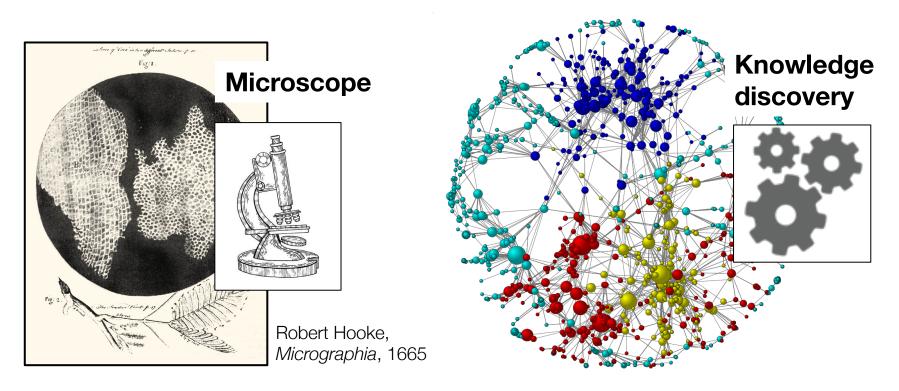
Representation learning: A new approach for biomedical data

Marinka Zitnik (marinka@cs.stanford.edu)

Stanford ENGINEERING

Computer Science

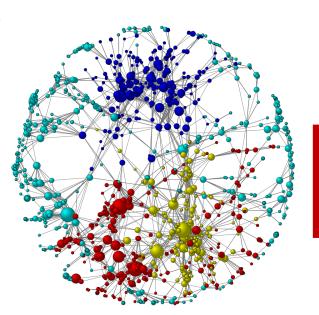
Science crucially depends on scientific instruments

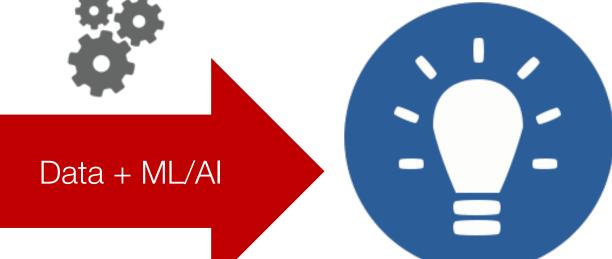


Physical instruments facilitate discoveries

Need instruments for modern, data-intensive sciences

Knowledge Discovery





Predictions and insights

Opportunities for Al in health & medicine

Preliminary diagnosis, early disease detection, self-care

Automated image diagnosis, language modeling

Clinical trial participation, drug discovery, Al-driven medical devices

Comorbidities, chronic disease treatments

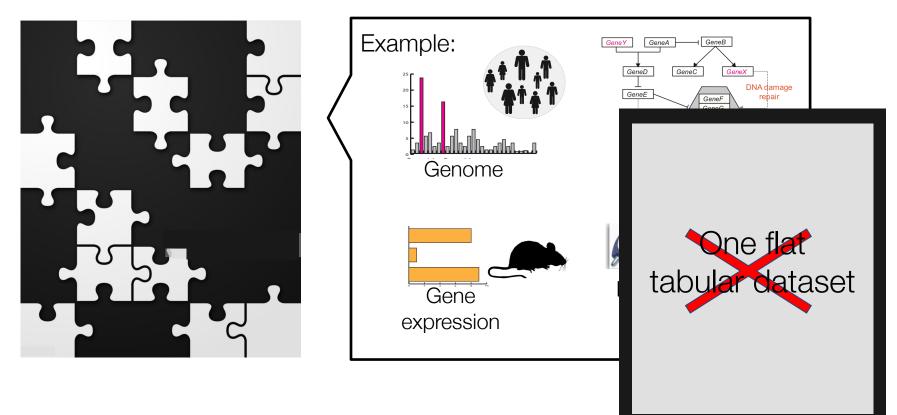
Improve administrative workflows, costly back-office problems

Inpatient & outpatient policies of care

Real-time patient interventions

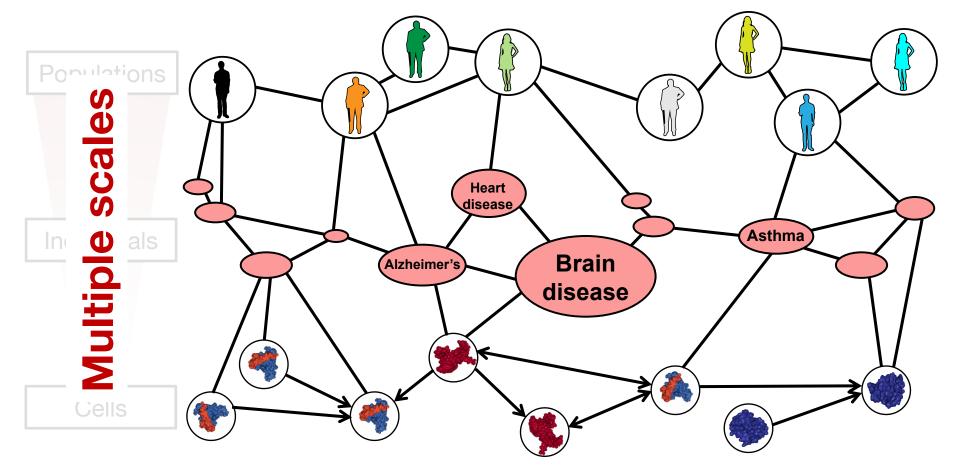
Help protect health data, avoid medical errors

Why is it so challenging to realize this vision?



Multi-scale: molecules, individuals, populations Heterogeneous: experimental readouts, curated annotations, self-reported Confounded: data from different labs, hospitals, biotech platforms, species

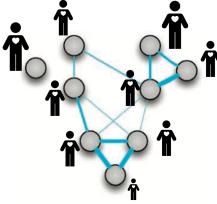
Networks allow for integration of biomedical data



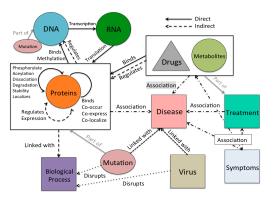
Rich, multimodal data

Machine Learning for Integrating Data in Biology and Medicine: Principles Practice and Opportunities, Information Fusion 2019

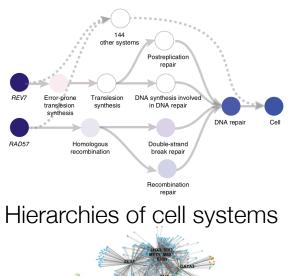
Many biomedical data are networks

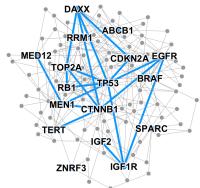


Patient networks

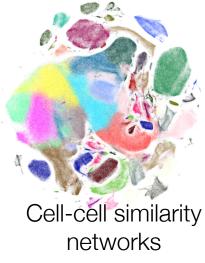


Biomedical knowledge graphs





Disease pathways



Prioritizing Network Communities, Nature Communications 2018

Gene interaction

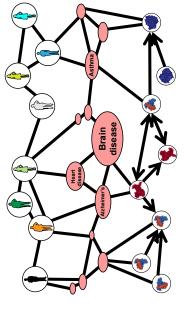
networks

Network Enhancement as a General Method to Denoise Weighted Biological Networks, Nature Communications 2018 Evolution of resilience interactomes across the tree of life, PNAS 2019

11/6/19

7

How to do machine learning on biomedical networks?



Networks

Predictions and insights

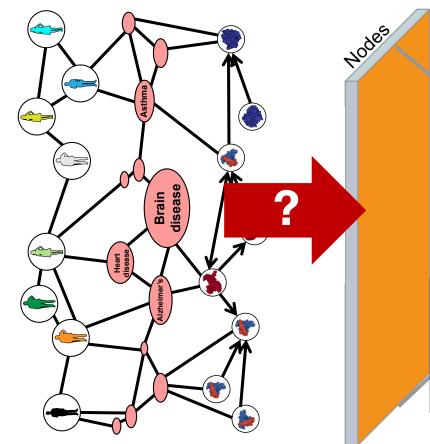
Biomedical ML opens new avenues for:

- Understanding nature, analyzing health, and developing medicines
- How predictive modeling is performed today at the fundamental level

Today's Talk

- Representation learning for biomedical data
 - **2.** Three research applications:
 - Used new approach to predict safety and side effects of drug combinations
 - Used new approach to repurpose old drugs for new diseases
 - Used new approach to answer logical queries on knowledge graphs

How to learn deep models on biomedical networks?



Predictions, e.g., properties of cells, patient outcomes, disease-gene associations, new drug targets, treatment response, drug's adverse effects

Hodes

Networks are a powerful data representation, but are challenging to work with for prevailing ML

Prevailing Deep Models

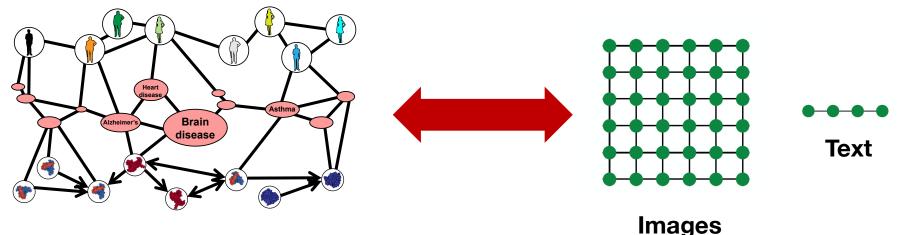
Primarily designed for grids or simple sequences:

CNNs for fixed-size images/arids

These models brought extraordinary gains in computer vision, natural language processing, speech, and robotics

Why is deep learning on networks hard?

Biomedical networks are far more complex!



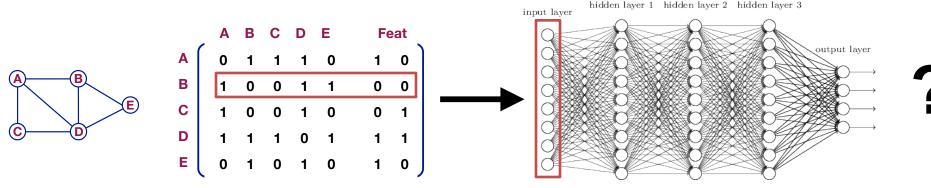
Biomedical networks

Examples:

Human contact networks, Disease networks, Patient networks, Cell similarity networks, Medical knowledge graphs

A Naïve Approach

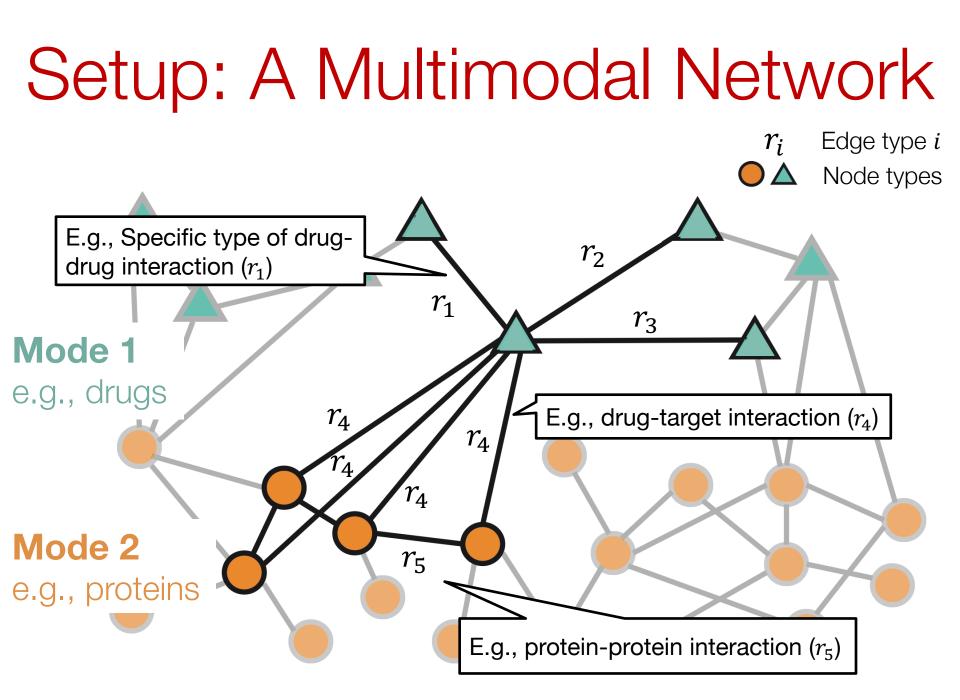
- Join adjacency matrix and features
- Feed them into a deep neural model:



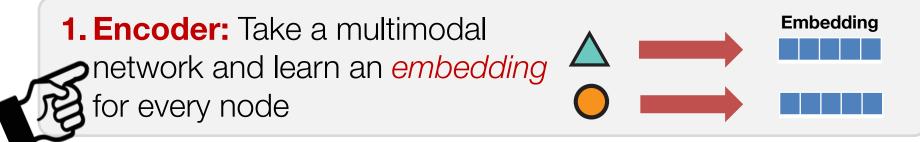
- Issues with this idea:
 - O(N) parameters
 - Not applicable to graphs of different sizes
 - Not invariant to node ordering

Today's goal: Deep learning for biomedical networks

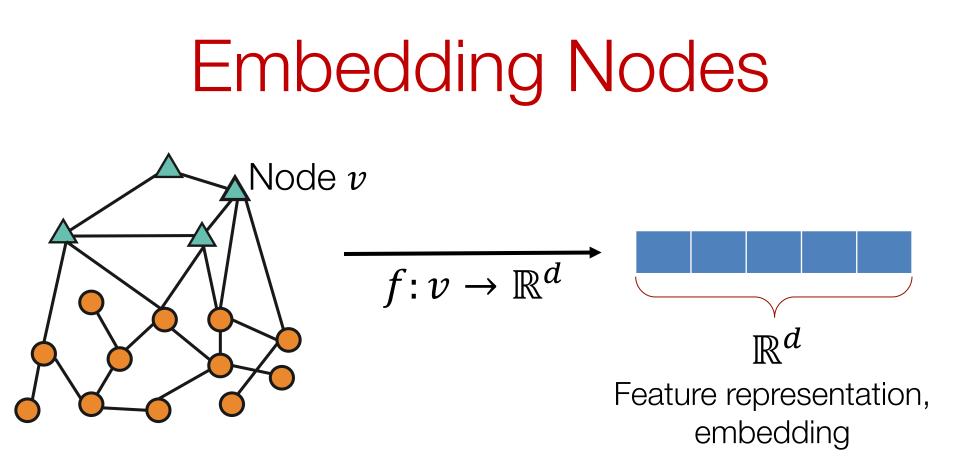
Hodes Hodes Hoger disease Brain Output: Predictions, e.g., properties of cells, patient outcomes, disease-gene associations, new drug targets, treatment response, drug's adverse effects **Input:** Knowledge network



Overview of our deep learning approach for networks

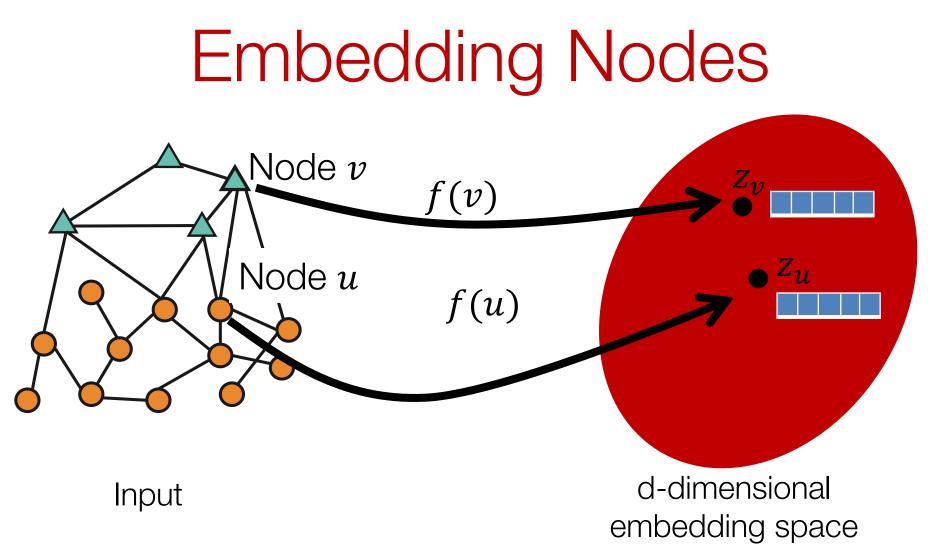


 Decoder: Use the learned embeddings to predict labeled edges between nodes



Objective: Map nodes to d-dimensional embeddings such that nodes with similar network neighborhoods are embedded close together

Next: How to learn mapping function *f*?



Goal: Map nodes to d-dimensional embeddings such that nodes with similar network neighborhoods are embedded close together

Key Idea: Aggregate Neighbors

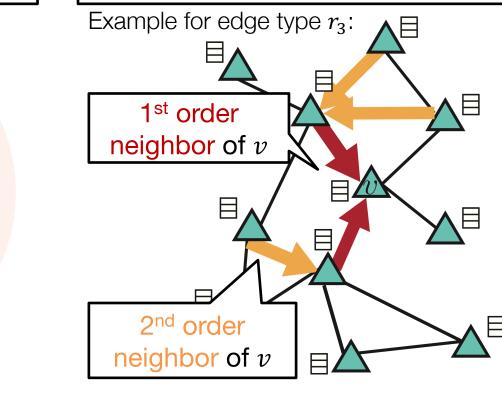
Generate embeddings based on **local network neighborhoods separated by edge type**

1) Determine a node's computation graph for each edge type

''2

 r_3

2) Learn how to transform and propagate information across computation graph

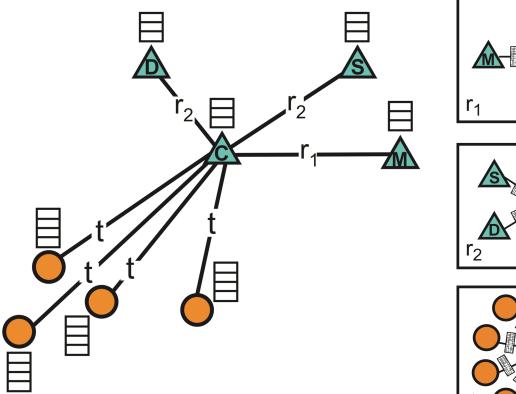


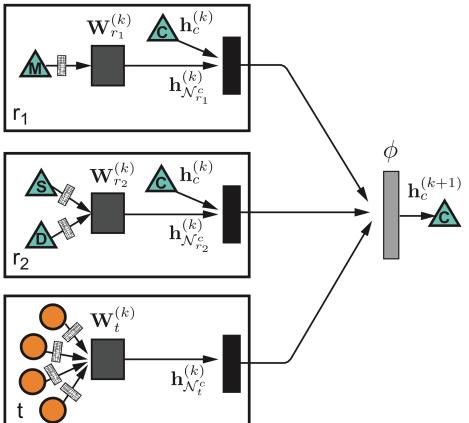
 r_2

 r_3

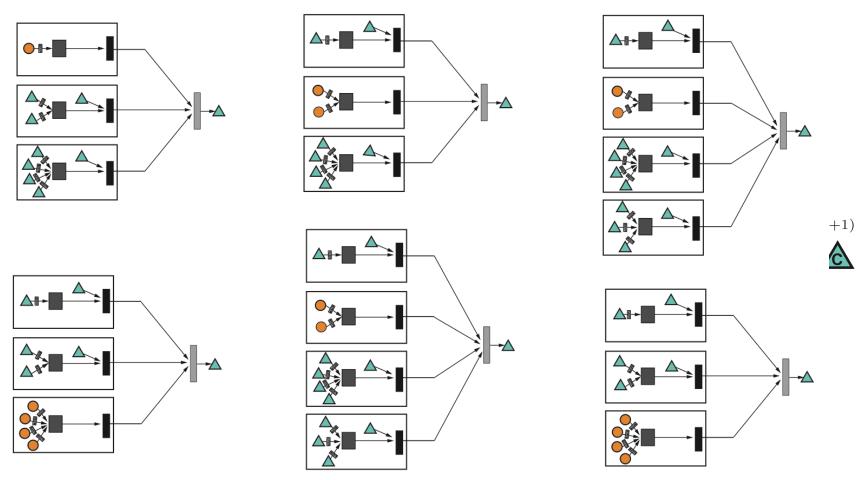
Example: Aggregate Neighbors

1st order network neighborhood of node *C* 1st order computation graph of node *C*





Every node learns how to aggregate its own neighbors

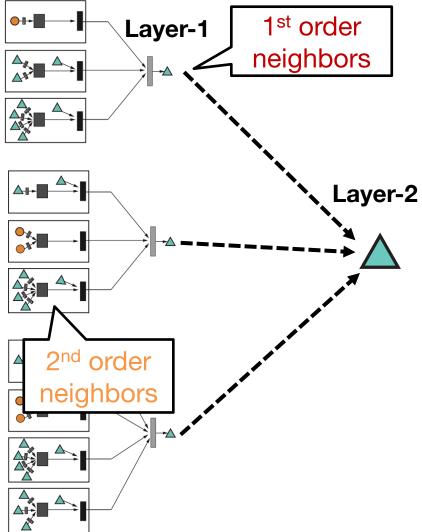


Every node defines a unique computation graph

Deep Model: Many Layers

Layer-0

1/6/19



Model can be of arbitrary depth:

- Nodes have embeddings at each layer
- Layer-0 embeddings are nodes' input features

Deep model with *K* layers:

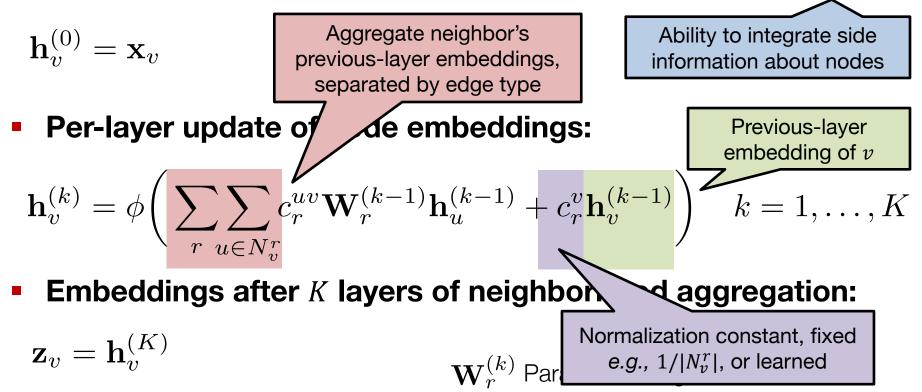
- Convolves information across
 *K*th order neighborhood
- Embedding of a node depends on nodes at most *K* hops away

Recap: Nodes with similar network neighborhoods are embedded close together

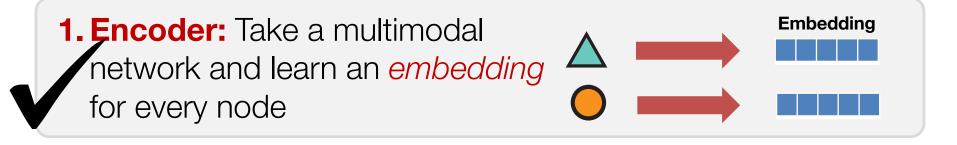
The Math: Deep Graph Encoder

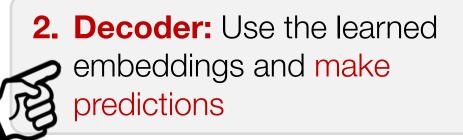
Key element: Each node's computation graph defines a neural network with a different architecture

Initial 0-th layer embeddings are equal to node features:



Overview of our deep learning approach for multimodal networks





What Can We Predict?

- Node prediction: E.g., Predicting protein functions across tissues
- Pairs of nodes: E.g., Predicting side-effects and safety of drug combinations
- Subgraph prediction: E.g., Predicting what drug treats what disease
- Graph prediction: E.g., Predicting properties of molecules

We can now apply deep learning much more broadly, not only to medical images and biological, DNA sequences

New frontiers for applications in **biology** and **medicine**

Overview of our deep learning approach for multimodal networks

2. Decoder: Use the learned embeddings and make predictions

Training the model: Feed embeddings into any loss function and run stochastic gradient descent to train weight parameters:

- Use a loss based on e.g., random walks, node proximity in the graph
- Directly train the model for a supervised task (e.g., node classification)

Today's Talk

Representation learning for biomedical data

2. Three research applications:

Used new approach to predict **safety** and **side effects of drug combinations**

- Used new approach to repurpose old drugs for new diseases
- Used new approach to answer logical queries on knowledge graphs

Polypharmacy

Patients take multiple drugs to treat complex or co-existing diseases

46% of people over 65 years take more than 5 drugs

Many take more than 20 drugs to treat heart diseases, depression or cancer

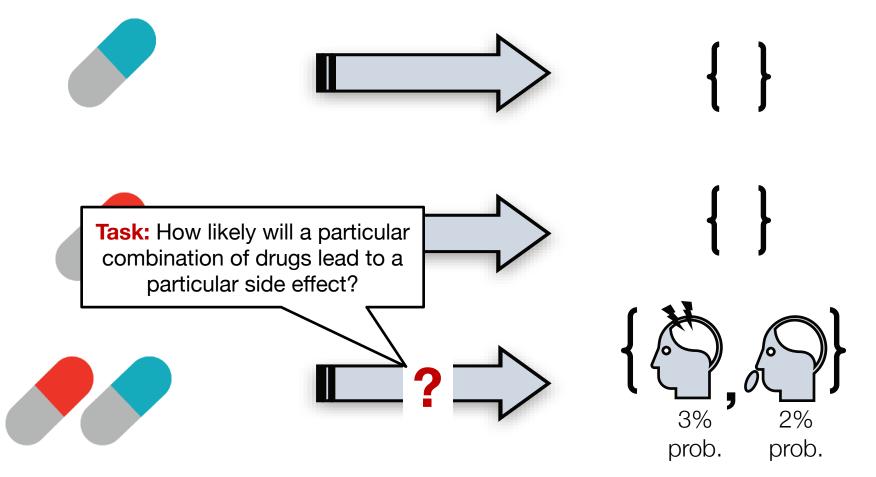
15% of the U.S. population affected by unwanted side effects

Annual costs in treating side effects exceed \$177 billion in the U.S. alone

Unexpected Drug Interactions

Co-prescribed drugs

Side Effects



Why is modeling polypharmacy hard?

Combinatorial explosion

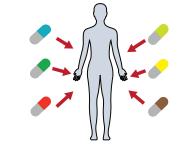
- >13 million possible combinations of 2 drugs
- >20 billion possible combinations of 3 drugs

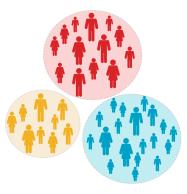
Non-linear & non-additive interactions

Different effect than the additive effect of individual drugs

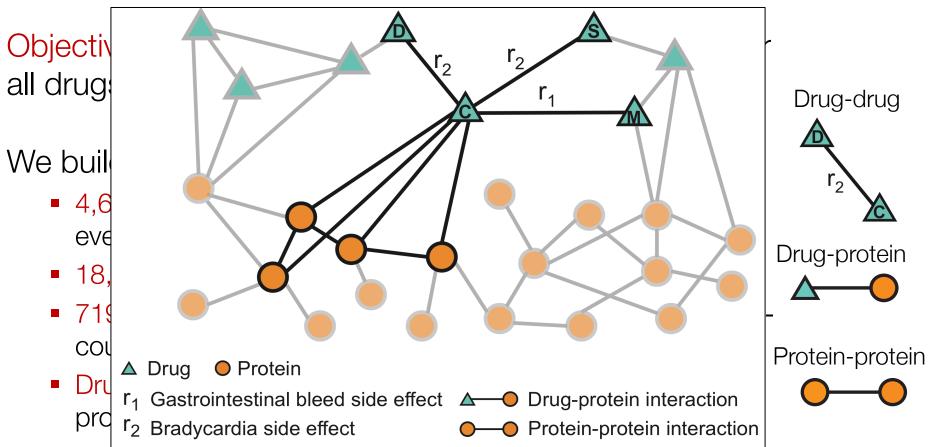
Small subsets of patients

- Side effects are interdependent
- No info on drug combinations not yet used in patients





We need polypharmacy dataset



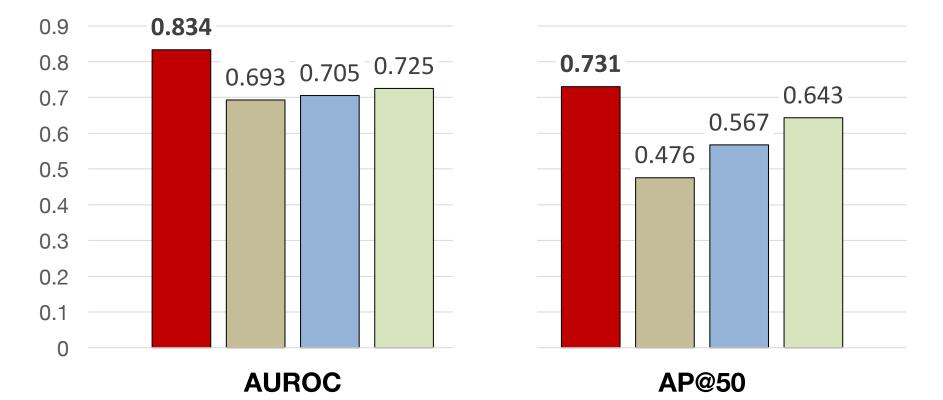
A polypharmacy network with over 5 million edges and over 1,000 different edge types

We apply our deep approach to the polypharmacy network

E.g.: How likely will Simvastatin and Ciprofloxacin, when taken together, break down muscle tissue?

Simvastatin Γ_2 (breakdown of muscle tissue) Ciprofloxacin

Results: Side Effect Prediction



Our method (Decagon)

- RESCAL Tensor Factorization [Nickel et al., ICML'11]
- Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]
- Shallow Network Embedding [Zong et al., Bioinformatics'17]

New Predictions

First AI method to predict side effects of drug combinations, even for combinations not yet used in patients

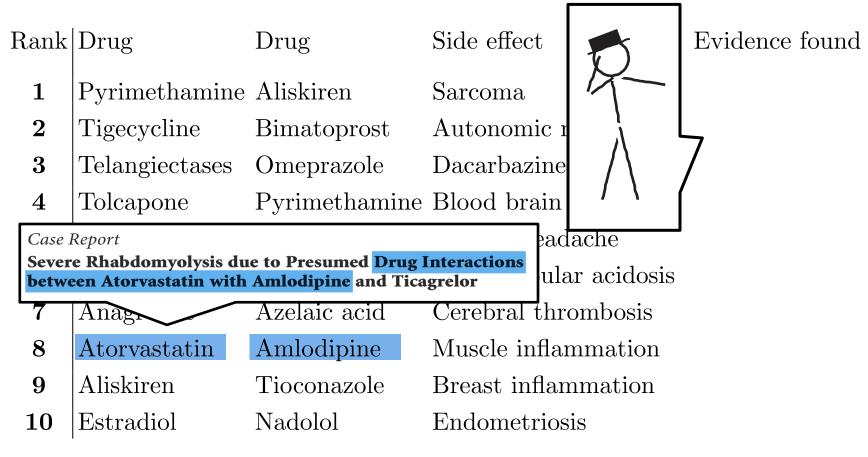
Next: Can the method generate hypotheses and give:

- Doctors guidance on whether it is a good idea to prescribe a particular combination of drugs to a particular patient
- Researchers guidance on effective wet lab experiments and new drug therapies with fewer side effects

New Predictions

Approach:

- 1) Train deep model on data generated **prior to 2012**
- 2) How many predictions have been confirmed after 2012?



Clinical Validation of New Predictions

Drug interaction markers, lab values, and many other surrogates

NEWTON-WELLESLEY HOSPITAL

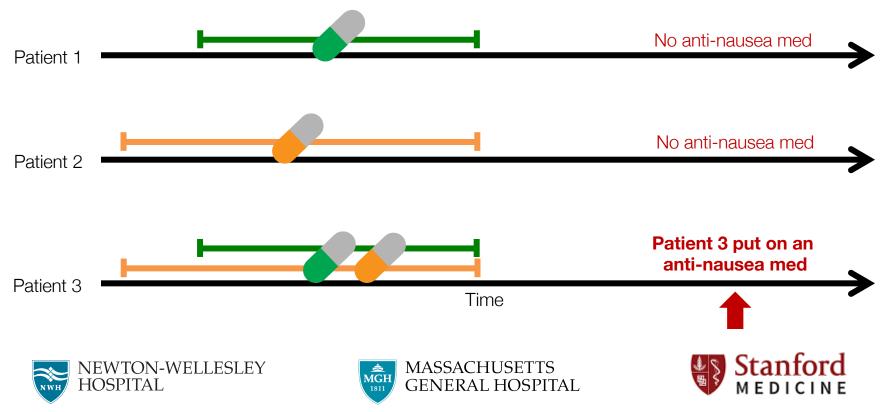
MASSACHUSETTS GENERAL HOSPITAL

beclomethasone HFAQVAR HFA2 puffsbid12AsthmaBarnes19 Feb 2011chlorthalidone25 mg1 daily903HypertensionBarnes19 Sep 2006insulin glargineLantus28 udaily9011DiabetesBallard19 Nov 2012metformin1000 mg1 bid1803DiabetesBarnes4 Mar 2008naproxenAleve500 mg1 bid900Rheumatoid arthritisBarnes4 Mar 2008prednisone20 mg2 d x5d prm840AsthmaBarnes12 Sep 2010Image: Sep 2010	Task List
beclomethasone HFAQVAR HFA2 puffsbid12AsthmaBarnes19 Feb 2011chlorthalidone25 mg1 daily903HypertensionBarnes19 Sep 2006insulin glargineLantus28 udaily9011DiabetesBallard19 Nov 2012metformin1000 mg1 bid1803DiabetesBarnes4 Mar 2008naproxenAleve500 mg1 bid900Rheumatoid arthritisBarnes4 Mar 2008prednisone20 mg2 d x5d prn840AsthmaBarnes12 Sep 20101	Q,
chlorthalidone25 mg1 daily903HypertensionBarnes19 Sep 2006insulin glargineLantus28 udaily9011DiabetesBallard19 Nov 2012Image: Sep 2008metformin1000 mg1 bid1803DiabetesBarnes4 Mar 2008Image: Sep 2010Image: Sep 2010naproxenAleve500 mg1 bid900Rheumatoid arthritisBarnes4 Mar 2008Image: Sep 2010prednisone20 mg2 d x5d pm840AsthmaBarnes12 Sep 2010Image: Sep 2010	new by 🔻
insulin glargineLantus28 udaily9011DiabetesBallard19 Nov 2012metformin1000 mg1 bid1803DiabetesBarnes4 Mar 2008naproxenAleve500 mg1 bid900Rheumatoid arthritisBarnes4 Mar 2008prednisone20 mg2 d x5d pm840AsthmaBarnes12 Sep 2010	Sep 2013
metformin 1000 mg 1 bid 180 3 Diabetes Barnes 4 Mar 2008 naproxen Aleve 500 mg 1 bid 90 0 Rheumatoid arthritis Barnes 4 Mar 2008 prednisone 20 mg 2 d x5d prn 84 0 Asthma Barnes 12 Sep 2010	Sep 2013
naproxen Aleve 500 mg 1 bid 90 0 Rheumatoid arthritis Barnes 4 Mar 2008 prednisone 20 mg 2 d x5d prn 84 0 Asthma Barnes 12 Sep 2010	Sep 2013
prednisone 20 mg 2 d x5d prn 84 0 Asthma Barnes 12 Sep 2010	Sep 2013
	Sep 2013
	Sep 2013
zolpidem 5 mg 1 hs 90 0 Insomnia Barnes 15 Mar 2012	Sep 2013
simvastatin 40 mg 1 daily 84 0 High cholesterol Belden 19 Mar 2010	Sep 2013
terbinafine 250 mg 1 daily 84 0 Onychomycosis Foote 30 Jul 2013	Oct 2013

Clinical Validation: Key Idea

Question: Is it a good idea to prescribe a particular combination of drugs to a particular patient?

E.g., Prediction: { / Cause nausea as a side effect

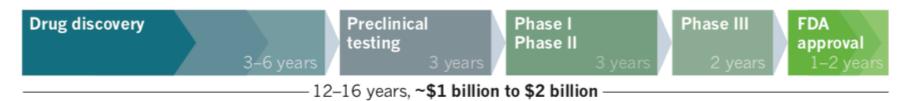


Today's Talk

- **1. Representation learning** for biomedical data
 - 2. Three research applications:
 Used new approach to predict safety and side effects of drug combinations
 - Used new approach to repurpose old drugs for new diseases
 - Used new approach to answer logical queries on knowledge graphs

New tricks for old drugs

Goal: Find which diseases a drug (new molecule) could treat

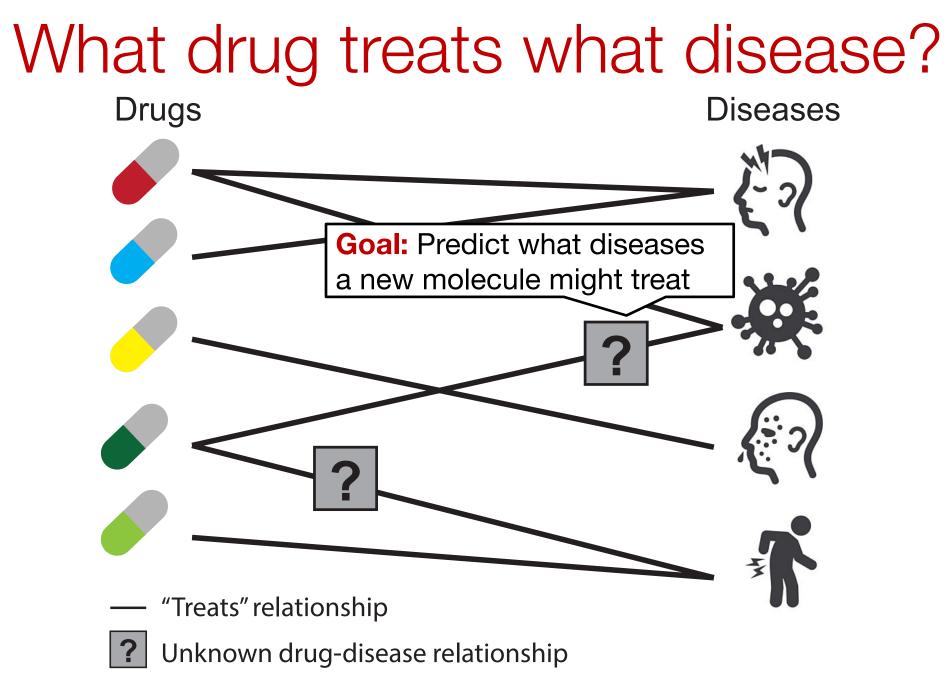


A SHORTER TIMESCALE

Because most repositioned drugs have already passed the early phases of development and clinical testing, they can potentially win approval in less than half the time and at one-quarter of the cost.

~6 years, ~\$300 million

Nature 2016

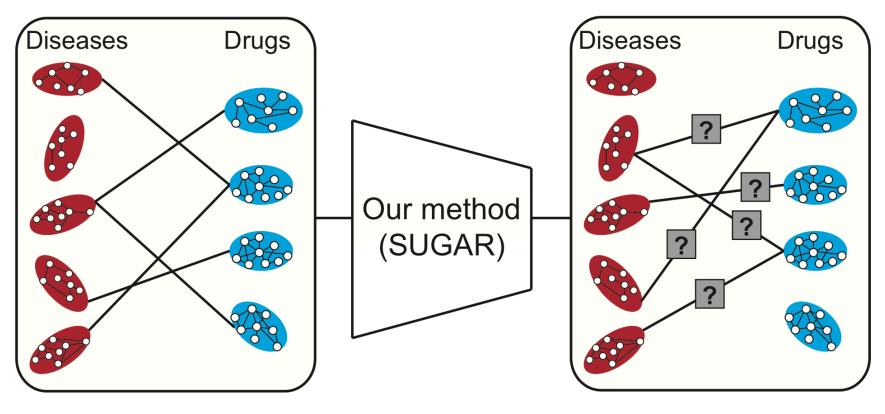


Key Insight: Subgraphs **Disease:** Subgraph of rich **Drug:** Subgraph of rich protein network defined protein network defined on on drug's target proteins disease proteins A drug likely treats a disease if it is **close** to the disease in pharmacological space [Paolini et al., Nature Biotech.'06; Menche et al., Science'15]

Idea: Use the paradigm of embeddings to operationalize the concept of closeness in pharmacological space

Predicting Links Between Drug and Disease Subgraphs

Task: Given drug *C* and disease *D*, predict if *C* treats *D*

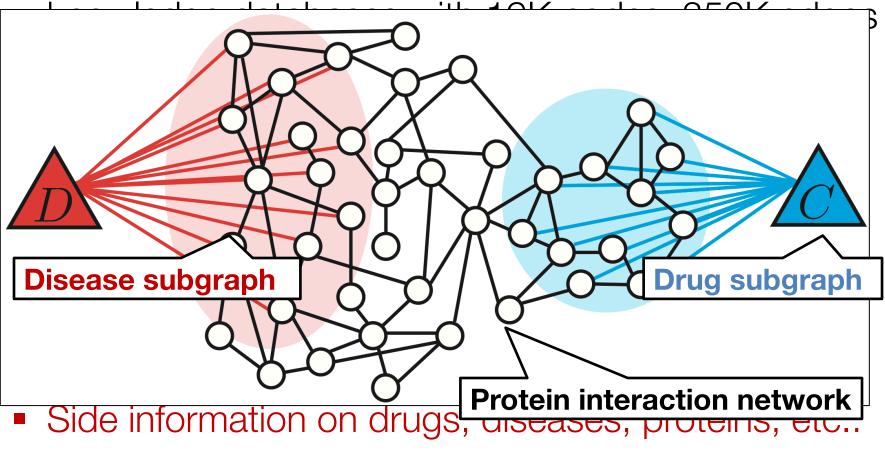


Input data

Predictions

We need drug repurposing dataset

Protein-protein interaction network culled from 15



Molecular pathways, disease symptoms, side effects

Predictive Performance

Task: Given a disease and a drug, predict if the drug could treat the disease

/Approach

AUPRC AUROC

0.851

Our method (SUGAR)

Graphlets [Bioinformatics'13] PREdicting Drug IndiCaTions [Mol. Sys. Biol.'11]

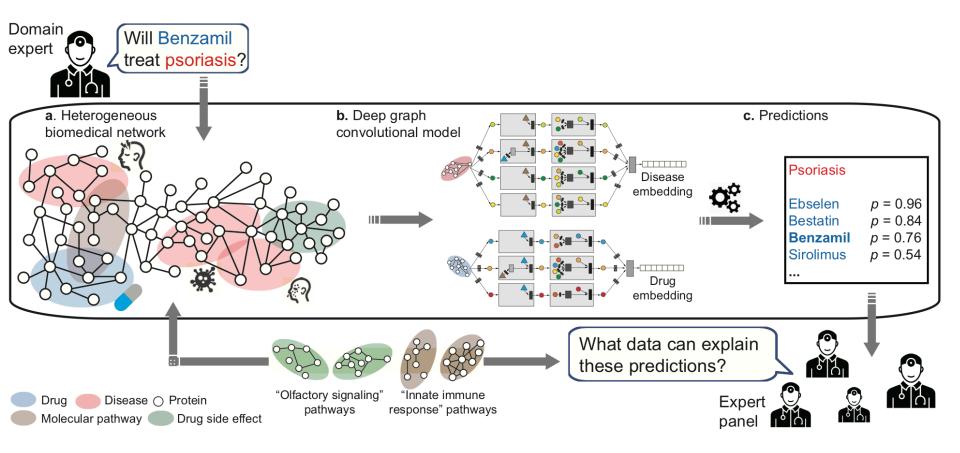
Bi-directional random walks [Bioinformatics'16] Heterogeneous graph inference [Bioinformatics'14]

Drug-disease closeness [Nat. Commun.'17] Drug-disease dispersion [Nat. Commun.'17] Gene-based network overlap [Nat. Commun.'17] Up to 49% improvement

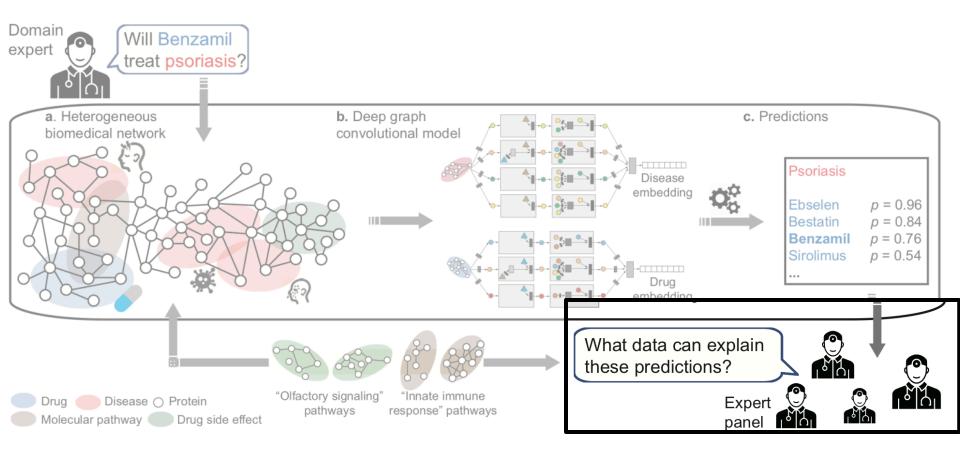
0.888

Up to 172% improvement

Feedbacks for the AI Loop



Feedbacks for the AI Loop



Explaining Machine Predictions

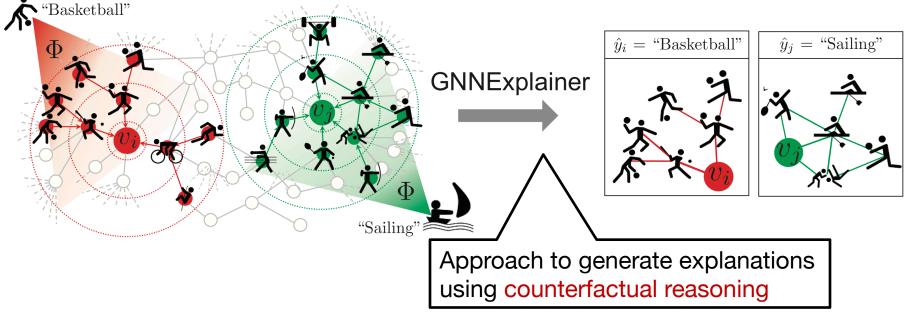
Key idea:

11/6/19

- Summarize where in the data the model "looks" for evidence for its prediction
- Find a small subgraph most influential for the prediction

GNN model training and predictions

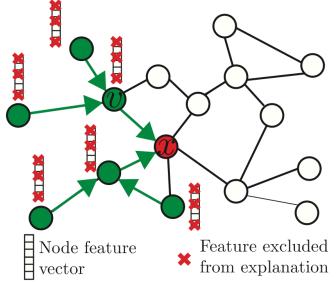
Explaning GNN's predictions



GNN Explainer: Generating Explanations for Graph, Neural Networks, NeurIPS 2019 (to appear)

GNNExplainer: Key Idea

- Input: Given prediction f(x) for node/link x
- Output: Explanation, a small subgraph M_x together with a small subset of node features:
 - M_x is most influential for prediction f(x)
- Approach: Learn M_x via counterfactual reasoning
 - Intuition: If removing v from the graph strongly decreases the probability of prediction ⇒ v is a good counterfactual explanation for the prediction

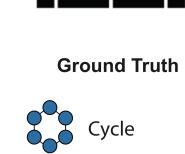


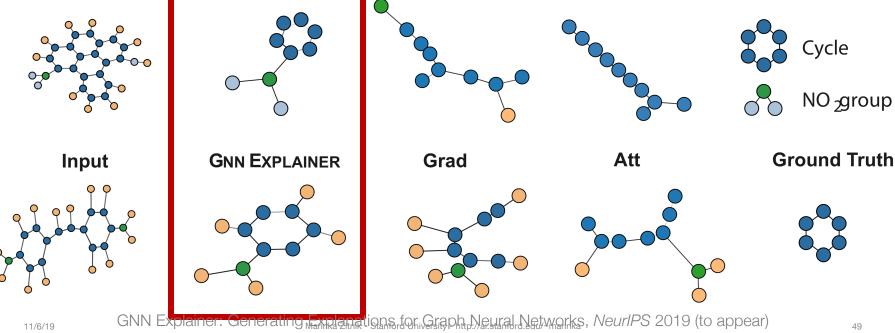
GNN Explainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 (to appear)

GNNExplainer: Results

"Why did you predict that this molecule will have a mutagenic effect on Gram-negative bacterium S. typhimurium?"

Explanation GNN EXPLAINER Input Grad Att



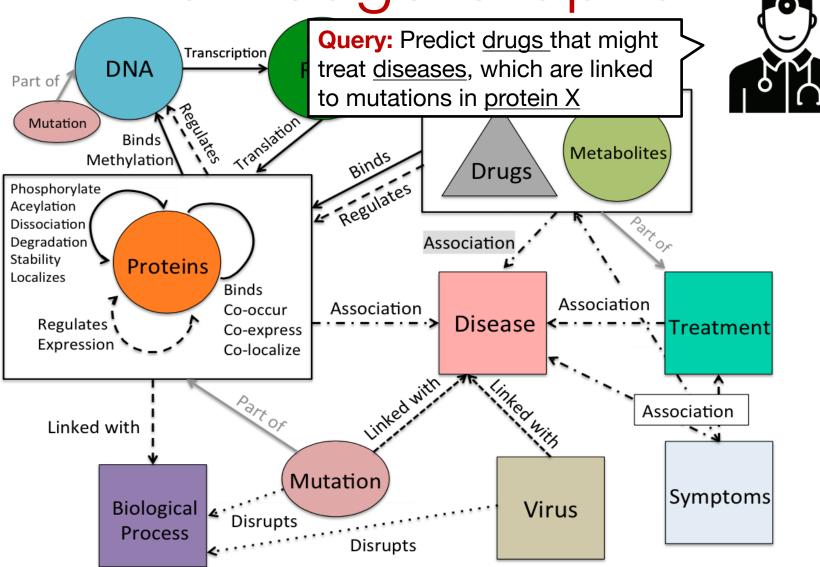


Today's Talk

- Representation learning for biomedical data
 - 2. Three research applications:
 Used new approach to predict safety and side effects of drug combinations
 Used new approach to repurpose old drugs for new diseases

Subsection of the second sector of the secto

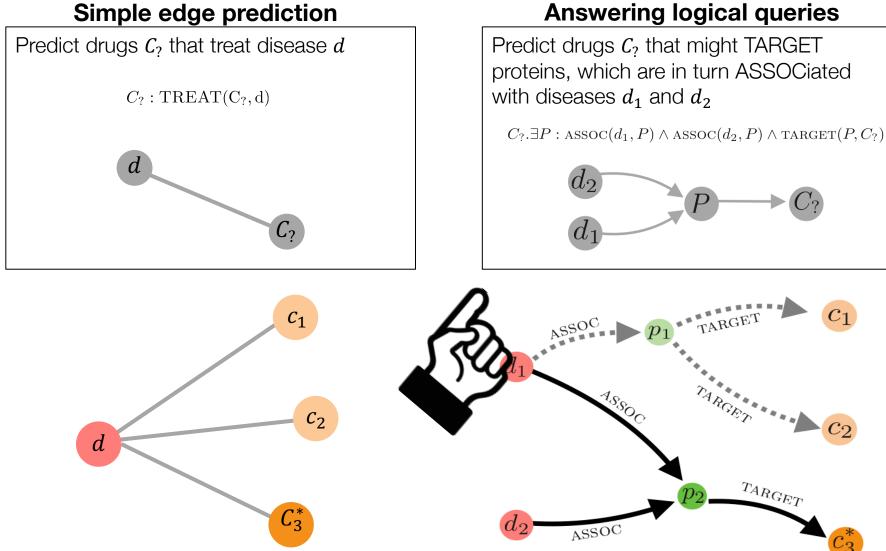
Knowledge Graphs



Embedding Logical Queries on Knowledge Graphs NeurIPS 2018

Learn over Knowledge Graphs

Simple edge prediction



Embedding Logical Queries on Knowledge Graphs, NeurIPS 2018

Why is query prediction on knowledge graphs a hard problem?

1) Massive enumerations

- E.g., the protein node is an existentially quantified variable
- Need to enumerate over all possible protein nodes

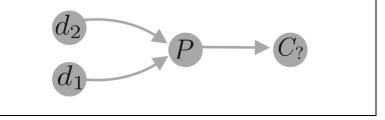
1) Exponential computations

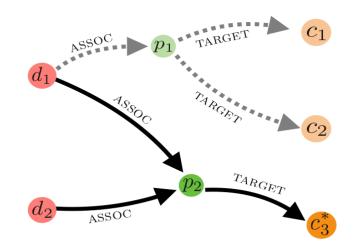
- Combinatorial number of possible answers to the query
- Naive enumeration approach has exponential time complexity in the number of query variables

Logical query

Predict drugs $C_{?}$ that might TARGET proteins, which are in turn ASSOCiated with diseases d_{1} and d_{2}

 $C_?$. $\exists P$: Assoc $(d_1, P) \land$ Assoc $(d_2, P) \land$ Target $(P, C_?)$



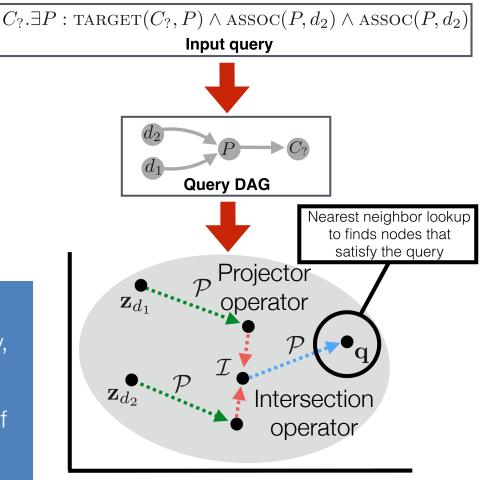


Embedding Logical Queries on Knowledge Graphs NeurIPS 2018

Approach: Query Embeddings

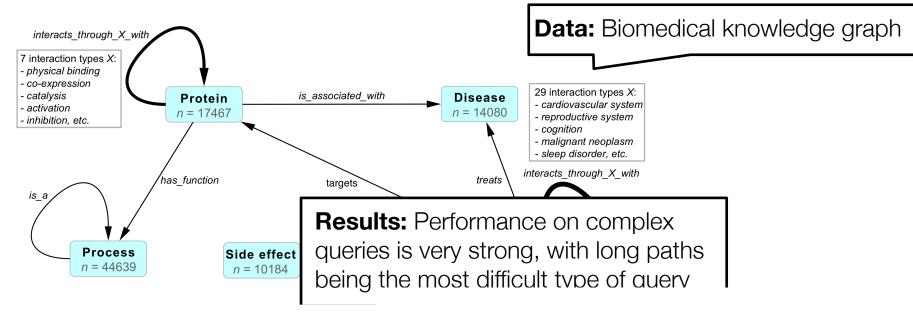
Two key steps:

- 1) Generate an embedding for every node in the graph
- 2) Represent logical operators as learned geometric operations (e.g., translation, rotation) in this embedding space
- Any conjunctive query: Can predict which nodes are likely to satisfy any query, even if it involves unobserved edges
- Efficient: Linear time complexity in size of the query and constant in size of the knowledge graph



Operations in an embedding space

Query Embeddings: Results



Results: Ablated models that are only trained on edge prediction perform much worse than query embeddings

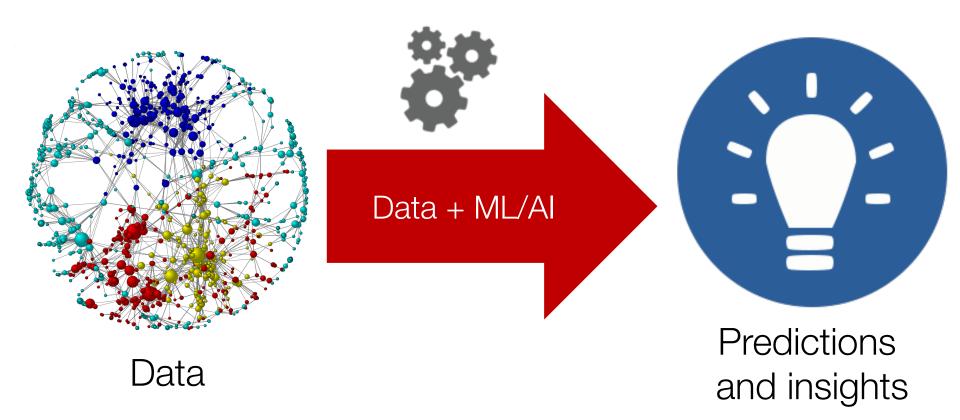
Embedding Logical Queries on Knowledge Graphs NeurIPS 2018

Summary of Results

- 1. Used new approach to **predict safety and side effects of drug combinations:**
 - First-ever systematic and predictive study of drug combinations
 - Follow-up research on prostate cancer and validations in the clinic
- 2. Used new approach to repurpose old drugs for new diseases:
 - Outperforms baselines by up to 172%
 - Correctly predicted drugs repurposed at Stanford SPARK
- 3. Used new approach to **answer logical queries on knowledge graphs:**
 - Predict <u>drugs</u> that might treat <u>diseases</u> linked to mutations in <u>protein X</u>
 - Ability to answer logical queries in a linear instead of exponential time

Large datasets are transforming science and medicine

New machine learning methods can unlock these datasets and open doors for scientific discoveries



Thank you!

Papers, tutorials, data & code <u>ai.stanford.edu/~marinka</u>

I am hiring outstanding postdocs for projects in machine learning and biomedical data!