17, 24,
42]

Abstraction

Format

attribution: explain using feature
attributes (e.g., salience map, feature
importance scores)

[28, 68]
mainly for
Euclidean
data such as
images and
tables

example: explain using similar or
contrastive examples
clause: explain using rules or deci-
sion trees
node: important neighbor nodes to
the prediction targets

Our survey
on GNN ex-
planations
based
on [80]

path: important message passing
for the prediction targets
subgraph: important subgraphs
around the prediction targets

Granularity

local: explain an individual predic-
tion [34, 36, 42]global: explain a prediction process
of a model
group: explain a group of similar
predictions

collaborators’
feedback

Operation

why: reason about why a certain pre-
diction is made

[36, 42, 68]

why not: reason about why a certain
prediction is not made
what if: understand how a specific
modification will influence the pre-
diction
how to: investigate the adjustment
needed to generate a different pre-
diction
what else: query similar instances
that generate similar predictions

Visualization

Encoding how to present the explanation for-
mat at selected levels of granular-
ity

partially
covered
in [28]

Interaction how to support required operations
at the selected explanation format

the design process based on users’ feedback about DrugExplorer. Ta-
ble 1 summarizes how different XAI considerations are incorporated
into the design process and extend the nested model.

4.2 Domain

In the domain characterization layer, a visualization designer identi-
fies the domain problems and needs related to the design of visual
explanations. Unlike the nested model, which includes all necessary
elements (e.g., target users, domain questions) in one “situation” block,
we follow the practice in current XAI frameworks [34, 42] and use four
separate blocks (Target User, XAI Goal, Usage Context, and Domain
Explanation) to provide clearer design guidance.



Target User describes the characteristics of users such as their AI ex-
pertise, research field, and their responsibilities in using the AI system.
Previous studies [42] categorize the users into three main groups: data
experts, AI novices, and AI experts. The domain users in this paper
belong to the data expert group. XAI Goal relates to the motivation
of explainability and clarifies which domain-related problems that the
target users aim to solve with AI explanations. It is very important
to distinguish between the goal for AI and the goal for AI explana-
tions. Usage Context depicts the context of using AI explanations
(when and where), revealing characteristics such as outcome criticality,
time-sensitivity, and decision complexity.

An important block that is often overlooked in previous literature
is Domain Explanation, which describes how a human expert would
reason about a phenomenon in the applied domain. Domain Explana-
tion reflects the user mental model and can help designers present AI
explanations in a way that can be efficiently and accurately interpreted
by users. Domain Explanation can vary based on target user and usage
context. For example, a human expert might use inductive explanation
(e.g., explain using similar items) if the time to make decisions is lim-
ited and use deductive explanations (e.g., explain through mathematical
concepts) for less time-sensitive scenarios [68].

4.3 Explanation Abstraction
This layer clarifies what explanation content and operations should
be provided based on the blocks identified in domain characterization.
Instead of adding an additional explanation layer to the original 4-
layer nested model, we specify the data/task abstraction layer as an
explanation abstraction layer by considering explanations as a special
type of data. This is because most AI explanations are already described
in the language of computer science, which is the fundamental purpose
of using the abstraction layer in the nested model [43]. We believe such
a specification is more concise and easy to use.

From the literature, we identify three key blocks in the explanation
abstraction layer: Format, Granularity, and Operation. In the original
nested model, blocks are either “identified” or “designed”. However, ex-
planation abstraction should be “selected” among the possible options
restricted by the existing XAI techniques. Therefore, we also enumerate
the possible options for each block in the explanation abstraction layer
to better guide the design of visual explanations. Meanwhile, by ab-
stracting the three blocks, we can describe explanations in a way that is
independent of the XAI algorithm details. Both ante-hoc and post-hoc
explanations are supported using these abstractions. For example, rule-
based explanations (an explanation format) can be generated by both
ante-hoc (e.g., a decision tree) or post-hoc methods (e.g., deep-red [86]).

Format: Jin et al. [28] reviewed 59 XAI techniques and summarized
three explanation formats: attribution (e.g., feature importance scores),
example (e.g., similar examples, counterfactual examples), and clause
(e.g., decision trees, rule lists). This categorization is also used in
later XAI frameworks [68]. However, we found that these formats,
even though helpful, are difficult to be applied to summarize GNN
explanations, potentially caused by the fact that the three formats are
summarized from XAI techniques for Euclidean data (e.g., text, image,
table). The boundaries between these three formats can be vague
in GNN explanations. Take node prediction in GNN as an example.
Given a graph with some unlabeled nodes, a GNN predicts an unlabeled
“node m as type A”. A common explanation is that “because node m is
connected to several type A nodes” [29, 79]. This explanation can be
treated as an example-based explanation by considering other type A
nodes as individual examples. On the other hand, this explanation can
also be treated as attribution-based explanation by considering nodes
as the attributions of the input graph.

To solve this problem and guide the visual design for GNN explana-
tions, we conducted a review of GNN explanation techniques based on
[80] and summarized three main formats for GNN explanations, i.e.,
nodes, paths, and subgraphs. Node-based explanations show important
nodes that contribute most to a certain prediction. Such explanations
can be extracted from GNN models that employ the attention mecha-
nism [66] or constructed by post-hoc methods, e.g., Graph Mask [55].

Subgraph-based explanations show a subgraph of the input knowledge
graph that is most related to a certain prediction. Such explanations can
be extracted from GNNs that learn a local subgraph for making predic-
tions (e.g, SEAL [85]) or constructed by post-hoc algorithms, e.g., Sub-
graphX [81]. Path-based explanations explain a prediction through rele-
vant paths in the knowledge graph. Such explanations can be extracted
from models that consider multi-hop connections (e.g., GTN [83]) or
constructed by post-hoc algorithms (e.g., GNN-LRP [56]).

While the explanation format is related to all the domain blocks, it is
mostly influenced by the domain explanation. In other words, designers
should select explanation formats that are similar to how human users
explain a phenomenon to their peers [9, 63].
Granularity: granularity specifies whether to present local explana-
tions (i.e., explain individual predictions), group explanations (i.e.,
explain a group of predictions), global explanations (i.e., explain the
whole model), or a combination of the above. Most existing XAI
frameworks categorize explanations into local and global and rarely
discuss group explanations, which is reported by our collaborators as
an important level of granularity. For example, when reasoning about
drug indications, domain users usually group drugs that share a similar
mechanism of action. A group explanation for these similar drugs can
facilitate the understanding and increase the efficiency of the analysis.
Operation: Similar to the nested model, we include both low-level
operations and high-level operations. A high-level Operation indicates
a reasoning process users conduct upon explanations. We bring lessons
from previous surveys and expert interviews [36, 42] and summarize
five types of high-level operations: why, why not, what if, how to,
what else. Other operations, such as understanding algorithms, are
excluded since they are not directly related to domain-specific XAI
applications, as indicated by the interview results from Sibyl [87]. Low-
level operations are similar to the low-level tasks discussed in visual
analytics literature [5, 76]. To accomplish high-level operations, users
need to conduct a set of low-level operations such as filter explanations,
compare explanations, and identify abnormal explanations.

4.4 Visualization

Designers create visual encoding and interactions in this layer to present
explanations to domain users, mainly driven by the three blocks in
explanation abstraction. Specifically, the explanation formats should be
visualized at the selected levels of granularity and the operations need
to be supported through a set of interactive visualizations.

At the same time, common design practices for AI explanations
should also be considered to provide familiar visualizations to users
and flatten their learning curve. Some explanations are commonly
represented using standard visualizations in the wild, as discussed by
Wang et al. [68] and Jin et al. [28]. For example, scatter plots have
been widely used to display similar and counterfactual examples; the
beeswarm plot is typically used to visualize attribution explanations
(e.g., SHAP value) for tabular data [28, 68].

4.5 Algorithm

The Algorithm level includes the algorithmic implementation of both
the interactive visualizations and the XAI techniques. An XAI algo-
rithm should be selected and evaluated by jointly considering the output
of the visualization layer, the speed of the explanation query, and the
performance of the XAI algorithm (e.g., stability, faithfulness). We do
not distinguish ante-hoc and post-hoc explanations here since they are
able to support the same explanation abstractions (e.g., they both can
generate local explanations). We refer readers to Vilone and Longo’s
survey [67] for a comprehensive list of XAI algorithms and Rubin’s
paper [51] for the debate about ante-hoc and post-hoc explanations.

5 DRUGEXPLORER

This section describes how the XAI considerations introduced in Sect. 4
guide the design of DrugExplorer. Fig. 2 summarizes the design process
and our evaluation strategies. We do not distinguish links within a layer
and between layers for simplicity.



Target User Usage Context

XAI Goal
��������

Domain Explanation

Operations
�����������������

�����������������������

Format
�������
����
	�

Granularity
��������������

DrugExplorer ����������
��������

������������
�
��������


	�����������
��
��������

�
���
��

�
���������������

����
�


	������
��
��������
��

�
����
���
��

Fig. 2. The design process for DrugExplorer based on the proposed
extension of the nested model with user-centric XAI considerations.

5.1 Domain
The Target Users of DrugExplorer are domain experts in drug repur-
posing (e.g., wet lab biologists, physicians, disease experts, pharma-
cologists). They have limited knowledge about AI algorithms but high
expertise in the application domain. As shown in Fig. 3, the typical
Usage Context of DrugExplorer is after a GNN has predicted a list of
drug candidates and before downstream-evaluation of these drugs. In a
high-stakes task such as drug repurposing, model predictions need to be
systematically evaluated by domain experts through resource-intensive
laboratory experiments, including in vitro screening [21], in vivo test-
ing [16], and clinical trials [61]. Given that only limited resources are
available for such studies, domain experts need to choose a small num-
ber of highly promising therapeutic opportunities out of a number of
predicted drugs. Therefore, the XAI Goal is to assist domain experts in
evaluating GNN predicted drugs. Specifically, domain experts will use
the explanations to G1) assess whether an individual drug prediction is
promising and deserves further investigation; G2) efficiently select sev-
eral most promising drugs from a potentially long list of predictions. In
terms of Domain Explanation, domain experts typically examine drug
repurposing predictions by looking at biological processes associated
with the predicted drug and reasoning how those processes relate to the
disease for which the drug was predicted [21,52]. Take Ibuprofen as an
example (Fig. 4(a)). This drug can treat pain because it inhibits COX,
which is required for the synthesis of prostaglandins via the arachidonic
acid pathway, and prostaglandins are important mediators of pain.

5.2 Abstraction
Format: Based on the experiments on real datasets and feedback from
collaborators, we can rank the three explanation formats based on their
similarities to the domain explanation (Fig. 4). A suitable explanation
format for drug repurposing should mimic how a human expert
explains a drug indication with biological mechanisms. Therefore,
path-based explanations are most suitable because they represent the se-
mantic paths in the knowledge graph. For instance, the biological mech-
anism of Ibuprofen can be intuitively depicted by a path: [Ibuprofen]-
[COX]-[arachidonic acid pathway]-[pain]. Explanations based on
neighbor nodes are least similar to domain explanations as they mainly
depict the message passing mechanism at each GNN layer. Even though
the subgraph may contain some paths that make sense in the biomedical
context, it can be hard for users to effectively locate these paths.

Human
Evaluation

Model
Prediction

Visual
Explanation

Training Data

Fig. 3. DrugExplorer provides explanations to help domain experts
assess drug repurposing predictions before downstream evaluation.

Operation: We selected two high-level operations, “why” and
“what else”, based on the XAI goals in Sect. 5.1. The “why” operation
helps users understand the reasons for a certain drug prediction (G1).
Since the explanation for one drug can consist of multiple paths, do-
main users need visualizations and interactions to help them organize
these explanations and generate domain insights. Specifically, users
may need to G1.1) summarize explanations based on their semantic
meanings and G1.2) filter out less meaningful or irrelevant explana-
tions. The “what else” operation allows users to query similar drugs
to a predicted drug for a certain disease. Grouping similar predicted
drugs can accelerate the analysis of a potentially long list of drugs
(G2). To facilitate the “what else” operation, we allow users to G2.1)
group similar drugs and summarize them in a domain relevant way
and G2.2) compare different drug groups based on their explana-
tions. Other operations, even though promising, are excluded as they
are not related to the identified domain problems. For example, the

“what if” operation, which investigates how a modification to the input
will influence the predictions, can identify new potential therapeutic
opportunities by changing the structure of existing compounds. This
operation is useful for drug discovery rather than drug repurposing.

Granularity: We decided granularity mainly based on the XAI
goals. To support G1, local explanation is inevitable. For path-based
explanations, local explanations can be represented as individual paths
that correspond to how this drug perturbs the biological systems to treat
a disease. Meanwhile, even though G2 is doable by repeatedly exam-
ining local explanations, providing a group explanation for multiple
similar predictions can effectively scale up the analysis. Therefore,
we provide group explanations using meta-paths, a concept that is
widely used in heterogeneous graph learning. A meta-path is a se-
quence of node/edge types and can summarize paths with similar
semantic meanings. For example, the path [Ibuprofen]-[COX]-
[arachidonic acid pathway]-[pain] belongs to the meta-path [drug]-
[protein]-[pathway]-[disease], which depicts a potential type of drug
action mechanism.

5.3 Visualization

We designed DrugExplorer by jointly considering the three blocks of
the abstraction layer. Specially, we visualize path-based explanations at
different granularity levels and provide a set of interactive visualizations
to support “why” and “what else” operations.

As shown in Fig. 5, DrugExplorer consists of three main components:
a control panel, a drug embedding view, and an explanation view. In
the control panel (a), users can search and select a disease of interest,
browse the top-ranked drugs predicted by the back-end GNN model,
and filter explanations through their edge importance score (G1.2). The
drug embedding view (b) presents the learned embedding of all drugs
in the knowledge graph using t-SNE [64] and highlights the predicted
drugs for the selected disease. Users can easily identify similar drugs
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Fig. 4. (a): In the domain layer, we investigate how a domain expert
would explain a drug indication. (b): In the explanation abstraction layer,
we compare different GNN explanations based on their similarity to the
domain explanation.
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Fig. 5. DrugExplorer provides interactive visual explanations for GNN-based drug repurposing. Users can select drugs based on their rankings using
the control panel (a) or their similarities using the drug embedding view (b). The explanation view (c) incorporates a novel MetaMatrix design and
provides diverse interactions (C1-5) for users to effectively interpret and validate explanations.

in this embedding space (G2.1). The explanation view (c) provides
path-based explanations for individual drug predictions.

The explanation view incorporates a novel MetaMatrix design. This
design is inspired by the matrix design in [72] to enable user exam-
ine, summarize, and compare explanations at different granularity. In
MetaMatrix, each column is a predicted drug; each row is a meta-path,
which can be expanded to rows of the corresponding paths. Meta-path
is a concept widely used in heterogeneous graph learning. It uses a
sequence of node/sequence types to summarize paths. We use different
encodings to distinguish meta paths and paths, i.e., nodes in meta-
paths are represented as rounded rectangles with borders while nodes
in paths are represented as rectangles with solid fills. The number in
each cell indicates the number of explanation paths that belong to the
corresponding meta-path or path (G1.1).

MetaMatrix provide diverse user interactions. First, the drugs (i.e.,
columns) can be sorted based on their prediction scores or grouped
based on their proximity in the embedding space (G2.1). Users can
efficiently compare different drugs (individual columns) or different
groups (grouped columns) of drugs in terms of meta-paths, including
the length of meta-paths, node types in meta-paths, and the number of
paths belonging to a meta-path (G2.2) of interest. Second, users can
hide, un-hide explanation paths (C2) to focus on the explanations of in-
terest (G1.2). For example, as shown in Fig. 5, users can collapse other
meta-paths to highlight the comparison on interesting meta-paths (i.e.,
[disease]-[protein]-[drug], [disease]-[protein]-[phenotype]-[protein]-
[drug]). Users can also hide explanations of a specific meta-path if
they think the related mechanism is less convincing. For instance,
the meta-path that shows the drug protein and the disease protein are
both absent in the same anatomy (i.e., [disease]-[protein]-[anatomy]-
[protein]-[drug]) is less convincing than the explanation that the drug
protein and the disease protein are connected to the same pathway (i.e.,
[disease]-[protein]-[pathway]-[protein]-[drug]). Third, users can
expand meta-paths and compare drugs on a more detailed level based
on individual explanation paths. For example, as shown in Fig. 5(C3),
Clozapine and Clomipramine are predicted for treating the disease
unipolar depression partly because they are both connected to HTR2C,
a protein that is connected to unipolar depression. Clozapine is at the
left side and has a higher rank than Clomipramine, which might be
related to the fact that Clozapine is also connected to another protein

HTR7. Meanwhile, to help users quickly identify similar explanation
paths, we employ the ditto mark (") (C4) to indicate that a node has the
same name as the node in the path above (G1.1). Users can also review
drug details from the DrugBank database [77] in a pop-up window (C5).

5.4 Algorithm
Training Datasets. The training data for our study is a heterogeneous
knowledge graph consisting of 10 different types of entities (e.g., drug,
disease, protein) and 32 semantically distinct types of relationships
between the entities (e.g., drug-disease indications, protein-protein in-
teractions, drug-protein interactions). The dataset was assembled from
21 public databases of protein-protein interactions, gene expression
data, clinical trials, and drug usage across the entire range of 22K+
human diseases and 7K+ drugs.
GNN Model and Explanations. We formulated drug repurposing as
a link prediction task. The GNN model tries to predict among three
link types r ∈ R (i.e., indication, contra-indication, or off-label use)
between a drug and a disease that are not connected in the training data
(i.e., their relationship is unknown).

We used a heterogeneous GNN to generate embeddings for ev-
ery node in the knowledge graph. Specifically, for a node i at the
GNN layer l, its embedding h(l)

i is calculated by aggregating the em-
beddings from the previous layer of its neighbor nodes Ni, using
relation weight matrices W(l)

r and a message calculation function f :
h(l)

i = h(l−1)
i +∑r∈R ∑ j∈Ni

f (W(l)
r ,h(l−1)

j ). Given the embedding of
a drug i and a disease j, we predict the probability of edge relation r
as pi, j,r = 1/(1+ exp(−sum(hi ∗wr ∗h j))). We show that this model
can accurately predict drug-disease relationships: the predicted drug-
disease relationships rank 79.5% of hits in the top 5%, and 88.9% of
hits in the top 10%.

To provide high-quality path-based explanations at both group and
local level, we experimented with and adapted different ante-hoc and
post-hoc explanation methods, including Graph Attention [74], GN-
NExplainer [79], and GraphMask [55]. We selected GraphMask due to
its high fidelity. Finally, we developed a post-hoc graph explainability
based on GraphMask that can drop superfluous edges from the knowl-
edge graph and only retain a sparse set of edges that contribute most
towards the prediction (Supplementary Sect.S3).
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Fig. 6. Exploring two groups of drug repurposing predictions (A1, B1) for the treatment of Alzheimer’s Disease.

5.5 Implementation
The interactive visual explanations are implemented in JavaScript using
React.js [26], D3.js [7], and Ant Design [62]. The GNN model is
implemented in Python using Pytorch [50]. The graph data is stored
in Neo4j database [44]. The visual explanations communicate with
the back-end GNN model through a Python web server built with
Flask [20]. The source code and an interactive demo are available at
https://github.com/hms-dbmi/Drug_Explorer.

6 USAGE SCENARIO

We demonstrate how DrugExplorer can be used to examine treatments
for Alzheimer’s Disease (AD). The GNN model was trained on the full
knowledge graph and used to make predictions for drugs that were not
included in the knowledge graph. We selected AD in the visualization
tool and explored predicted drugs and their explanations.

The tool automatically produced predictions, explanations and up-
dated visualizations for AD (Fig. 6). Predicted drugs were scattered in
the Embedding view, indicating that the GNN model produced predic-
tions for a diverse set of drugs.

We first examined the largest cluster of drugs (Fig. 6(A1)). This clus-
ter included drugs such as Glyburide, Repaglinide, Tolbutamide, and
Metformin, which are commonly used to treat Type 2 diabetes (T2D).
Drugs found in the cluster were consistent with the current scientific
understanding of the connections between cognitive impairment and
T2D [53]. Previous studies found that the use of antidiabetic treatments
among individuals with T2D could mitigate risk for dementia [3].

We then examined explanations for the predicted antidiabetic drugs
in the MetaMatrix view. To this end, we first selected Repaglinide
in the MetaMatrix view to show detailed explanations. The shortest
meta-path is Disease-Gene/Protein-Drug. The explanation path below
that meta-path (Fig. 6.A2) showed that Repaglinide targets protein
PPARG, which, in turn, is associated with AD. Based Disease-Gene
/Protein-Drug-Gene/Protein-Disease meta-path (A3), we see that drug
Repaglinide was predicted partly because it has the same target protein
as Ibuprofen. Ibuprofen targets proteins that are associated with AD
and can delay some forms of AD pathology [37]. Similar instances of
meta-paths existed in explanations of other antidiabetic drugs, including
Nateglinide and Tolbutamide (A2, A3).

Another cluster (Fig. 6(B1)) in the Embedding view comprised of
anticholinergic drugs, including Pergolide and Orphenadrine, which
are used to manage Parkinson’s disease. Based on the MetaMatrix(C),
we found this drug group is different from the previous T2D group in
terms of meta-paths. Specifically, the explanations for this group did
not have Disease-Gene/Protein-Drug or Disease-Gene /Protein-Drug-
Gene/Protein-Disease, which were the main explanations for T2D drug
group. We then investigated the explanation paths for more details. We
found that the target protein of Pergolide and Orphenadrine interacts
with multiple AD-associated proteins through shared cellular pheno-
types (B2), an observation consistent with the reported associations
between AD and anti-Parkinson’s agents [46]. While some studies [30]
reported the contraindication of these drugs, the contraindication still
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Fig. 7. The user study compares path-based explanations against three
alternative conditions: node-based explanations (a), subgraph-based
explanations (b), and a non-explanation baseline.

reflected the GNN’s ability to identify associations unknown in the
training graph. This example also highlighted the utility of visual expla-
nations to involve humans and identify possible inaccurate predictions.

7 USER STUDY

Participants. We recruited 12 medical professionals (7 males, 5 fe-
males, denoted as P1-12) through personal contacts, Slack channels,
and email lists in related institutions. The mean (SD) age of the par-
ticipants was 34.25 (6.12) years. All participants have worked in
medicine-related fields for more than five years, including five clinical
researchers (P1-3, P11-12) and five practicing physicians (P4, P7-10),
who all have MD degrees, and two medical school students who used
to work as pharmacists (P5, P6). The participants were familiar with
basic concepts of machine learning but are not experts. No participants
knew this project before and none of them are authors of this paper.

Conditions and Tasks. We tested total four conditions: 1) a node-
based explanation; 2) a path-based explanation; 3) a subgraph-based
explanation; and 4) a non-explanation baseline that only reported a
confidence score. Since we aim to assess the visual presentations
independent of the algorithmic aspect of explanations, we used the
same algorithm (i.e., GraphMask [55]) and generated explanations with
different presentations through certain transformations (Supplementary
Material, Sect. S1.4). For all three visualizations, the color indicates
the node type, and edge line-width indicates the importance. Users can
interactively filter explanations based on their importance.

We collected 16 predicted drug-disease treatment pairs (twelve cor-
rect, four wrong) and asked the participants to assess these predictions
under four different conditions (four predictions in each condition).
Since other alternatives can not effectively group explanations, we only
asked users to evaluate individual predictions.

The tasks and the evaluation procedure were validated and refined
through a pilot study with two domain experts and one AI expert.
The three pilot study participants were not included in the twelve
participants of the study reported here. The two domain experts were
not authors but the AI expert is an author of this paper. The full list
of the drug-disease pairs and the interface used for the user study are
described in the Supplementary Material.

Procedure. The evaluation took around 40 minutes on average for
each participant. Participants were first presented with a brief introduc-
tion about the study, an informed consent form, and a 10-min tutorial

https://github.com/hms-dbmi/Drug_Explorer
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about how to read and interact with the three visual explanations. Partic-
ipants assessed 16 AI predictions under four different conditions (four
predictions under each condition). For each prediction, participants
decided whether the predicted drug can be used for treating a certain
disease and reported their confidence levels using a 5-point Likert scale
(1=not confident at all, 5=completely confident). The completion time
for assessing each prediction was automatically recorded by our study
system. The order of predictions and the order of the four conditions
were randomized and counterbalanced across participants. Finally,
we asked the participants a set of semi-structured questions around
two main topics: 1) which factors influenced their decisions and their
confidence level; 2) how they interpreted the AI explanations.

Results. We set α = 0.05 and tested three hypotheses: H1) Path-
based explanations have higher accuracy than other conditions; H2)
Path-based explanations enable more confident user performance than
other conditions; H3) Path-based explanations require less time than
other explanation types but more time than baseline. Another pur-
pose of assessing the 16 predictions is to force participants to actually
make decisions using different explanations, which are important to
precisely understand user perception of AI explanations and generate
helpful discussions in the following interviews [8]. We conducted the
Repeated Measures ANOVA analysis to compare the average accuracy,
self-reported confidence score, and completion time across the four
conditions. If there is a significant difference among the four conditions,
we ran Tukey’s Honest Significant Difference test to confirm whether
the differences occurred between each two conditions.

Results of the user study are summarized in Fig. 8. Path-based
explanations have significantly better performance than baseline and
node-based explanations at all three metrics: accuracy, confidence,
time. Compared with subgraph-based explanations, even though the
path-based explanations’ advantages are not significant in terms of
accuracy and confidence, they require significantly less time. Surpris-
ingly, the user study results show that providing explanations does not
necessarily improve user performance. Node-based explanations and
subgraph-based explanations do not have significantly higher accuracy
or confidence than baseline. Participants’ ratings for the three types
of visual explanations were roughly consistent with their similarity to
domain explanations, as shown in Fig. 4(b).

8 EXPERT INTERVIEW

Ten out of the twelve participants in the user study agreed to participate
in an interview about their experience with DrugExplorer. During the
interview, we first demonstrated the functionalities of DrugExplorer
using the usage scenario about Alzheimer’s Disease Sect. 6. Partici-
pants then freely explored the diseases and drugs of interest on a testing
set containing 48 diseases (Supplementary Material, Sect. S1). Each
participant selected at least one disease of interest, explored the inter-
active visualizations, and freely commented on the AI predictions, the

visual explanations, and their usage experiences of DrugExplorer. The
interview took around 25 minutes for each participant.

Overall, participants expressed great interest in this tool, commented
that it “targets an important problem and can be super helpful”. Even
though we introduced a new visualization design, MetaMatrix, all par-
ticipants agreed that they had no difficulties in understanding the AI
explanations and interacting with the tool. Meanwhile, participants
exhibited cautious enthusiasm towards DrugExplorer and emphasized
that downstream evaluations, such as clinical trials, were essential to
validate the AI-predicted drug repurposing, even if only for regulatory
purposes. For example, P8, a physician who specializes in pain man-
agement and “prescribed a lot of off-label drugs”, expressed strong
interest in using this tool since the explanations were consistent with
his reasons for some off-label prescriptions. They described his plan
for validating the potential drug candidates: i) identify promising drug
candidates whose explanations are biomedically meaningful; ii) vali-
date the biomedical mechanisms in the explanation and ensure the drug
has no adverse effect; iii) prescribe this drug to some patients who are
not responding to first-line treatments (i.e., approved or recommended
treatments); iv) conduct clinical trials if the drug seems effective.

Most participants agreed that DrugExplorer supports the goal of
repurposing drugs well. In addition, some participants commented that
this tool could potentially be generalized beyond drug repurposing to
other related problems. For example, P4 commented that this tool could
serve as an educational tool to help medical students better understand
existing drugs, diseases, and their relationships to other medical entities.
P1 and P2 stated that this tool could be used for polypharmacy (i.e., the
simultaneous use of multiple drugs), such as predicting polypharmacy
side effects. “Similar to explaining a drug-disease indication, the
visualization can show how a drug changes the activities of another
drug and illustrates the causes of side effects.” (P2).

Participants also offered helpful suggestions for improving this tool.
Five participants mentioned that more biomedical information about
the nodes and edges would help them more confidently assess the ex-
planations. “They [the provided explanations] are useful but somehow
abstract.” (P8) “The [disease] - [protein] - [pathway] - [protein] -
[disease] can be a piece of strong evidence but I need to know more
details about how this protein is involved in this pathway. I can always
check literature for such information myself, but it would be great if it
is provided here.” (P2) P10 suggested the functionality to annotate ex-
planations, save, and share these annotations. These suggestions reflect
the participants’ wishes to better align the AI explanations with how
they typically reason about a drug indication, indicating the importance
of choosing proper explanation abstractions based on domain character-
izations. Meanwhile, three participants (P2, P5, P9) mentioned that the
subtle distinctions between the represented explanations and real-world
biomedical mechanisms can sometimes be confusing. For example, in
AI explanations, edge thickness represents the importance of this edge
to a certain AI prediction. The thickness can be easily confused with
the strength of the biological relation.

9 OBSERVATIONS, INSIGHTS, AND DISCUSSION

9.1 Observations about domain users
Human Knowledge vs. AI Explanation. We did not observe blind
trust in AI explanations as reported in some previous studies [31, 68],
which might be related to the critical nature of the medical domain.
Instead, participants heavily relied on their prior knowledge accumu-
lated through years of experience and medical training when assessing
predictions and explanations. All participants stated they first used their
own knowledge when checking the predictions. When prior knowledge
could help them make a decision, most (9/12) participants stated that
they still examined explanations to validate their decisions and evaluate
the quality of explanations. When participants were not familiar with
the drug or the disease, they examined whether the AI explanation is
domain relevant. For example, some (5) participants said that [disease]
- [protein] - [drug] was strong evidence, because this path indicated
that the disease is directly associated with the drug’s target protein. On
the contrary, [disease] - [protein] - [anatomy] - [protein] - [drug] “is
more like a correlation rather than a causation” (P2).



Domain explanations can vary slightly across human experts.
While participants employed similar ways of reasoning about a drug
indication (i.e., checking the connections between the drug and the dis-
ease), we also observed subtle differences among participants. For ex-
ample, P5 stated that they “consider[ed] the drug and the disease simul-
taneously to see how they met in the middle”. The path-based explana-
tions in DrugExplorer were confusing at first because P5 felt they need
to read from left (drug) to right (disease). But P5 also commented that
this problem is “easy to overcome after exploring some predictions”.

Actually making decisions influence human experts’ opinions
towards explanations. We observed that the attitude of some partici-
pants (P2, P4, P5) towards the three explanation types changed before
and after assessing the 16 predictions. This indicates the importance
of interacting with AI explanations and performing actual tasks in
evaluating XAI. For example, P2 commented “the subgraph one is so
much better than others” when learning the tutorial. However, in the
post-study interview, P2 stated “this [path-based] explanation can pro-
vide all the information I needed when checking that [subgraph-based]
explanation, and even in a more straightforward way. The subgraph is
just more visually appealing to me.” In earlier studies, expert interviews
that were purely based on imaginary scenarios or non-explainable AI
predictions are widely used [9, 63]. They provide an efficient approach
to understand user needs and preferences, especially considering the
numerous time and efforts required to develop XAI systems. However,
our observations suggest that, without interacting with AI explana-
tions and completing actual tasks, participants may report inaccurate
feedback in some situations.

Human experts tend to reshape less suitable explanations. All
participants stated that examining the connections between the drug and
disease is their primary way of assessing an AI prediction. When using
node-based explanations, which is inconsistent with their preferred rea-
soning processes, participants responded differently. Two participants
still tried to find connections by identifying same nodes in the neighbors
of the drug and the neighbors of the diseases, which are “extremely
painful to find useful information” (P3). Other participants, however,
treated the node-based explanations as providing context information
about the drug and the disease. For example, P8 mentioned that they
mainly checked whether the phenotype and pathway nodes in the drug’s
neighbors were related to the disease based on his prior knowledge. In
other words, participants tried to build an implicit connection between
the drug and the disease using their prior knowledge. One possibility
is that, when the explanation is too far from their mental models, par-
ticipants tended to reshape the explanation and add extra information
to make the explanation similar to their mental models. While this
strategy made node-based explanations easier to interpret, participants
were less confident about their interpretation, which is reflected in their
reported confidence levels (Fig. 8(b)).

9.2 Reflections on XAI visual design

Contextualized XAI through visualization design. Current XAI
algorithms usually construct explanations via a data-centric approach
regardless of the context in which the explanation is used. While
such a strategy ensures these algorithms are generic and applicable to
a variety of problems, it also poses challenges for human experts in
interpreting these explanations and obtaining actionable insights. Our
study suggests that the one-size-fits-all explanations can fail in real-
world applications. When facing explanations that are inconsistent with
their commonly-used domain explanations, users tend to reshape these
explanations to match their mental models and become less confident
about their interpretation. In spite of the importance of context, it can
be challenging to integrate context factors into XAI algorithms.

Our study shows that visualization designs can be considered inde-
pendently from the algorithmic aspects and serve as an effective method
to integrate the context of an explanation. DrugExplorer is designed and
developed guided by a list of context factors (i.e., the domain explana-
tions, the usage contexts, the XAI goal, target users) that we identified
through literature review and collaborators’ feedback. Meanwhile, this
list of context factors is not exhaustive and will evolve as future design
studies and field studies are conducted. For example, Domain Expla-

nation, an important design consideration revealed in our design study,
is only briefly discussed in previous studies. We anticipate that this
paper will encourage more design studies and field studies to better
understand how to contextualize XAI through visualization design.

Interactive visualization is a fundamental component of AI ex-
planations. This study suggests that, apart from algorithms that extract
information for explaining a prediction, visual presentation and user
interaction are also critical components of an AI explanation, especially
in human-AI collaboration. As we demonstrate, how an AI explanation
is visually presented and how users interact with the explanation can
directly influence how users interpret and use the explanation.

More importantly, providing AI explanations with proper interactive
visualizations not only helps users interpret the explanations but also
encourages feedback from users. For example, our study participants
employed the hide interaction to hide meta-paths that are not meaning-
ful in the biomedical context. Such interactions reflect users’ domain
knowledge and act as important feedback. In future work, we plan to
integrate such feedback into the model training, which can improve the
performance of the AI and the quality of explanation.

9.3 Limitations and future work
While the evaluation demonstrates the effectiveness of DrugExplorer
and the extended nested model, this study has several limitations. First,
we conducted the evaluation in the setting of a laboratory study rather
than in a real-world deployment. This limitation is shared with many
other prototype visualization tools [22, 47, 70]. More importantly, a
real-world deployment of DrugExplorer can be challenging due to the
regulatory and ethical issues involved in drug repurposing. At the
same time, participants reported positive feedback about DrugExplorer
and agreed with its usability. The evaluation generated valuable ob-
servations and findings that will benefit future applications of XAI.
Second, limited by the training data and the back-end GNN model,
the explanation format is relatively simple and may not provide all
detailed information a human expert needs to systematically assess a
drug repurposing prediction. For example, for edges in the knowledge
graph, the back-end GNN model only considers edge types. There-
fore, DrugExplorer does not provide edge details such as the protein
binding sites targeted in a [drug]-[protein] edge. Even though the
GNN model already generates accurate predictions and explanations,
providing more biomedical details can better assist human experts. We
plan to further improve the knowledge graph and incorporate detailed
biomedical information in the visual explanations in future work.

10 CONCLUSION

This paper presents a design study that investigates how to select and
visualize AI explanations for domain experts in GNN-based drug re-
purposing. This design study follows the nested model of visualization
design and extends it by incorporating user-centric XAI considerations
based on a literature review and feedback from collaborators. An in-
teractive visualization tool, DrugExplorer, is designed, developed, and
evaluated. DrugExplorer provides a novel visualization called MetaMa-
trix that enables efficient organization and comparison of explanation
paths at different granularity. This design can be applied to other
similar problems, such as explaining GNN-predicted polypharmacy
side effects. Our extension to the nested model highlights important
takeaways: (1) visualization of explanations should consider both the
domain users’ mental model and the available explanation formats;
(2) the needed interactions are related to the XAI goals as well as the
supported XAI operations by existing techniques. This extension does
not aim to be an exhaustive list, but a cornerstone that will inspire and
be further extended through future design studies and field studies.
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