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L ogistics

= |JCAI (https://ijcai20.orQ):
= Jan 6, 7-10:15pm Eastern Standard Time
= Jan 7, 12-3:15pm UTC
= Jan 7, 9am-12pm Japanese Standard Time

= | ocation: Red wing, North 3
= Q&A: Use Zoom features

Tutorial website with materials, demos and pointers
to code and data resources:

https://zitniklab.hms.harvard.edu/drugml


https://ijcai20.org/
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Step 5: Post-Market and
Safety Monitoring
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Opportunities for Al in Drug
Development

Step 1: Design and Support decision-making for a new
Discovery drug in the laboratory

Step 2:#eclinical

Research

A

Step 3: Clinical
Resgarch

4

Step 4: FDA
Reiiew

¥

Step 5: Post-Market and Detect adverse and safety issues in
Safety Monitoring real time using electronic health data
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Why Is it so challenging
to realize this vision?

Finding promising therapeutic interventions for diseases depends on
complex interactions, e.qg., drug-target, protein-protein, drug-drug, drug-
disease, disease-protein dependencies




Why Is it so challenging
to realize this vision?

Need to integrate heterogeneous, Need to translate predictions into
confounded data that span from molecules to actionable hypotheses
society
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Health records

@4
Behaviors, lifestyle,

vital signs Prediction Prediction

Multi-scale: molecules, individuals, populations
Heterogeneous: experimental readouts, curated, self-reported
Confounded: data from different technologies, and measurement platforms
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Outline

Overview and introduction

Part 1: Virtual drug screening and drug repurposing
Part 2: Adverse drug effects, drug-drug interactions
Part 3: Clinical trial site identification, patient recruitment

Part 4. Molecule optimization, molecular graph generation,
multimodal graph-to-graph translation

Part 5: Molecular property prediction and transformers

Demos, resources, wrap-up & future directions



Let’s begin!
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