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SUMMARY

As words can have multiple meanings that depend on sentence context, genes can have various functions
that depend on the surrounding biological system. This pleiotropic nature of gene function is limited by on-
tologies, which annotate gene functions without considering biological contexts. We contend that the gene
function problem in genetics may be informed by recent technological leaps in natural language processing,
in which representations of word semantics can be automatically learned from diverse language contexts. In
contrast to efforts to model semantics as ‘‘is-a’’ relationships in the 1990s, modern distributional semantics
represents words as vectors in a learned semantic space and fuels current advances in transformer-based
models such as large language models and generative pre-trained transformers. A similar shift in thinking
of gene functions as distributions over cellular contexts may enable a similar breakthrough in data-driven
learning from large biological datasets to inform gene function.
INTRODUCTION

An important goal of molecular biology is to uncover the function

of genes. ‘‘Functionalizing’’ a gene sequence involves identifying

a biological state in which the gene or protein is expressed and

experimentally assessing its impact on that state.1 These discov-

eries are typically represented as new edges in biological

knowledge graphs, such that a gene’s function is described

in relationship to known complexes or biological pathways

(‘‘gene A is a member of pathway B’’). However, this approach

to understanding genes presents several areas that could benefit

from improvement. First, gene sequence discovery far outpaces

the rate of deciphering gene function, leaving many genes un-

characterized.2 The development of computational methods

can bridge the gap from discovery to understanding more effi-

ciently. Second, new connections are often biased toward

well-understood and experimentally tractable complexes and

pathways,3 a systematic bias known as the ‘‘streetlight effect.’’4

Third, and most critically, gene function depends on the state of

the cell, meaning that a gene can be involved in different biolog-

ical functions depending on the cell in which it is located.4,5

Cell states are described by their molecular and biochemical

characteristics that can change over time as a cell responds to

various stimuli. Although the methods and process of defining

cell state are still an active area of discussion,6–8 it is well under-

stood that biological ‘‘context’’ is important for gene function.

For example, the function of a protein enzyme is incomplete
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without understanding in which context or cell state the enzyme

is operational, such as the presence of a cofactor, cellular micro-

environments, and organism identity. Furthermore, the context

of a gene’s function can be extended to additional emergent

levels of biology, ranging from cells to tissues to organs

comprising multiple cellular types. In our framework, context en-

compasses a broad spectrum of environmental, temporal, and

spatial influences that modulate gene function. Although intrinsic

features of a gene, such as promoter regions or gene regulatory

elements, are inherent, the context in which they operate can

differ markedly. It is this variability in contextual settings that

we seek to elucidate. By doing so, we aim to unravel the mech-

anisms through which a single gene can assume varied roles or

exhibit differential activities ‘‘across’’ diverse tissues or states.

Focusing on well-studied biological contexts, such as reliable

cell lines or model organism strains, can lead to gaps in which

we are uncertain how well our annotations will generalize across

the panoply of cellular states.

Considering these challenges, what is the best way for molec-

ular biologists to study and represent gene functions? In search-

ing for an answer to this question, we found parallels to the study

of word semantics in the 1990s, summarized in George Miller’s

seminal essay ‘‘To Know A Word.’’9 In this perspective, taking

direct inspiration from Miller, we summarize his critique of rela-

tional models of semantics and describe how transitioning to

Miller’s distributional model of word semantics unlocked power-

ful inductive insights exploited by large language models (LLMs)
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Box 1. Glossary

Semantics: The study of linguistics and logic that deals with the meaning of language and words.

Sentence context: The set of words surrounding a word or phrase within a sentence.

Embedding: A compact latent signature given as a vector representation of an entity from high-dimensional data into low-dimen-

sional space that preserves entity relationships.

Distributional semantics: The assumption that one can ‘‘know a word by the company it keeps,’’ whereby words that occur in

similar contexts have similar meanings.

WordNet: A lexical database of defining words based on the hierarchical structure of terms and relational semantics, pioneered by

George Miller in 1985.

Biological contexts and cell states: The molecular and biochemical configuration of a cell that uniquely defines a cell’s

phenotype.

GeneOntology: A database that annotates the functions of genes based on the hierarchical structure of biology and gene relation-

ships. Notably, ‘‘molecular function terms represent activities rather than the entities (molecules or complexes) that perform the

actions and do not specify where, when, or in what context the action takes place.’’

Pleiotropy: A gene that affects multiple unrelated phenotypic traits.
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today.10We then nominate structural correspondences between

linguistics and genetics that suggest a distributional hypothesis

of gene function. We conclude with broad recommendations

for better understanding how these parallels between genetics

and linguistics might inform gene function studies in the future.

Excellent reviews cover the current state of protein language

models and their methodological capabilities.11,12 We will not re-

view these models; instead, this perspective is intended for a

broadmulti-disciplinary audience to help biologists better under-

stand the underlying principles that drive the success of induc-

tive computational models. Our focus extends to deciphering

the core principles of transformer technology—such as attention

mechanisms and large-scale pretraining—that contribute signif-

icantly to their success in complex pattern recognition tasks and

how these principles can be analogously applied to the interpre-

tation and prediction of gene functions in biological systems.

Finally, by shedding light on distributional representations and

their potential applications in biology, we propose an approach

to characterize gene function from a broader and more holistic

perspective, along with suggestions for practical steps neces-

sary to implement the approach.

ON KNOWING A WORD: FROM RELATIONAL TO
DISTRIBUTIONAL SEMANTICS
Knowing a word involves knowing its meaning, and there-

fore, in my view, knowing a word involves knowing its con-

texts of use. Somy present concern is how to characterize

that contextual knowledge—George Miller (On Knowing a

Word, 1999)

The term semantics, coined by Michel Breal in 1883, is the

study of the meaning of words in natural language (Box 1).

Different representations of meaning have predominated over

time. In the 1980s and 1990s, relational semantics specified

that meaning could be broken down into sparse semantic rela-

tionships (Figure 1A). For example, two similar words, such as

‘‘happiness’’ and ‘‘elation,’’ can be mapped to a general term

describing ‘‘the state of extreme happiness.’’13 Such semantic

relationships can be represented as a graphwith words as nodes

and relationships as links; these words ‘‘link’’ to the same mean-

ing and are designated synonyms. To systematically capture
2 Cell Systems 15, June 19, 2024
these semantic relations at a large scale, George Miller led a

group of cognitive scientists to form the seminalWordNet project

in 1985.14 WordNet collated four lexical databases, one each for

nouns, verbs, adjectives, and adverbs, each of which contains

sets of synonyms as building blocks associated with one another

by semantic relations (Figure 1A). Once complete, WordNet ex-

hibited advantages over machine-readable dictionaries for

computational linguistics. For example, synonym sets could be

used in information retrieval to expand a user’s query and thus

retrieve relevant items that might otherwise have been missed.

However, throughout the project, Miller found a critical flaw in

relational semantics—its failure to discriminate between alterna-

tive meanings of polysemous words (a word with multiple mean-

ings). Polysemicwords are easily represented as nodes linking to

multiple parental meanings (Figure 1B). Still, such a representa-

tion only catalogs the list of possible meanings but fails to

discriminate between the meanings a word can have within spe-

cific sentences. In his essay ‘‘On Knowing aWord,’’ Miller opined

that the theory of relational semantics was incorrect and favored

a competing approach of distributional semantics to develop

and study theories and methods of word meaning.

Distributional semantics was once summarized as the

following: ‘‘you shall know a word by the company it keeps.’’15

Distributional semantics posits that a word’s meanings can be

empirically derived from sentence contexts in which the word

is found,10 ‘‘a cognitive representation of the set of contexts in

which a given word form can be used to express a given word

meaning.’’ In this framework, a polysemous word would have

different contextual representations for each of its various defini-

tions, for example, ‘‘apple’’ computer vs. apple fruit (Figure 1B).

Miller advocated for linguistics to embrace learning the meaning

of words from large language datasets instead of compiling se-

mantic ontologies such as WordNet.

THE MODERN RISE OF DISTRIBUTIONAL SEMANTICS

Miller’s observation was profoundly ahead of its time. Although

distributional semantics is conceptually simple (Box 1), exploit-

ing and implementing this idea was technologically challenging

during Miller’s era. Distributional semantics was realized

decades later with advancements such as computational

power through Moore’s law, the accrual of sizable digital text



Figure 1. Exploring the parallels between the distributional hypothesis of word semantics and gene function
(A) Relational semantics is an approach to studying the meaning of words by analyzing the relationships between objects, individuals, and propositions. The
definition of a word is not viewed as a separate entity but rather as a relationship between different elements of the language. Accordingly, this one-to-one
mapping between words and meanings cannot disambiguate words with multiple senses (e.g., polysemy). Similarly, conventional approaches to studying gene
function are often relationally defined, making it challenging to disambiguate context-based gene functions.
(B) Distributional semantics is a technique utilized in machine learning to analyze and understand the meanings of words by representing words as vectors in a
latent space, which is derived from the co-occurrence distribution of words and their usage. By applying sparse dictionary learning to these vectors, it is possible
to capture the multiple meanings of a word (polysemy) and gain a more interpretable understanding of its semantics. Similarly, the effects of genes can be
represented as vectors defined by their essentiality in different cell contexts. By studying the co-function of genes in various cell states, latent functions can be
discovered, and pleiotropic genes can bemodeled asmixtures of these latent biological functions. Asmore perturbational screens are conducted, it is hoped that
the resulting data will serve as a corpus from which gene function can be automatically inferred in a way that is analogous to how machine learning is used to
derive word semantics from language datasets.
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repositories, and the development of new machine learning ap-

proaches.

Modern language models are explicitly trained to model lin-

guistic context, as Miller envisioned.9 Early models generated

word embeddings by directly modeling the distribution of word

occurrences in large datasets. In such embedding spaces, a

polysemic word can be represented as pointing inmultiple direc-

tions in semantic space (Figure 1B).16,17 Furthermore, the imple-
mentation of simple, sparse coding has been shown to extract

multiple meanings of polysemous words from its embedding.18

Such embedded representations are used in every natural lan-

guage processing application that relies on modeling the word

meaning.19

Advances in transformer architectures using attention further

leveraged context to represent words.20–29 When using atten-

tion, a word embedding is mixed with the embeddings of nearby
Cell Systems 15, June 19, 2024 3



Table 1. The curious parallels between words and genes

Hierarchical organization

Syntactic hierarchy Cellular hierarchy

letters/characters nucleic acids/amino acids

morpheme domain

word gene

sentence complex

topic functional module

lexicon/dictionary genome

writer cell

Dynamic changes/processes

Word semantics Gene function

closed-class/open-class words essential/selective genes

word frequency of occurrence gene expression

cloze task gene knockout
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words in a sentence, resulting in a refined embedding that incor-

porates the word’s surroundings. Such contextual embeddings

underlie modern language features, including autocomplete,

Google search, and the family of generative pre-trained trans-

formers (GPTs), such as ChatGPT.26

CONCEPTUAL CORRESPONDENCES BETWEEN THE
MEANING OF WORDS AND FUNCTIONS OF GENES

Can the stunning advances in representing word semantics be

informative of gene function? The answer depends on whether

they share the same inductive biases. Inductive biases are as-

sumptions that allow algorithms to make predictions for inputs

they have not encountered during training and thus generalize

beyond training datasets. Below, we explain why the similarities

between genes andwordsmerit further exploration.We focus on

the functional characterization of protein-coding genes while

noting that other functional genetic elements, such as gene

regulatory regions and non-coding genes, may be understood

through a similar distributional lens.

First, there is an apparent organizational hierarchy both in

linguistics (morphology)30 as well as biology (Gene Ontology

[GO]),31 where the combination of fundamental, lower-level ele-

ments gives rise to emergent, higher-level entities (Table 1). For

example, in the case of semantics, combinations of morphemes

such as affixes and roots arrange together to give rise to words

with meaning, such as the affix ‘‘trans-’’ in words such as ‘‘trans-

port’’ and ‘‘transition.’’ Similarly, proteins are known to possess

discrete structural units called domains that can arrange in ways

to give rise to functionally distinct genes. For example, kinase

domains are structurally conserved and confer the capacity to

catalyze the transfer of a phosphate onto a substrate. In the

same way that the prefix trans- can imbue the meaning of across

to certain words, proteins with shared domains, such as a kinase

domain, may provide similar functional capacity but depending

on the combination of other domains within a gene can result

in different substrate engagement and physiological impact.

Second, both words and genes are susceptible to analogous

dynamic changes in fitness over time (Table 1). Further recogni-

tion of the ‘‘evolvable’’ characteristics of words is appreciated in
4 Cell Systems 15, June 19, 2024
evolutionary linguistics.32 Linguists have developed taxonomical

methods of tracing the origins of words through phylogenetic

methods.33 The changes in the meaning of words occur in

both passive (semantic drift) and active manner (semantic nar-

rowing, resignification), much like genes (e.g., genetic drift vs.

gene flow). The methodological approaches etymologists use

to track neologism in etymological dictionaries are similar to

how evolutionary geneticists study de novo gene birth through

evolutionary tracing to catalog allopatric speciation events.

Third, both genes and words are amenable to study through

perturbations. For example, the cloze test is a standard method

in psycholinguistics studies to test reading comprehension,

whereby particular words are occluded, and the subject must

fill in the missing word from a word bank.34 In its modern form

as masked auto-encoding,20 this approach can infer word simi-

larity if they can interchangeably appear in similar contexts. Simi-

larly, genes can be deleted from a cell line, and other genes that

rescue that gene’s phenotype are considered to have compat-

ible functions.35 Furthermore, advances in forward genetic

screening technologies36–44 that permit genome-scale perturba-

tional studies have lent insights into the distributions of shared

gene function through phenotypic similarity.44–49

Fourth, there has been an astronomical increase in data avail-

ability, both linguistic and biological. Akin to large language data-

sets that power language models today, genome-wide omics

approaches in biomedicine have enabled the development of

biological datasets, where DNA, RNA, and protein biomolecules

can be measured at scale across many different biological con-

texts and diverse samples. Examples of biorepositories for such

datasets include the Genotype-Tissue Expression (GTEx) plat-

form with tissue-specific gene expression information, The Can-

cerGenomeAtlas (TCGA) for DNA sequences andmutations, the

Human Protein Atlas for protein expression patterns distributed

in time and space, and Dependency Map (DepMap) for genetic

perturbational data. These datasets have also similarly exhibited

sparsity and lower-dimensional structure.50 RNAi and CRISPR

perturbational screens also probe the phenotypic consequence

of gene depletion across contexts.51 Guilt-by-association

studies have served as harbingers52 of this idea, finding that

co-variation of gene perturbations at scale across various bio-

logical contexts and different phenotypic endpoints can be infor-

mative of gene co-function.44,45,48,53–56

Finally, genetics may have as much to gain from shifting

from relational to distributional representations as semantics

did throughout the 2010s. Miller’s challenge of modeling polyse-

mic words in the 1990s was later solved with distributional se-

mantic models such as word2vec. Correspondingly, we and

others have found that applying similar methods also recovers

orthogonal gene functions when applied to genome-scale

fitness screens.52,57,58

A DISTRIBUTIONAL HYPOTHESIS FOR GENE FUNCTION

Given these correspondences between word semantics and

gene function, can the history of the former inform the future of

the latter? If ‘‘you shall know a word by the company it keeps,’’

perhaps we shall ‘‘know a gene by the company it keeps’’ as

well. We join others in the call for a distributional hypothesis of

gene function,59–64 inspired by how distributional semantics
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has revolutionized our understanding of word meaning in natural

language.

Concretely, we propose shifting away from mapping genes

into fixed ontologies of function and toward learning distribu-

tional representations of gene function directly from biological

data. From the perspective of a scientist using such a database,

rather than each gene recovering a list of GO terms, each gene

would be mapped to a vector of probabilities (summing to one)

of size N, where N is the number of latent variables that capture

the informative axes of variation present in the training data,

possibly aligning to novel or known pathways. Additionally, the

user can access a matrix of size N 3 M, where M is the number

of enumerated cell states that describe the organism of interest.

This matrix captures the relationships between the learned vari-

ables and the independent biological contexts associated with

the organism of interest. Below, we address critical questions

about this proposal.

What information can be learned from systems that analyze

distributional gene function? Going back to natural language,

distributional semantics is grounded in the idea that a lower-

dimensional space of ‘‘abstracted’’ ‘‘topics’’ shapes the high-

dimensional lexicon (Figure 1B). We believe, analogously, that

biological information may capture abstracted biological pro-

cesses within the genome. Specifically, biological systems

evolve and augment biological processes in response to selec-

tive pressures. This approach may learn and uncover this

lower-dimensional manifold of pathways and processes. The N

latent variables in a successfully trained system would model

this lower-dimensional manifold.

What information can be captured by latent variables in distri-

butional gene representations? In natural language, latent vari-

ables can be interpreted as ’’topics,’’ into which similar words

aremapped based on their co-occurrence across sentence con-

texts. Biologically, latent variables could capture independent

biological pathways that correspond to distinct contexts. For

example, circadian genes, like CLOCK and BMAL1, coordinate

the temporal expression of other genes over a daily cycle.65–67

As such, these genes represent the diurnal cycle that evolved

in response to the rotation of the Earth.68 From a dataset whose

samples contain temporal diversity, the relationship between

CLOCK and BMAL1 could be inferred directly from the bottom

up and captured by a particular latent variable (out of N).

What datasets are needed to train learning systems of distri-

butional gene function? The ideal datatype we envision has a

structured format with at least three conceptual types of informa-

tion, including (1) identifiers for perturbed genes, (2) annotated

cell contexts, and (3) phenotypic readout(s). Examples of such

datasets have been disseminated in recent years69,70 and

when appropriately dimensionally scaled, they furnish the requi-

site data for the inference of latent variables about gene function,

as further discussed below.

Why is incorporating cell states important? Gene functions are

distributed over natural states, and the same gene may have

different roles in the hierarchical levels of emergent biological or-

ganizations (cells / tissues / organs / organisms) or at

different stages of development. In this way, the functions of

genes we infer from large-scale functional genomic datasets

will be contingent on what biological context the model system

was used to generate this ‘‘corpus’’ of gene activity. In particular,
the set of biological contexts chosen for study defines the distri-

bution of functions that will be observed, highlighting context as

a critical choice in experimental design. Recent studies provide

proof of concept for these ideas.57,58 For example, in yeast,

adaptive mutations respond to environmental shifts; a small

number of phenotypes can predict fitness in native conditions,

but additional phenotypes become significant in different

environments.57,58 Additionally, we have recently shown that

graph-regularized sparse dictionary learning can geometrically

recover the relationships of genes and biological processes

that define gene function in a latent space where genes are rep-

resented as vectors.58 Our approach, applied to extensive

genomic fitness screening in human cellular models, has under-

scored the ability to discern distinct, contextually derived genetic

functions that are generalizable to a spectrum of cell type con-

texts,58 as well as contexts of environmental stressors.71 Recent

transformer models produce context-specific approaches to un-

derstanding biological datasets.72–74 The deployment of similar

machine learning methods on non-perturbational datasets,

such as transcriptional data, can result in the classification of

orthogonal cellular subtypes.75 Notably, the utilization of compa-

rable machine learning techniques on non-perturbational data-

sets, such as transcriptional data, primarily leads to the classifi-

cation of distinct cellular subtypes, highlighting a different aspect

of cellular context vs. function.

How will distributional learning systems compare to current

approaches to studying gene function? In the pre-genomic era,

gene functions were primarily studied through experimental

and observational methods. Classical genetics, or forward ge-

netics, seeks to identify the gene associated with an observed

phenotype through natural variations across generations or

induce mutations in organisms. This method was instrumental

in identifying genes linked to specific traits or diseases. In fact,

Gregor Mendel’s work on pea plants laid the foundation for un-

derstanding inheritance patterns, which indirectly offered in-

sights into gene function. Following the advent of the human

genome project and gene annotations, gene function prediction

has been guided by sequence-based methods, leveraging the

inherent information embedded within the primary structure.

Starting with a gene of interest, researchers relied on genetic

mutations, biochemical assays, and the characterization of

phenotypic changes to infer gene functions, often focusing on in-

dividual genes or small sets of genes in specific contexts without

the comprehensive, high-throughput approaches enabled by

genomic technologies today. The approach to predicting gene

function based on primary sequences encompasses a range of

computational methods that analyze sequence homology, struc-

tural motifs, and evolutionary relationships.76–79 These methods

leverage the principle that sequence similarity implies functional

similarity, allowing researchers to rapidly annotate genes in

newly sequenced genomes or identify functional domains within

proteins. Despite the incredible enablement this approach pro-

vides, sequence-based methods have limitations, particularly

in cases where gene functions are influenced by higher-ordered

protein structures or are less conserved. The emergence of

structure-based prediction techniques from sequence and

protein structures offers detailed, residue-level annotations

and has shown superiority over existing methods in accurately

determining protein functions.80–83 However, the reliance on
Cell Systems 15, June 19, 2024 5
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experimentally determined structures, which are less abundant

than sequence data, poses a significant limitation. Recent devel-

opments, such as ESMFold, AlphaFold, and OpenFold, highlight

the complementary nature of sequence- and structure-based

approaches.81,84,85 Sequence-based methods excel in predict-

ing evolutionary-constrained functions, yet they fall short in iden-

tifying diverse functional outcomes stemming from different pro-

tein folds, a strength of structure-based methods. Integrating

multimodal learning approaches may be essential in capturing

the full complexity of gene function. Recent representative

studies have elucidated the significance of combining multiple

data types.80,86–90 This multimodal approach addresses the lim-

itations of singular data type analyses and highlights how addi-

tional datatypes offer a greater comprehensive understanding

of gene function across various biological contexts.

And finally, how do we get there? A new initiative would

be required to complement the current GO paradigm, operating

in multiple stages. In the first stage, we propose curating a large

and consistently processed corpus of biological datasets

covering the underlying relationships between genes and their

possible functions across contexts. In the second stage, we

could recommend self-supervised objectives, such as language

modeling and contrastive learning, coupled with benchmarks for

assessing model performance on known biological relation-

ships. In the third stage, the focus would shift to pretraining a

model on this dataset on a larger scale. By adapting the model

across a broad array of functional tasks, the objective would

be to encapsulate the diverse aspects of interrelationships pre-

sent within the data, mirroring the approach taken with words

in sentences as per the distributional hypothesis. In the fourth

stage, we envision a close interdisciplinary collaboration with ex-

perimentalists to generate additional functional measurements

to test generalization and assess whether novel insights were

obtained from the pretraining stage. This setup would propel

the theory toward practical application and pave the way for pio-

neering models in gene function prediction.

We envision that this systematic investigation of gene function

would be enacted practically by leveraging genetic perturbation

and small molecule modulation, as these methods are readily

deployable and poised to generate expansive datasets, ideal

for tokenization to produce unified multimodal data representa-

tions that can be leveraged using transformer and other

emerging neural architectures. This endeavor will harness the

power of self-supervised learning for the initial exploration of

the dataset for gene function, followed by deploying a scalable

modeling framework capable of predicting further perturbations

and their outcomes. This analytical approach would be paired

with a ‘‘self-driving’’ lab to iteratively direct and refine biological

experimentation toward a more comprehensive and functionally

insightful understanding of gene function. These steps will be

instrumental in forging a revolutionary tool for predicting gene

function in the future.

CONCLUSION

In the face of complexity, biology has relied on consilient meta-

phors to evoke principles from other disciplines. The most im-

pactful analogies have ranged from modularity in engineering

design,91 landscapes,92 cell circuits,93 switches,94 and social
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graphs.94 Here, we have summarized historical parallels and

structural correspondences, suggesting that genetics and natu-

ral language may have much in common. Genetics follows

conceptually corresponding structural rules as the language to

encode information about an agent’s environment. Darwin noted

the ‘‘curious parallels’’ between biological and linguistic evolu-

tion in the descent of man.95 Just as words have meanings

that depend on their context, genes have functions that rely on

the cellular context in which they are expressed. By shifting

our conceptualization from relational to distributional represen-

tations of gene function, we may benefit from the inductive

biases powering successful self-supervised models of natural

language.

However, the distinction between protein complexes and

pathways is not always apparent in biological systems. Genes

may interact dynamically and are not necessarily ordered the

way words are. Genetic elements, such as promoters, introns,

exons, etc., also lack an equivalent in the distributional seman-

tics of natural language. This highlights the need for thoughtfully

developing bespoke machine learning models for biology.

Although the analogy between semantics and genetics is in-

formative, it is essential to recognize the distinct differences

between words and genes, warranting caution against overinter-

preting these similarities.

To do so, structured databases of perturbations are required.

These should span diverse cell contexts, be captured by

different biological assays, and be harmonizedwith the burgeon-

ing single-cell atlases of cell types across organisms. Machine

learning and artificial intelligence can play a significant role in

this data curation process, ensuring that models can maximally

exploit biological datasets. If appropriately constructed, these

biological corpora may enable reasoning about how individual

genes contribute to biological complexity. Conversely, devel-

oping bespoke computational models for biological data will

help unlock new insights into the fundamental principles govern-

ing the language of life.
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(2015). Proteomics. Tissue-based map of the human proteome. Science
347, 1260419. https://doi.org/10.1126/science.1260419.

6. Trapnell, C. (2015). Defining cell types and states with single-cell genomics.
Genome Res. 25, 1491–1498. https://doi.org/10.1101/gr.190595.115.

7. Clevers, H. (2017). What is your conceptual definition of ‘‘‘cell type’’’ in the
context of a mature organism?What is an adult cell type, really? Cell Syst.
4, 255–259. https://doi.org/10.1016/j.cels.2017.03.006.

8. Morris, S.A. (2019). The evolving concept of cell identity in the single cell
era. Development 146, dev169748. https://doi.org/10.1242/dev.169748.

9. Miller, G.A. (1999). On knowing a word. Annu. Rev. Psychol. 50, 1–19.
https://doi.org/10.1146/annurev.psych.50.1.1.

10. Miller, G.A., and Charles, W.G. (1991). Contextual correlates of semantic
similarity. Lang. Cogn. Process 6, 1–28. https://doi.org/10.1080/0169
0969108406936.

11. Bepler, T., and Berger, B. (2021). Learning the protein language: Evolution,
structure, and function. Cell Syst. 12, 654–669.e3. https://doi.org/10.
1016/j.cels.2021.05.017.
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