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Science crucially depends on 
scientific instruments

Physical instruments 
facilitate discoveries

Need instruments for modern, 
data-intensive sciences

Knowledge 
discoveryMicroscope

Robert Hooke,
Micrographia, 1665
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Data + ML/AI

Data Predictions 
and insights

Knowledge Discovery
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Opportunities for AI
in health & medicine

Preliminary diagnosis, 
early disease 
detection, self-care

Inpatient & outpatient 
policies of care

Comorbidities, 
chronic disease 
treatments

Real-time patient 
interventions

Improve administrative 
workflows, costly 
back-office problems

Help protect health 
data, avoid medical 
errors

Automated image 
diagnosis, 
language modeling

Clinical trial participation, 
drug discovery, AI-driven 
medical devices
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Why is it so challenging 
to realize this vision?

Example:
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Genome

Behaviors, lifestyle, 
vital signs

Cellular pathways

Multi-scale: molecules, individuals, populations
Heterogeneous: experimental readouts, curated annotations, self-reported
Confounded: data from different labs, hospitals, biotech platforms, species

One flat 
tabular dataset
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Asthma

Alzheimer’s

Heart
disease

Brain
disease

Networks allow for integration
of biomedical data

Populations

Individuals

Cells
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Rich, multimodal data
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Machine Learning for Integrating Data in Biology and Medicine: Principles, Practice, and Opportunities, Information Fusion 2019Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 611/6/19



Hierarchies of cell systemsPatient networks

Cell-cell similarity 
networks

Biomedical knowledge
graphs

Disease pathways

Gene interaction
networks

Many biomedical data 
are networks

Prioritizing Network Communities, Nature Communications 2018
Network Enhancement as a General Method to Denoise Weighted Biological Networks, Nature Communications 2018

Evolution of resilience in protein interactomes across the tree of life, PNAS 2019Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 711/6/19



A
st
hm

a

A
lz
he
im
er
’s

H
ea
rt

di
se
as
e

B
ra
in

di
se
as
e

A
st
hm

a

A
lz
he
im
er
’s

H
ea
rt

di
se
as
e

B
ra
in

di
se
as
e

A
st
hm

a

A
lz
he
im
er
’s

H
ea
rt

di
se
as
e

B
ra
in

di
se
as
e

How to do machine learning 
on biomedical networks?

?

Biomedical ML opens new avenues for:
§ Understanding nature, analyzing health, and developing medicines
§ How predictive modeling is performed today at the fundamental level

Networks Predictions 
and insights
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Today’s Talk
1. Representation learning for 

biomedical data

2. Three research applications: 
§ Used new approach to predict safety and

side effects of drug combinations
§ Used new approach to repurpose old 

drugs for new diseases
§ Used new approach to answer logical 

queries on knowledge graphs
Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 911/6/19



A
st
hm

a

A
lz
he
im
er
’s

H
ea
rt

di
se
as
e

B
ra
in

di
se
as
e

A
st
hm

a

A
lz
he
im
er
’s

H
ea
rt

di
se
as
e

B
ra
in

di
se
as
e

A
st
hm

a

A
lz
he
im
er
’s

H
ea
rt

di
se
as
e

B
ra
in

di
se
as
e

…?

How to learn deep models
on biomedical networks?

Predictions, e.g., properties of cells, 
patient outcomes, disease-gene 
associations, new drug targets, treatment 
response, drug’s adverse effects

Networks are a powerful data representation, but are 
challenging to work with for prevailing ML
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Prevailing Deep Models
Primarily designed for grids or simple sequences:
§ CNNs for fixed-size images/grids…

§ RNNs for text/sequences…

But are unable to consider interactions, the 
essence of networks

These models brought extraordinary gains in 
computer vision, natural language 
processing, speech, and robotics
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Why is deep learning on
networks hard?

Examples:
Human contact networks, Disease networks, 
Patient networks, Cell similarity networks, 
Medical knowledge graphs

Biomedical networks
Images

Text

Asthma

Alzheimer’s

Heart
disease

Brain
disease

Asthma

Alzheimer’s

Heart
disease

Brain
disease

Asthma

Alzheimer’s

Heart
disease

Brain
disease

Biomedical networks are far more complex!
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End-to-end learning on graphs with GCNs Thomas Kipf
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Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 
• No inductive learning possible

?A

C

B

D

E

[A,X]

A Naïve Approach
§ Join adjacency matrix and features
§ Feed them into a deep neural model:

§ Issues with this idea:
§ 𝑂(𝑁) parameters
§ Not applicable to graphs of different sizes
§ Not invariant to node ordering
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…
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Output: Predictions, e.g., properties of 
cells, patient outcomes, disease-gene 
associations, new drug targets, treatment 
response, drug’s adverse effects

Input: Knowledge network
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Today’s goal: Deep learning for 
biomedical networks
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Mode 1
e.g., drugs

Mode 2
e.g., proteins

E.g., Specific type of drug-
drug interaction (𝑟&)

𝑟&

𝑟'

𝑟(

E.g., drug-target interaction (𝑟))𝑟) 𝑟)
𝑟)

𝑟)

E.g., protein-protein interaction (𝑟*)

𝑟*

𝑟+ Edge type 𝑖
Node types

Setup: A Multimodal Network
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Overview of our deep learning 
approach for networks

1. Encoder: Take a multimodal 
network and learn an embedding
for every node

2. Decoder: Use the learned 
embeddings to predict labeled 
edges between nodes

ri

Embedding

Embedding

Embedding
?
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Objective: Map nodes to d-dimensional embeddings
such that nodes with similar network neighborhoods are 

embedded close together

Next: How to learn mapping function 𝑓?

Embedding Nodes

𝑓: 𝑣 → ℝ2

ℝ2
Feature representation, 

embedding

Node 𝑣
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Goal: Map nodes to d-dimensional embeddings such 
that nodes with similar network neighborhoods are 

embedded close together

Embedding Nodes

Node 𝑢

Input d-dimensional 
embedding space

𝑧5

𝑧6𝑓(𝑣)

𝑓(𝑢)

Node 𝑣
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Generate embeddings based on local network 
neighborhoods separated by edge type 

Key Idea: Aggregate Neighbors

2) Learn how to transform and propagate 
information across computation graph

1st order 
neighbor of 𝑣

2nd order 
neighbor of 𝑣

1) Determine a node’s computation 
graph for each edge type

Example for edge type 𝑟(:
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Example: Aggregate Neighbors
1st order computation 

graph of node 𝑪
1st order network 

neighborhood of node 𝑪
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Every node learns how to 
aggregate its own neighbors

Every node defines a unique computation graph
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Model can be of arbitrary depth: 
§ Nodes have embeddings at 

each layer
§ Layer-0 embeddings are nodes’ 

input features

Deep Model: Many Layers
1st order 

neighbors

2nd order 
neighbors Recap: Nodes with similar 

network neighborhoods are 
embedded close together

Layer-0

Layer-2

Layer-1

Deep model with 𝑲 layers:
§ Convolves information across 
𝐾th order neighborhood

§ Embedding of a node depends 
on nodes at most 𝐾 hops away
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Parameter weight matrices

Key element: Each node’s computation graph 
defines a neural network with a different architecture
§ Initial 0-th layer embeddings are equal to node features:

§ Per-layer update of node embeddings:

§ Embeddings after 𝐾 layers of neighborhood aggregation: 

Aggregate neighbor’s 
previous-layer embeddings, 

separated by edge type 

The Math: Deep Graph Encoder

Previous-layer 
embedding of 𝑣

Normalization constant, fixed 
e.g., 1/|𝑁6=|, or learned

Ability to integrate side 
information about nodes
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Overview of our deep learning 
approach for multimodal networks

1. Encoder: Take a multimodal 
network and learn an embedding
for every node

2. Decoder: Use the learned 
embeddings and make   
predictions

ri

Embedding

Embedding

Embedding
?
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§ Node prediction: E.g., Predicting protein 
functions across tissues

§ Pairs of nodes: E.g., Predicting side-effects 
and safety of drug combinations

§ Subgraph prediction: E.g., Predicting what 
drug treats what disease

§ Graph prediction: E.g., Predicting properties 
of molecules

We can now apply deep learning much more broadly, not 
only to medical images and biological, DNA sequences

New frontiers for applications in biology and medicine 

What Can We Predict?
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Overview of our deep learning 
approach for multimodal networks

Training the model: Feed embeddings into any loss function and run stochastic 
gradient descent to train weight parameters:
• Use a loss based on e.g., random walks, node proximity in the graph
• Directly train the model for a supervised task (e.g., node classification)

ri

Embedding

Embedding

Embedding
?

1. Encoder: Take a multimodal 
network and learn an embedding
for every node

2. Decoder: Use the learned 
embeddings and make   
predictions
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Today’s Talk
1. Representation learning for 

biomedical data

2. Three research applications: 
§ Used new approach to predict safety and

side effects of drug combinations
§ Used new approach to repurpose old 

drugs for new diseases
§ Used new approach to answer logical 

queries on knowledge graphs
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Polypharmacy
Patients take multiple drugs to treat 

complex or co-existing diseases
46% of people over 65 years take more than 5 drugs

Many take more than 20 drugs to treat heart diseases, depression or cancer 

15% of the U.S. population affected by unwanted side effects

Annual costs in treating side effects exceed $177 billion in the U.S. alone

[Ernst and Grizzle, JAPA’01; Kantor et al., JAMA’15]
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Unexpected Drug Interactions

,

Prescribed 
drugs

Drug
side effect

3% 
prob.

2% 
prob.

,

Prescribed 
drugs

Drug
side effect

,

Prescribed 
drugs

Drug
side effectCo-prescribed drugs Side Effects

?

Task: How likely will a particular 
combination of drugs lead to a 

particular side effect?
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Why is modeling 
polypharmacy hard?

Combinatorial explosion
§ >13 million possible combinations of 2 drugs
§ >20 billion possible combinations of 3 drugs

Non-linear & non-additive interactions
§ Different effect than the additive effect of individual drugs

Small subsets of patients
§ Side effects are interdependent 
§ No info on drug combinations not yet used in patients

,

Prescribed 
drugs

Drug
side effect

,

Prescribed 
drugs

Drug
side effect

,

Prescribed 
drugs

Drug
side effect

+ ≠
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We need polypharmacy dataset
Objective: Capture molecular, drug, and patient data for 
all drugs prescribed in the U.S. 

We build a unique dataset:
§ 4,651,131 drug-drug edges: Patient data from adverse 

event system, tested for confounders [FDA]
§ 18,596 drug-protein edges 
§ 719,402 protein-protein edges: Physical, metabolic enzyme-

coupled, and signaling interactions
§ Drug and protein features: drugs’ chemical structure, 

proteins’ membership in pathways

r1 Gastrointestinal bleed side effect  
r2 Bradycardia side effect Protein-protein interaction

Drug-protein interactionr3 Nausea side effect
r4 Mumps side effectr1 Gastrointestinal bleed side effect  

r2 Bradycardia side effect Protein-protein interaction
Drug-protein interactionr3 Nausea side effect

r4 Mumps side effect

Drug-protein

Protein-protein

Drug-drug

A polypharmacy network with over 5 million edges and 
over 1,000 different edge types
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We apply our deep approach to 
the polypharmacy network

E.g.: How likely will Simvastatin and Ciprofloxacin, 
when taken together, break down muscle tissue?
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Results: Side Effect Prediction
0.834

0.7310.693

0.476

0.705

0.567

0.725
0.643

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

AUROC AP@50

Our method (Decagon)
RESCAL Tensor Factorization [Nickel et al., ICML'11]
Multi-relational Factorization [Perros, Papalexakis et al., KDD'17] 
Shallow Network Embedding [Zong et al., Bioinformatics'17]
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New Predictions
First AI method to predict side effects of 

drug combinations, even for combinations 
not yet used in patients

Next: Can the method generate hypotheses and give:
§ Doctors guidance on whether it is a good idea to prescribe a 

particular combination of drugs to a particular patient
§ Researchers guidance on effective wet lab experiments and 

new drug therapies with fewer side effects 

Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 3411/6/19



New Predictions
Approach:
1) Train deep model on data generated prior to 2012
2) How many predictions have been confirmed after 2012?
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Clinical Validation of New 
Predictions

Drug interaction markers, lab values, and many other surrogates
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Question: Is it a good idea to prescribe a particular 
combination of drugs to a particular patient?

§ E.g., Prediction: {   ,   } cause nausea as a side effect

Patient 1

Patient 2

Patient 3
Time

Patient 3 put on an 
anti-nausea med

No anti-nausea med

No anti-nausea med

Clinical Validation: Key Idea
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Today’s Talk
1. Representation learning for 

biomedical data

2. Three research applications: 
§ Used new approach to predict safety and

side effects of drug combinations
§ Used new approach to repurpose old 

drugs for new diseases
§ Used new approach to answer logical 

queries on knowledge graphs
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Nature 2016

Goal: Find which diseases a drug (new 
molecule) could treat
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Drugs Diseases

“Treats” relationship

?

?

? Unknown drug-disease relationship

What drug treats what disease?

Goal: Predict what diseases 
a new molecule might treat
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Key Insight: Subgraphs

A drug likely treats a disease if it is close to the 
disease in pharmacological space [Paolini et al., 
Nature Biotech.’06; Menche et al., Science’15]

Disease: Subgraph of rich 
protein network defined on 
disease proteins

Drug: Subgraph of rich 
protein network defined 
on drug’s target proteins

Idea: Use the paradigm of embeddings to operationalize 
the concept of closeness in pharmacological space
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Predicting Links Between Drug  
and Disease Subgraphs

Task: Given drug 𝐶 and disease 𝐷, predict if 𝐶 treats 𝐷
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We need drug repurposing dataset
§ Protein-protein interaction network culled from 15 

knowledge databases with 19K nodes, 350K edges

§ Drug-protein and disease-protein links:
§ DrugBank, OMIM, DisGeNET, STITCH DB and others
§ 20K drug-protein links, 560K disease-protein links

§ Medical indications and contra-indications: 
§ DrugBank, MEDI-HPS, DailyMed, Drug Central, RepoDB
§ 6K drug-disease indications

§ Side information on drugs, diseases, proteins, etc.:
§ Molecular pathways, disease symptoms, side effects

Disease subgraph Drug subgraph

Protein interaction network
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Predictive Performance
Task: Given a disease and a drug, 

predict if the drug could treat the disease

Up to 49% 
improvement

Up to 172% 
improvement
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Feedbacks for the AI Loop
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Feedbacks for the AI Loop
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Explaining Machine Predictions
Key idea: 
§ Summarize where in the data the model “looks” for 

evidence for its prediction
§ Find a small subgraph most influential for the prediction 

Approach to generate explanations 
using counterfactual reasoning

GNN Explainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 (to appear)Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 4711/6/19



GNNExplainer: Key Idea
§ Input: Given prediction 𝑓(𝑥) for node/link 𝑥
§ Output: Explanation, a small subgraph 𝑀D together 

with a small subset of node features:
§ 𝑀D is most influential for prediction 𝑓(𝑥)

§ Approach: Learn 𝑀D via counterfactual reasoning
§ Intuition: If removing 𝑣 from 

the graph strongly 
decreases the probability of 
prediction ⇒ 𝑣 is a good 
counterfactual explanation 
for the prediction

GNN Explainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 (to appear)Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 4811/6/19



GNNExplainer: Results
”Why did you predict that this molecule will have a 
mutagenic effect on Gram-negative bacterium S. 
typhimurium?” 

Explanation

GNN Explainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 (to appear)Marinka Zitnik - Stanford University - http://ai.stanford.edu/~marinka 4911/6/19



Today’s Talk
1. Representation learning for 

biomedical data

2. Three research applications: 
§ Used new approach to predict safety and

side effects of drug combinations
§ Used new approach to repurpose old 

drugs for new diseases
§ Used new approach to answer logical 

queries on knowledge graphs
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Knowledge Graphs

Embedding Logical Queries on Knowledge Graphs, NeurIPS 2018

Query: Predict drugs that might 
treat diseases, which are linked 
to mutations in protein X
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Predict drugs 𝐶? that treat disease 𝑑 Predict drugs 𝐶? that might TARGET 
proteins, which are in turn ASSOCiated
with diseases 𝑑& and 𝑑'

Embedding Logical Queries on Knowledge Graphs, NeurIPS 2018

Answering logical queriesSimple edge prediction

𝐶?

𝑑

𝐶(∗

𝑑

𝑐&

𝑐'

Learn over Knowledge Graphs
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Why is query prediction on 
knowledge graphs a hard problem? 

Embedding Logical Queries on Knowledge Graphs, NeurIPS 2018

Predict drugs 𝐶? that might TARGET 
proteins, which are in turn ASSOCiated
with diseases 𝑑& and 𝑑'

53

Logical query

1) Massive enumerations
§ E.g., the protein node is an 

existentially quantified variable
§ Need to enumerate over all 

possible protein nodes

1) Exponential computations
§ Combinatorial number of 

possible answers to the query
§ Naive enumeration approach has 

exponential time complexity in 
the number of query variables
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Approach: Query Embeddings
Two key steps:
1) Generate an embedding for every 

node in the graph
2) Represent logical operators as 

learned geometric operations 
(e.g., translation, rotation) in this 
embedding space

Embedding Logical Queries on Knowledge Graphs, NeurIPS 2018

Projector
operator

Intersection
operator

§Any conjunctive query: Can predict 
which nodes are likely to satisfy any query, 
even if it involves unobserved edges

§Efficient: Linear time complexity in size of 
the query and constant in size of the 
knowledge graph
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Embedding Logical Queries on Knowledge Graphs, NeurIPS 2018

Query Embeddings: Results
Data: Biomedical knowledge graph

Bio data
Other data 

Results: Performance on complex 
queries is very strong, with long paths 
being the most difficult type of query 

Results: Ablated models that are only 
trained on edge prediction perform 
much worse than query embeddings
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Summary of Results
1. Used new approach to predict safety and side 

effects of drug combinations:
§ First-ever systematic and predictive study of drug combinations
§ Follow-up research on prostate cancer and validations in the clinic

2. Used new approach to repurpose old drugs for 
new diseases:
§ Outperforms baselines by up to 172%
§ Correctly predicted drugs repurposed at Stanford SPARK

3. Used new approach to answer logical queries on 
knowledge graphs:
§ Predict drugs that might treat diseases linked to mutations in protein X
§ Ability to answer logical queries in a linear instead of exponential time
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Large datasets are transforming science and medicine 

New machine learning methods can unlock these 
datasets and open doors for scientific discoveries

Data + ML/AI

Data
Predictions 
and insights
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I am hiring outstanding postdocs for projects in 
machine learning and biomedical data!

Thank you!

Papers, tutorials, data & code
ai.stanford.edu/~marinka
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