# Tool Description Optimizer - Complete Tutorial ## Table of Contents - [šŸš€ Quick Start](#-quick-start) - [Overview](#overview) - [Key Features](#key-features) - [Configuration Parameters](#configuration-parameters) - [Understanding the Output](#understanding-the-output) - [Real Example: FDA Tool Optimization](#real-example-fda-tool-optimization) - [Best Practices](#best-practices) - [Advanced Features](#advanced-features) - [Troubleshooting](#troubleshooting) - [Integration Tutorial](#integration-guide) - [Complete Example Scripts](#complete-example-scripts) --- ## šŸš€ Quick Start ### Basic Usage (3 steps) ```python from tooluniverse import ToolUniverse # 1. Initialize and load tools tu = ToolUniverse() tu.load_tools() # 2. Get tool configuration and run optimizer tool_config = tu.get_tool_description("your_tool_name") result = tu.run({ "name": "ToolDescriptionOptimizer", "arguments": {"tool_config": tool_config} }) # 3. Check results print(f"āœ… Optimized in {result['total_iterations']} rounds, score: {result['final_quality_score']}/10") ``` ### Example Results **Before**: `"Fetch a list of active ingredients in a specific drug product."` **After**: `"Provides detailed information about the active ingredients in drug products, including their properties and quantities, as found in various formulations and brands."` --- ## Overview The ToolDescriptionOptimizer is an AI-powered tool that automatically improves tool documentation through iterative optimization. It analyzes actual test results to generate more accurate, concise, and user-friendly descriptions. ### Core Functions 1. **Test Case Generation**: Creates diverse test scenarios for comprehensive analysis 2. **Multi-Round Optimization**: Iteratively improves through feedback-driven enhancement 3. **Quality Assessment**: Evaluates 6 key criteria with objective scoring 4. **Comprehensive Reporting**: Documents the entire optimization process ### What Gets Optimized - **Tool Description**: Overall purpose and high-level functionality - **Parameter Descriptions**: Input requirements, constraints, and examples - **Language Quality**: Clarity, conciseness, and user-friendliness - **Accuracy**: Alignment with actual tool behavior ## Key Features ### šŸŽÆ **Intelligent Analysis** - Tests tools with real inputs to verify description accuracy - Identifies and eliminates redundancy between tool and parameter descriptions - Removes filler language and meaningless corporate-speak ### šŸ“Š **Quality Evaluation System** Multi-criteria scoring (0-10 scale): - **Clarity & Understandability**: How easy descriptions are to understand - **Accuracy**: How well descriptions match actual behavior - **Completeness**: Whether all necessary information is included - **Conciseness**: Absence of redundancy and filler language - **User Friendliness**: How helpful descriptions are for users - **Redundancy Avoidance**: Proper separation of concerns ### šŸ”„ **Adaptive Optimization** - Configurable iteration limits and quality thresholds - Feedback-driven test case generation in later rounds - Automatic convergence when quality targets are met ## Configuration Parameters | Parameter | Type | Default | Description | |-----------|------|---------|-------------| | `tool_config` | dict | Required | The tool configuration to optimize | | `max_iterations` | int | 3 | Maximum number of optimization rounds | | `satisfaction_threshold` | float | 8.0 | Quality score threshold (1-10) for satisfaction | | `output_file` | string | auto-generated | Custom path for the optimization report | | `save_to_file` | bool | true | Whether to save optimization results | ### Common Configuration Patterns ```python # Quick improvement (development phase) {"max_iterations": 2, "satisfaction_threshold": 7.5} # Standard optimization (most use cases) {"max_iterations": 3, "satisfaction_threshold": 8.0} # Thorough optimization (production tools) {"max_iterations": 5, "satisfaction_threshold": 8.5} ``` ## Understanding the Output ### Optimization Report Structure 1. **Final Optimized Descriptions**: Improved tool and parameter descriptions 2. **Optimization History**: Round-by-round progression with scores and feedback 3. **Detailed Rationale**: Explanations for each change made 4. **Test Results**: Actual tool execution data used for analysis 5. **Complete Configurations**: Before and after JSON configurations ### Reading Quality Scores - **7.0-7.9**: Good improvement, suitable for development - **8.0-8.4**: High quality, ready for production use - **8.5-9.0**: Excellent quality, meets strict standards - **9.0+**: Outstanding quality, rarely achieved ## Real Example: FDA Tool Optimization ### Step-by-Step Process **Original Description**: ``` "Fetch a list of active ingredients in a specific drug product." ``` **Round 1**: Optimizer identifies description is too simplistic based on test results showing detailed ingredient information with quantities and properties. **Round 2**: Adds detail about quantities and properties, but feedback indicates redundancy with parameter descriptions. **Round 3**: Eliminates redundancy and focuses on core functionality. **Final Result**: ``` "Provides detailed information about the active ingredients in drug products, including their properties and quantities, as found in various formulations and brands." ``` ### Key Improvements Achieved - āœ… More accurate representation of actual functionality - āœ… Eliminated redundancy with parameter descriptions - āœ… Clearer scope indication (multiple formulations and brands) - āœ… More precise action verb ("provides" vs "fetch") - āœ… Quality score improved from ~5.0 to 7.5/10 ## Best Practices ### 1. Tool Selection Strategy - **Prioritize**: Complex tools, frequently used tools, unclear descriptions - **Avoid**: Simple tools, recently optimized tools, domain-specific jargon-heavy tools ### 2. Configuration Guidelines | Scenario | max_iterations | satisfaction_threshold | Use Case | |----------|---------------|----------------------|----------| | Development | 2-3 | 7.0-7.5 | Quick improvements | | Production | 3-4 | 8.0-8.5 | Standard quality | | Critical Tools | 4-5 | 8.5-9.0 | Highest quality | ### 3. Review Process 1. **Always review** optimized descriptions before applying 2. **Test functionality** with new descriptions 3. **Consider domain expertise** that AI might miss 4. **Iterate if needed** with different thresholds ## Advanced Features ### Feedback-Driven Enhancement - Later rounds generate targeted test cases based on previous feedback - Ensures comprehensive coverage of edge cases and usage patterns - Addresses specific quality issues identified in earlier rounds ### Robust Parsing Technology - Handles various LLM output formats with whitespace/formatting issues - Uses regex patterns and fallback strategies for JSON extraction - Resolves "No additional test cases generated" issues automatically ### Multi-Criteria Balancing - Maintains accuracy while improving conciseness - Preserves user-friendliness during clarity improvements - Eliminates redundancy without losing important information ## Troubleshooting ### Common Issues | Issue | Cause | Solution | |-------|-------|----------| | Quality score plateaus | Tool already well-optimized | Lower threshold or try different tool | | Optimization takes too long | Complex tool/high iterations | Reduce max_iterations to 2-3 | | Descriptions too technical | Domain-specific complexity | Manual review and adjustment needed | | No test cases generated | Fixed in recent updates | Update to latest version | ### Performance Tips - Start with lower thresholds (7.5) and iterate up - Use fewer iterations for initial testing - Focus on one tool at a time for detailed analysis ## Integration Tutorial ### Development Workflow Integration ```python # Development phase - quick feedback def dev_optimize(tool_config): return tu.run({ "name": "ToolDescriptionOptimizer", "arguments": { "tool_config": tool_config, "max_iterations": 2, "satisfaction_threshold": 7.0 } }) # Pre-production - thorough review def production_optimize(tool_config): return tu.run({ "name": "ToolDescriptionOptimizer", "arguments": { "tool_config": tool_config, "max_iterations": 4, "satisfaction_threshold": 8.5 } }) ``` ### Maintenance Strategy - **Regular audits**: Quarterly review of tool descriptions - **Update triggers**: When tool functionality changes - **User feedback**: Incorporate real user confusion reports - **Version control**: Track optimization history for rollbacks ## Complete Example Scripts ### Single Tool Optimization ```python #!/usr/bin/env python3 """Single Tool Optimization Script""" from tooluniverse import ToolUniverse import os def optimize_single_tool(tool_name, quality_target=8.0): """Optimize one tool with custom quality target.""" tu = ToolUniverse() tu.load_tools() tool_config = tu.get_tool_description(tool_name) if not tool_config: print(f"āŒ Tool '{tool_name}' not found!") return None print(f"šŸ”§ Optimizing {tool_name}...") result = tu.run({ "name": "ToolDescriptionOptimizer", "arguments": { "tool_config": tool_config, "max_iterations": 3, "satisfaction_threshold": quality_target, "output_file": f"{tool_name}_optimization.txt" } }) print(f"āœ… Completed: {result['total_iterations']} rounds, score: {result['final_quality_score']}/10") return result # Usage optimize_single_tool("FDA_get_active_ingredient_info_by_drug_name", 8.0) ``` ### Batch Tool Optimization ```python #!/usr/bin/env python3 """Batch Optimization Script""" from tooluniverse import ToolUniverse import os from datetime import datetime def batch_optimize_tools(tool_names, output_dir="batch_optimizations"): """Optimize multiple tools and save results.""" tu = ToolUniverse() tu.load_tools() os.makedirs(output_dir, exist_ok=True) results = {} timestamp = datetime.now().strftime("%Y%m%d_%H%M%S") for tool_name in tool_names: print(f"\nšŸ”§ Processing {tool_name}...") tool_config = tu.get_tool_description(tool_name) if not tool_config: print(f"āŒ Tool '{tool_name}' not found!") continue try: result = tu.run({ "name": "ToolDescriptionOptimizer", "arguments": { "tool_config": tool_config, "max_iterations": 3, "satisfaction_threshold": 8.0, "output_file": f"{output_dir}/{tool_name}_{timestamp}.txt" } }) results[tool_name] = { 'success': True, 'iterations': result['total_iterations'], 'final_score': result['final_quality_score'], 'satisfied': result['achieved_satisfaction'] } print(f"āœ… {tool_name}: {result['final_quality_score']}/10 in {result['total_iterations']} rounds") except Exception as e: results[tool_name] = {'success': False, 'error': str(e)} print(f"āŒ {tool_name}: Failed - {e}") # Summary report print(f"\nšŸ“Š Batch Optimization Summary:") successful = [name for name, result in results.items() if result.get('success')] print(f"āœ… Successful: {len(successful)}/{len(tool_names)}") if successful: avg_score = sum(results[name]['final_score'] for name in successful) / len(successful) print(f"šŸ“ˆ Average quality score: {avg_score:.1f}/10") return results # Usage tools_to_optimize = [ "FDA_get_active_ingredient_info_by_drug_name", "ChEMBL_get_drug_by_chembl_id", "EuropePMC_search_articles" ] batch_optimize_tools(tools_to_optimize) ``` ### Advanced Integration Script ```python #!/usr/bin/env python3 """Advanced Integration Example""" from tooluniverse import ToolUniverse import json import os from typing import Dict, List, Optional class ToolOptimizationManager: """Advanced tool optimization management with reporting.""" def __init__(self, output_dir: str = "optimizations"): self.tu = ToolUniverse() self.tu.load_tools() self.output_dir = output_dir os.makedirs(output_dir, exist_ok=True) def optimize_with_strategy(self, tool_name: str, strategy: str = "standard") -> Optional[Dict]: """Optimize tool with predefined strategies.""" strategies = { "quick": {"max_iterations": 2, "satisfaction_threshold": 7.5}, "standard": {"max_iterations": 3, "satisfaction_threshold": 8.0}, "thorough": {"max_iterations": 5, "satisfaction_threshold": 8.5} } if strategy not in strategies: raise ValueError(f"Unknown strategy: {strategy}") config = strategies[strategy] tool_config = self.tu.get_tool_description(tool_name) if not tool_config: print(f"Tool '{tool_name}' not found!") return None result = self.tu.run({ "name": "ToolDescriptionOptimizer", "arguments": { "tool_config": tool_config, "output_file": f"{self.output_dir}/{tool_name}_{strategy}.txt", **config } }) return result def compare_strategies(self, tool_name: str) -> Dict: """Compare different optimization strategies for a tool.""" results = {} for strategy in ["quick", "standard", "thorough"]: print(f"Testing {strategy} strategy...") results[strategy] = self.optimize_with_strategy(tool_name, strategy) return results # Usage manager = ToolOptimizationManager() # Single tool with specific strategy result = manager.optimize_with_strategy("FDA_get_active_ingredient_info_by_drug_name", "thorough") # Compare strategies comparison = manager.compare_strategies("ChEMBL_get_drug_by_chembl_id") ``` --- ## Summary The ToolDescriptionOptimizer provides automated, AI-powered enhancement of tool documentation with: - **šŸŽÆ Precision**: Matches descriptions to actual tool behavior through testing - **šŸ”„ Iteration**: Multi-round improvement with feedback-driven enhancement - **šŸ“Š Measurement**: Objective quality scoring across 6 key criteria - **šŸ› ļø Flexibility**: Configurable for different quality targets and use cases - **šŸ“ Documentation**: Comprehensive reporting of optimization process ### Quick Reference - **Development**: `max_iterations=2, satisfaction_threshold=7.5` - **Production**: `max_iterations=3, satisfaction_threshold=8.0` - **Critical**: `max_iterations=5, satisfaction_threshold=8.5` Start with the Quick Start section above, then refer to specific sections as needed for your use case.