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Outline for today

Part 1:

e N-Gram Language Models
e Transformers

[break]

Part 2:

In-Context Learning & Prompting

Scaling Laws

Parameter Efficient Fine-Tuning & Quantization
Capabilities & Limitations

+ Glossary of new ideas (RLHF, RAG, Instruction Tuning), time permitting
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A famous quote

It must be recognized that the notion “probability of a
sentence” is an entirely useless one, under any known
interpretation of this term.

- Noam Chomsky, 1969

[Based on Edoardo Ponti's slides] 6
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Intuitive interpretation

“Probability of a sentence” = how likely is it to occur in natural language

Example 1: Grammatical knowledge

p(the cat purrs) > p(cat purrsthe)

Example 2: World knowledge

p(the cat purrs) > p(the cat smokes)

B
[Based on Edoardo Ponti's slides] 7
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Intuitive interpretation

“Probability of a sentence” = how likely is it to occur in natural language

Example 1: Grammatical knowledge

p(the cat purrs) > p(cat purrsthe)

Example 2: World knowledge

p(the cat purrs) > p(the cat smokes)

What about the probability of "the Archaeopteryx winged jaggedly amidst foliage"?

ey
[Based on Edoardo Ponti's slides] 8
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Intuitive interpretation

“Probability of a sentence” = how likely is it to occur in natural language

Example 1: Grammatical knowledge
p(the cat purrs) > p(cat purrsthe)

Example 2: World knowledge

p(the cat purrs) > p(the cat smokes)

What about the probability of "the Archaeopteryx winged jaggedly amidst foliage"?

— Useless measure to decide whether a sentence is grammatical

ey
[Based on Edoardo Ponti's slides] 9
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Probabilistic Models of Language

— A vocabulary Y is a (finite, non-empty) set of symbols (result of tokenization).

B
[Based on Edoardo Ponti's slides] 10
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Probabilistic Models of Language

— A vocabulary Y is a (finite, non-empty) set of symbols (result of tokenization).

— Kleene closure Z*of a vocabulary: Set of all possible (finite-length) sequences
including the empty sequence.

— Language [, C ) *: Subset of the Kleene closure.

[Based on Edoardo Ponti's slides] n
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Probabilistic Models of Language
— A vocabulary Y is a (finite, non-empty) set of symbols (result of tokenization).

— Kleene closure Z*of a vocabulary: Set of all possible (finite-length) sequences
including the empty sequence.

— Language [, C ) *: Subset of the Kleene closure.

Example: ) = {O7 1} then D,* = {67 0,1,00,01,10, 11, 000, ... }

B
[Based on Edoardo Ponti's slides] 12
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Probabilistic Models of Language

— A vocabulary Y is a (finite, non-empty) set of symbols (result of tokenization).

— Kleene closure Z*of a vocabulary: Set of all possible (finite-length) sequences
including the empty sequence.

— Language [, C ) *: Subset of the Kleene closure.

Probability model:
. p(L) =1

p(Ui_q &) = D20 p(&) if E1,E,,... is a countable sequence of
disjoint sets of P (L), the power set (=set of all subsets) of L.

B
[Based on Edoardo Ponti's slides] 13
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Probabilistic Models of Language

— A vocabulary Y is a (finite, non-empty) set of symbols (result of tokenization).

— Kleene closure Z*of a vocabulary: Set of all possible (finite-length) sequences
including the empty sequence.

— Language [, C ) *: Subset of the Kleene closure.

Probability model:
. p(L) =1

p(U &) = D27 p(&) if £1,E, ... is a countable sequence of
disjoint sets of P (L), the power set (=set of all subsets) of L.
L
3. (Conditional probability) p(X) . p(xO) Hp(xz"xla e 7xi—1)

14 ’L: 1 o8 5
[Based on Edoardo Ponti's slides] 1E8}
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Probabilistic Models of Language

— A vocabulary Y is a (finite, non-empty) set of symbols (result of tokenization).

— Kleene closure Z*of a vocabulary: Set of all possible (finite-length) sequences
including the empty sequence.

— Language [, C ) *: Subset of the Kleene closure.

Probability model:
. p(L) =1

p(Ui_q &) = D20 p(&) if E1,E,,... is a countable sequence of
disjoint sets of P (L), the power set (=set of all subsets) of L.

L
3. (Conditional probability) logp(x) = log p(LEQ) Z log p(:z:i\ajl, S ,$7;_1)

— s
[Based on Edoardo Ponti's slides] 15 1=1
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Example

)
9/3- lotus p(lotus | white)p(white) = 2 -

%ﬁ white 5
" T knight p(knight | white)p(white) = 2 - 3
BOS
4\ g knight p(knight | dark)p(dark) = % : g
> dark 35
\4\ materials p(materials | dark)p(dark) = % . %

9

BEn
[Based on Edoardo Ponti's slides] 16
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Estimation

We assume there is some true P~ which we estimate/approximate with a (parametric)
estimator) P which is an element of {Po | 0 € O},

17

[Based on Edoardo Ponti's slides]
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Estimation

We assume there is some true P~ which we estimate/approximate with a (parametric)
estimator) P which is an element of {Po | 0 € O},

This is done by learning from data D — {X17 . ,Xn} C L, e.g. by minimizing some loss:

0 £ argmingeo £(0, 0*)

B
[Based on Edoardo Ponti's slides] 18
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Estimation

We assume there is some true P~ which we estimate/approximate with a (parametric)
estimator) P which is an element of {Po | 0 € O},

This is done by learning from data D — {Xl, . ,Xn} C L, e.g. by minimizing some loss:
A A .
6 = arg mingeg £(6, 0*)

Since the optimal model is unknown, we use the data as an estimate:

a )l ifx; =x

D
1
por ~ 1 D Ok(x) Ok (x)
=1

0 else

B
[Based on Edoardo Ponti's slides] 19
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A note about data - Zipf's Law

Word frequency approximately inversely

proportional to its rank:

1
(rank + b)@

frequency o

with a, b fitted. (Zipf-Mandelbrot law)
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Cross-Entropy

A suitable loss function is the KL-Divergence (divergence between prob. distributions):

KL (pos, pg) = — Y xer, Pox(x) log py(x) + po(x) log per(x)
—H‘(;e*)

B
[Based on Edoardo Ponti's slides] 22
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Cross-Entropy

A suitable loss function is the KL-Divergence (divergence between prob. distributions):

KL (pos, pg) = — Y xer, Pox(x) log ps(x) + por(x)

Cross-Entropy
Justification: constant wrt. model param.

From Information Theory: Measures the excess number of bits we pay by encoding our data
with a sub-optimal model. The optimum is just the entropy (Shannon, 1948).

B
[Based on Edoardo Ponti's slides] 23
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N-Gram models
We can obtain a very simple form for {py | @ € ©} by making the Markov assumption:
o) =l 500

= im0 s oo i P B 1 0 0 iy o) 5 & =P B

~ p($n|$n—27 xn—l)p(xn—l|xn—37 xn—2) 6 'p(xl)

BEn
[Based on Edoardo Ponti's slides] 24


https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides

N-Gram models

We can obtain a very simple form for {pgp | # € ©} by making the Markov assumption:

P(X) = BE1, 1 n)
= p(iﬂn‘ﬂ?l, L2, ... 7$n—1)p($n—1’$17 L2, ... 7mn—2) . p(wl)
~ p($n|$n—27 C1777,—1)17(3771—1‘117'/1—37 CEn—2) .8 'p(xl)

This is a tri-gram model (history of two). Straightforwardly estimated using the
Maximum-Likelihood Estimate of a categorical distribution:

C r1,T92,I3 e
pML(x3|x17x2) — (C'(ZI; a; ) ) ﬂl[ﬂ_ﬂ] o‘O\em\N\‘
1y L2

B
[Based on Edoardo Ponti's slides] 25
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N-Gram models

We can obtain a very simple form for {pgp | # € ©} by making the Markov assumption:

p(x) =p(z1,...,Zn)
= im0 s oo i P B 1 0 0 iy o) 5 & =P B
~ p($n|$n—2, o, O ) SRR SR -p(xl)

This is a tri-gram model (history of two). Assumes all of these are equal:

— p(slept|the cat)
— p(slept|after lunch the cat)

— p(slept|the dog chased the cat)
— p(slept|except for the cat)

26

[Based on Edoardo Ponti's slides]
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N-Gram models

We can obtain a very simple form for {pgp | # € ©} by making the Markov assumption:

P(X) = BE1, 1 n)
= p(zn‘xb L2, ... 7xn—1)p(mn—1’$17 L2, ... 7mn—2) . p(a:l)
~ p(xn|33n—27 xn—l)p(xn—l‘xn—& C1771—2) .8 'p(xl)

This is a tri-gram model (history of two). Straightforwardly estimated using the
Maximum-Likelihood Estimate of a categorical distribution:

pML(373|$1, x2) — Cg(zleQQ;S) ﬂl[ﬂ_ﬂ] Zero-Probability events!
)

o
[Based on Edoardo Ponti's slides] 27
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Bayesian N-Gram models

Likelihood (Categorical)

= p(D|6)p()

Prior (Dirichlet)

Evidence

28

[Based on Edoardo Ponti's slides]
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Bayesian N-Gram models

10.5
9.0

Likelihood (Categorical)

= p(D|6)p()

Prior (Dirichlet)

7.5 B

60 &

w

45 &

3.0
15

Evidence o

Turns out this is an example of a "conjugate prior". A choice of prior for which the posterior
has the same shape as the prior.

p1, ..., P ~ Dir(aq, ..., ak)
y ~ Cat(p1, ..., Px)

103 2
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Bayesian N-Gram models

10.5
9.0

Likelihood (Categorical)

= p(D|6)p()

Prior (Dirichlet)

7.5 B

60 &
[T
[a]
(-9

4.5

3.0
15

Evidence o

Turns out this is an example of a "conjugate prior". A choice of prior for which the posterior

has the same shape as the prior.

P1,---sPK ™ Dir((){l, ceey OZK) p(e‘p) — Dlr(a{U 70/}()

y ~ Cat(pr, ..., pk) o =@+ > 1{y; =5}

30

[Based on Edoardo Ponti's slides]
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Evaluation

Two popular evaluation metrics evaluated on a held-out/test set:

(1) Cross entropy (per word):

1 1
H (po+,p5) = ]D| Z —logzpé(azl,...,xn)
XED

o
:



Evaluation

Two popular evaluation metrics evaluated on a held-out/test set:

(1) Cross entropy (per word):

1 1
H(pQ*apé) ’D| Z —lngpé(CUl,...

XED

(2) Perplexity (captures a notion of surprise):

PPL(pé) — oH(pox,ps)

32
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Evaluation

Two popular evaluation metrics evaluated on a held-out/test set:

(1) Cross entropy (per word):
1
(2) Perplexity (captures a notion of surprise): 2.1

PPL(pé) — oH(pox,ps)

Train PPL
P

1.7

1.6
1.5

1.4
0 250 500 750 1000 1250 1500 1750 2000
Processed Tokens (Billions)

B3
[Touvron et al. "Llama 2: Open Foundation and Fine-Tuned Chat Models"] 33
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(Encoder-Decoder) Transformers

Probably the most influential ML paper since Backpropagation (1986)

— Over 112k citations since 2017

— Essentially replaced RNNs for most purposes

[Vaswani et al. "Attention is all you need", 2017]

35
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(Encoder-Decoder) Transformers M_U] P(Yely1a-1)

Probably the most influential ML paper since Backpropagation (1986)
— QOver 112k citations since 2017 (e Nom ) |

. Feed
— Essentially replaced RNNs for most purposes 7z E e

4 ~\ Add & Norm
Add & Norm

Multi-Head
i 1 1 Feed Attenti
A simple sequence to sequence model mapping an input ention -

Forward D)
(xla ooy xn) (tokenizeq and "embedded") into a continuous . —
f—>| Add & Norm l Masked

representation Z — (21, voey Zn) based on which the Mult-Head Multi-Head
Attention Attention
decoder produces (yl, ceny ym) autoregressively, i.e. L L .
. \_ J . _J)
one symbol at a time. Positional 3 Posiiona]
Encoding ¢ Encoding
Input Output
Embedding Embedding
I
X Yiit—1

ey
[Vaswani et al. "Attention is all you need", 2017] 36
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The Transformer Building Blocks

1. Multi-head Attention
2. Position Encodings

3. Residual connections + Normalization

[Vaswani et al. "Attention is all you need", 2017] 37
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The Transformer Building Blocks

1. Multi-head Attention
2. Position Encodings

3. Residual connections + Normalization

[Vaswani et al. "Attention is all you need", 2017] 38
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Input Output
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X Yiit—1
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Attention: An idea from Machine Translation

[Bahdanau et al. "Neural machine translation by jointly learning to

align and translate”, 2014]

39

Target Language

Yer W

—>S¢1 St—>
Clt]. Oe 1
Gt 2 Qi 3
h, = bt h,t> —h
h, < h, = h,— <1h
X, X X X

Source Language
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Target Language

Attention: An idea from Machine Translation Y
t-1

X, X X X
Source Language

[Bahdanau et al. "Neural machine translation by jointly learning to

L3
align and translate”, 2014] 40
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Attention: An idea from Machine Translation

Source Language (English)

=
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Target Language (French)

<end>

[Bahdanau et al. "Neural machine translation by jointly learning to
align and translate”, 2014] 41
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Scaled Dot-Product Attention

H = Attention(QW®, KW® vw")

Q dmoe d K mode mode v
W € RimoetXdi 7K ¢ RdmoderXdk TV g [Rmoder X

1o
[Vaswani et al. "Attention is all you need", 2017] 42
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Scaled Dot-Product Attention

H =[Attention{QW®, KW* vw")

K V Think of this as a soft "look-up" operation in an
associative memory using dot-products as a

Q similarity measure.
—_—

Q dmoe d K dmoe d dmoe d’l)
W% € RémoaeiXdi /K c Rimodet Xdi 7V [RAmodel X

L8
[Vaswani et al. "Attention is all you need", 2017] 43



https://arxiv.org/pdf/1706.03762.pdf

Scaled Dot-Product Attention
KV

H = Attention(QW®, KW® vw")

Where do they come from? \/

Q dmoe d K mode mode v
W% € RomoaiXdi /K ¢ Rimodet Xdr PV [Rmodel X d

1o
[Vaswani et al. "Attention is all you need", 2017] 44
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Scaled Dot-Product Attention
KV

H = Attention(QW®, KW® vw")

J .

Where do they come from?

In Machine Translation, Keys and Values come from the source language, queries from the target language
processed so far

Q dmoe d K dmoe d dmoe d’U
W% € RémoaeiXdi /K c Rimodet Xdi 7V [RAmodel X

B3
[Vaswani et al. "Attention is all you need", 2017] 43
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Scaled Dot-Product Attention
KV

H = Attention(QW®, KW® vw")

J .

For now, let's think of them as equal, i.e. the input (or previous hidden layer) sequence:

Q=K=V=X

Where do they come from?

Q dmoe d K dmoe d dmoe d’l)
W% € RémoaeiXdi /K c Rimodet Xdi 7V [RAmodel X

1o
[Vaswani et al. "Attention is all you need", 2017] 46
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Scaled Dot-Product Attention

H = Attention(QW®, KW® vw")

KT
Attention(Q, K, V) = softmax(qf/d_ 1% i
k

softmax(zr); = Zdini(w) oL
j=

Q dmoe d K dmoe d V dmoe d’U
W € Rémaaxdi WK ¢ RémeeXdi [V g Rebmote X
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Multi-Head Attention

t

H;, = Attention(QVV,L-Q, KWE VvwY),i=1,....H Uinear

1

MultiHead(Q, K, V) = Concat(Hy, ..., Hg)W° 52

Scaled Dot-Product

Attention
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Multi-Head Attention

H,; = Attention(QVV,L.Q, KWE VvwY),i=1,....H
MultiHead(Q, K, V) = Concat(H,, ..., Hy)W°® —

t

Linear

1

Concat

A

[
/ Scaled Dot-Product

Attention
What's the shape of the output weights? r__l L L
Linear Linear Linear
¥ ¥ 7
V K Q

V[/v/f2 = Rdmodel X dp, , W'LK c Rdmodel X dp , WZV e Rdmodel X dy
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Multi-Head Attention

t

H; = Attention(QW2, K,WX ViwV)i=1,... . H e

1

MultiHead(Q, K, V) = Concat(Hy, ..., Hg)W° 52

Scaled Dot-Product

Attention
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Scaled Dot-Product Attention

<ped> <ped>
<ped> <ped>
<ped> <ped>
<ped> <ped>
<ped> <ped>
<ped> <ped>
<S03> <SO3>
Jnowp ol
alow alow
ssaooud ssao0ud
Bunoa Bunoa
lo io
uoneusibal uoneussibal
a3y} ay}
Bupjew Bupjew
600¢ 600¢
aouls aouIs
sme| a. sme|
mau m mau
passed S passed
aney .m aney
sjuawulanob & sjuawuianob
uedLIBWY M ueodLIBWY
0 m 0
Ajuolew m Ajiolew
e o0 e
C
ey S Jeyy
yuds Juids
siy} siy}
ul ul
S| S|

H H

103 2
{ESt

o1

[Vaswani et al. "Attention is all you need", 2017]



https://arxiv.org/pdf/1706.03762.pdf

Scaled Dot-Product Attention
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Scaled Dot-Product Attention
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The complexity of self-attention

For full dependency between all elements

N

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention

Recurrent

Convolutional

:
iy g

b
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
7
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
N
Recurrent sequencelength 0 (py . d?) O(n) O(n)
Convolutional O(k-n-d?) O(1) O(logk(n))
/ A
/ \
kernel size dimensionality
2l L

L
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
7

Recurrent sequencelength 0 (py . d?) O(n) O(n)
Convolutional O(k-n-d?) O(1) O(logk(n))
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Attention(Q), K, V') = softmax(
Q, K,V € RV*%

Mask (opt.)

Q K Vv
58

[Vaswani et al. "Attention is all you need", 2017]

103 2
1B9)


https://arxiv.org/pdf/1706.03762.pdf

The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? - d)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Attention(Q), K, V') = softmax(
Q, K,V € RV*%

Mask (opt.)

Q K Vv
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
Self-Attention O(n? - d) O(1)
Recurrent O(n - d?) O(n) O(n)
Convolutional O(k-n-d?) O(1) O(logk(n))
. QK"
Attention(Q, K, V') = softmax( 1%

Q, K,V € RV*d

Q K Vv
60
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations
Self-Attention O(n? - d) O(1) O(1)
Recurrent O(n - d?) O(n) O(n)
Convolutional O(k-n-d?) O(1) O(logk(n))
. QK"
Attention(Q, K, V') = softmax( NG 1%
k

Q, K,V € RV*d

Q K Vv
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The complexity of self-attention

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? d) O(1) O(1)

Recurrent O(n - d?) (n) O(n)

Convolutional O(k-n-d?) O(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) O(1) O(n/r)

QK'
Vi

Attention(Q), K, V') = softmax(

Q, K,V € RV*d
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Understanding Self-Attention

[Jayakumar et al. "Multiplicative Interactions and where to find them", 2019]
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Understanding Self-Attention

Multiplicative Interactions P

General class of multiplicative Interactions:
l \ Networks

Multiplicative /

f(x,2)=2z"Wx+z"U+Vx+b T
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Understanding Self-Attention

Multiplicative Interactions P

General class of multiplicative Interactions:

Networks
Multiplicative / l \
T T RNN T °®
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. Metric
can be written as: Self-attention | Learning
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Understanding Self-Attention

Multiplicative Interactions I
/ Networks
Multiplicative 1L o I w
RNN

W =2TW+V b =2zTU+b o

convolution I Kernel Matrix
/ , \ Learning
y=W'x+b Hyper

Non-affine weights Networks

generation Mahalanobis
Metric Learning

General class of multiplicative Interactions:

f(x,2)=2z"Wx+z"U+Vx+b

Metric

can be Written as. Self-attention Learning

Consider diagonal approximation:

W' = diag(aq,...,a,) f=a0®0x

(similarly for biases)

L
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Understanding Self-Attention

Multiplicative Interactions e

/ Networks
Multiplicative I w

General class of multiplicative Interactions:

RNN T
f(x,2)=2z"Wx+z"U+Vx+b
) Metric
can be written as: Self-attention | Learning
Attention
/ i
Wl — ZTW + V b — ZTU —l_ b c(?ny‘:l;mlizn = % Kernel Matrix
Learning
y = Wx+b’ Hyper
Non-affine weights Networks
generation Mahalanobis

Metric Learning

Consider diagonal approximation:

W' = diag(aq,...,a,) f=a0®0x

(similarly for biases)

Then, Self-Attention is (with m bounded):
m=f(x,z2) y=mox

L2
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Encoder-Decoder v Decoder-Only Transformers
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Encoder-Decoder v Decoder-Only Transformers

Output
Probabilities

Keys & Values taken from
Encoder output RN Food

Z For\f/ard

| Add & Norm |<-\

Multi-Head

~—>{ Add & Norm

Feed Attention
Forward J D) ) Nx
L 7
[LAdd & Norm J«~
Nx T
~—>{ Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
t At
\_ J |\ —
Positional D @ Positional
Encoding Encoding
Input Output
Embedding Embedding
X Yii—1

Encoder - Decoder

[Jayakumar et al. "Multiplicative Interactions and where to find them", 2019]

Qutput
Probabilities

Softmax

HY = Attention(QWE, K,WX, v;,w")

Add & Norm
Feed
Forward

Add & Norm

i Q=K=V=ylY

Add & Norm

Masked
Multi-Head
Attention

1t
——
@ Positional
Encoding
Output

Embedding

!

Qutputs
(shifted right)

m

I

i

Decoder only

69


https://openreview.net/pdf?id=rylnK6VtDH

Homework for Everyone (Credit to Harvard NLP)

The Annotated Transformer

def attention(query, key, value, mask=None, dropout=None):
"Compute 'Scaled Dot Product Attention'"
d_k = query.size(-1)
scores = torch.matmul(query, key.transpose(-2, -1)) \
/ math.sqrt(d_k)
if mask is not None:
scores = scores.masked_fill(mask == 0, -1e9)
p_attn = F.softmax(scores, dim = -1)
if dropout is not None:
p_attn = dropout(p_attn)
return torch.matmul(p_attn, value), p_attn

o v2022: Austin Huang, Suraj Subramanian, Jonathan Sum, Khalid Almubarak, and Stella Biderman.

e Original: Sasha Rush.

The Transformer has been on a lot of people’s minds over the last year five years. This post presents an
annotated version of the paper in the form of a line-by-line implementation. It reorders and deletes
some sections from the original paper and adds comments throughout. This document itself is a working

notebook, and should be a completely usable implementation. Code is available here.

70
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The Transformer Building Blocks

1. Multi-head Attention
2. Position Encodings

3. Residual connections + Normalization

[Vaswani et al. "Attention is all you need", 2017] 7
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Positional Encodings

In order to allow the model to distinguish between sequence positions, we use

positional encodings.

More details on positional encodings, Stanford XCS224U] 72

[Vaswani et al. "Attention is all you need", 2017, 178 -
1E8
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https://www.youtube.com/watch?v=JERXX2Byr90&ab_channel=StanfordOnline

Positional Encodings

In order to allow the model to distinguish between sequence positions, we use

positional encodings. Key questions:

1.  Does the set of positions need to be decided ahead of time?
2. Does the scheme hinder generalization to new positions?

[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U] 73
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Absolute Positional Encodings
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[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U] 74
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Absolute Positional Encodings

I+\ / \ /+\

1. Set of positions need to be decided ahead of time (to normalize).
2.  Scheme hinders generalization to new positions:

- Rock - 7§ The - Rock -

[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U] 75
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Frequency Positional Encodings P(Yelyie-1)

Instead, the original transformer used additive values at different frequencies:
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Frequency Positional Encodings P(Yelyie-1)

Instead, the original transformer used additive values at different frequencies:
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Frequency Positional Encodings

Positional encodings for a sequence of 100 items with an embedding dimensionality of 512
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o)
) -0.50
o
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Embedding dimension

1. Set of positions need to be decided ahead of time
2.  Scheme hinders generalization to new positions:

[Vaswanl et al. Attentlon is all you need 2017,
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Modern Positional Encodings

Frequency Positional Encodings have essentially been replaced in modern Transformers.
Popular alternatives

(1) Relative positional encodings (Example with window size 1):

[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U, )
1E8

A gentle introduction into positional encodings] 79
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Modern Positional Encodings

Frequency Positional Encodings have essentially been replaced in modern Transformers.
Popular alternatives

(1) Relative positional encodings (Example with window size 1):

N
l N
vi) = > (aiy-vE4py,

S,
I
—_

[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U, )
1E8
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Modern Positional Encodings

Frequency Positional Encodings have essentially been replaced in modern Transformers.
Popular alternatives

(1) Relative positional encodings (Example with window size 1):

y1 y2 y3 y4 yS
N
p(3,1) = w(-1) p(3,2) = w(-1) p(3,3) = w(0) p(3,4) = w(1) p(3,4) = w(1) Vz( 2 = E (Oéi, ' Vg_l ) +pf j
o@D =w(-)  p22)=w©0)  p23)=w) 0(2.4) = w(l) 0(2,5) = w(l) =1

[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U, )
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Modern Positional Encodings

Frequency Positional Encodings have essentially been replaced in modern Transformers.

Popular alternatives

(1) Relative positional encodings (Example with window size 1):

y y2 y3 y4
p(31) = w(-1) p(3,2) = w(-1) p(3,3) = w(0) p(3,4) = w()
p(21) = w(-1) p(2,2) = w(0) p(2,3) = w(1) p(2,4) = w(1)

(2) Rotary positional encodings (RoPE, Su et al., 2021)

[Vaswani et al. "Attention is all you need", 2017,
More details on positional encodings, Stanford XCS224U,
A gentle introduction into positional encodings] 82
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The Transformer Building Blocks

1. Multi-head Attention
2. Position Encodings

3. Residual connections + Normalization

83

[Vaswani et al. "Attention is all you need", 2017]
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Residual Connections + Normalization

7—[ (X) — desired mapping

.F(X) = H(X) — X — chosen mapping

[Deep residual learning for image recognition, CVPR 2016]

84

X
weight layer
F(x) l relu
weight layer
F(x) +x

X
identity
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Residual Connections + Normalization X

H (X ) — desired mapping weight layer
( ) F(x) L relu N
F(X) = H(X) — X — chosen mapping weight layer identity

The motivation for this are "skip-connections”, which had
empirically been observed the help train deeper networks in

many previous studies (see vanishing gradient problem (LSTM, Hochreiter et al.,, 1997)).

ey
[Deep residual learning for image recognition, CVPR 2016] 85
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Residual Connections + Normalization
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Batch Normalization

Input: Values of z over a mini-batch: B = {z1. . };
Parameters to be learned: v, 8
Olltpllt: {yz — BNfY’ B (CL'z)} Batch/Power Normalization
R .
uB — — Z T; // mini-batch mean
m i=1 Eo \
T S FINN
0% = Z(a:z — )2 // mini-batch variance {% i::.,:
i=1 \
. e . N T
T; — i // normalize B
o \/ 0123 + €
Pre-Activations o )
— |~ Y 9%; + B = BN, s(x:) // scale and shift
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[Batch Normalization, loffe. et al, 2015]
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Batch Normalization

Task Performance Pre-activation distribution (15%, 50%, 80%) quantile
1
/—/,/ —————— 2 [ ] 2 W
09t 7
I
! Of 0
0.8}1

= = = Without BN

0.7 ! 1-21

10K 20K 30K 40K 50K -2

(2) (b) Without BN (c) With BN

B
[Batch Normalization, loffe. et al, 2015] 38
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Batch Normalization Intuition

Unnormalized: Normalized:

0 2 92

89

[Batch Normalization, loffe. et al, 2015, Image Source]
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Batch Normalization

This is a bug magnet:

Input: Values of x over a mini-batch: B = {z1._ . }; . Introduces a dependency between
Parameters to be learned: v, 8 examples in the batch
Output: . — BN T 2. Implementations are stateful, to track
i {yz ’Y’ﬁ( z)} the statistics over the course of
m training
A >, // mini-batch
S -’n—’L = M et This can lead to:
=1
i e : — Information leakage (e.g. in autoregressive
0% 4 = Z(azz — pB)? // mini-batch variance | % contrastive models)
=1
i Ti — UB : — Unattractive batch size effects
T; — > // normalize
Vg € — Affects optimization (improving gradient
Yi YT + B = BN%g(.’IIi) // scale and shift propagation, but adding randomness in a

tightly coupled way)

B
[Batch Normalization, loffe. et al, 2015] 90
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Layer Normalization

Batch/Power Normalization

Sentence Length

o/ T T 777

&

[Layer Normalization, Ba. et al, 2016] 91
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Layer Normalization

H H
g 1 1 2
h f[;@(at—ut)-l—b] ut:EZaf ol = ﬁZ(aﬁ—ut)
1=1 1=1
Layer Normalization Batch/Power Normalization

=
E
3
8
=
g
&

Sentence Length

[Layer Normalization, Ba. et al, 2016] 92
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Layer Normalization

g i == | H
t __ t t t t t . ; 9
h_f[_tQ(a _“)+b] W= e o= y|5 D (al—u)
o H : H :
1=1 =1
1.0 Attentive reader .
— LSTM
0.9f — BN-LSTM
— BN-everywhere
LN-LSTM

o
©

o
o))

validation error rate
o
~

o
n

©
N

100 200 300 400 500 600 700 800
training steps (thousands)

o
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Layer Normalization in Transformers

( )y
l
21— F G AN o
Modern Transformers (a) post-norm residual unit
—
[ Yi )
Ty —| LN — F »qP— Ti+1

(b) pre-norm residual unit

Figure 1: Examples of pre-norm residual unit and post-
norm residual unit. F = sub-layer, and LN = layer nor-
malization.

L8
[Learning deep transformer models for machine translation, Wang. et al, 20169] 94



https://fleuret.org/dlc/materials/dlc-slides-13-3-transformers.pdf

Modern Transformers: Architecture & Training Tricks

Training:

— Dropout (Srivastava et al.,, 2014) during at every layer just before adding residual
— AdamW optimizer with warmup and cosine decay (Loshchilov & Hutter, 2017)

— Label smoothing (Muller et al, 2019

— Auto-regressive decoding with beam search and length penalties (Graves, 2012)

— Checkpoint-averaging (Izmailov et al., 2018)

L8
[Tensor2Tensor Transformers, Kaiser, 2024] 95
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Modern Transformers: Architecture & Training Tricks

Training:

— Dropout (Srivastava et al.,, 2014) during at every layer just before adding residual
— AdamW optimizer with warmup and cosine decay (Loshchilov & Hutter, 2017)
— Label smoothing (Muller et al, 2019

— Auto-regressive decoding with beam search and length penalties (Graves, 2012)

— Checkpoint-averaging (Izmailov et al., 2018) Time step 1 Time step 2 Time step 3
Candidates Candidates Candidates
A / A
\ B
%0.4 —Cosine Decay oA é—. c s el o .80
x0.3 - Step Decay /c:) o w
o / E E
£0.2 1@
c \‘ D" A A
80.1 E / B / B
oot I T e T Cé c Cféé . cep
0 20 40 80 100 120 o 7 -
Epoch \@' \ .

[Tensor2Tensor Transformers, Kaiser, 2024]
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Modern Transformers: Architecture & Training Tricks

Architecture:

— Pre-normalization using RMSNorm (Zhang and Sennrich, 2019)
— SwiGLU activation function (Shazeer, 2020)

— Rotary positional embeddings (RoPE, Su et al. 2022)

— Grouped-query attention (GQA, Ainslie et al., 2023)

— Flash or Ring Attention (Dao et al, 2022; Liu et al, 2023)

— Mixture of Experts (MoE, Mistral Al, 2023)

Multi-head Grouped-query Multi-query

vatues | | | | |

- 0000 BOO00

00000000 00000000 OAGA0AN

! 97 L8
Tensor2Tensor Transformers, Kaiser, 2024] 128



https://arxiv.org/abs/2307.09288
https://nlp.stanford.edu/seminar/details/lkaiser.pdf

Outline for today

Part 1:

e N-Gram Language Models
e Transformers

[break]

Part 2:

In-Context Learning & Prompting

Scaling Laws

Parameter Efficient Fine-Tuning & Quantization
Capabilities & Limitations

98




Outline for today

Part 1:

e N-Gram Language Models
e Transformers

[break]

Part 2:

In-Context Learning & Prompting

Scaling Laws

Parameter Efficient Fine-Tuning & Quantization
Capabilities & Limitations

99




Language Models as Few-Shot Learners (GPT-3)

Prior to GPT-2: Rich literature on so called few-shot learning algorithms

— Goal: Develop ML methods that can perform well on a novel, unseen task for which we only
have a small number of labeled examples.

[Language Models are Few-Shot Learners, Brown et al., 2020

L8
Matching Networks for One Shot Learning, Vinyals et al., 2017] 100
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Language Models as Few-Shot Learners (GPT-3)

Prior to GPT-2: Rich literature on so called few-shot learning algorithms

— Goal: Develop ML methods that can perform well on a novel, unseen task for which we only
have a small number of labeled examples.

— Main strategy: Episodic training

“our training procedure is based on a simple machine
learning principle: test and train conditions must match”
(Vinyals et al, 2017)

Figure 1: Matching Networks architecture

[Language Models are Few-Shot Learners, Brown et al., 2020 178 -
Matching Networks for One Shot Learning, Vinyals et al., 2017] 101
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Language Models as Few-Shot Learners (GPT-3)

Zero-shot One-shot Few-shot
l l ~ N

175B Params

Natural Language
60 Prompt

Accuracy (%)

- 13B Params

1.3B Params

Number of Examples in Context (K)
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[Language Models are Few-Shot Learners, Brown et al., 2020]
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Language Models as Few-Shot Learners (GPT-3)

Zero-shot One-shot Few-shot
l l e N

175B Params

Natural Language
60 Prompt

\

50
3 /,/ Serendipitous emergence of "in-context learning”, one of
= various "emergent abilities” (and risks)
3
o 30 No Prompt
< 13B Params
1.3B Params

Number of Examples in Context (K)
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[Language Models are Few-Shot Learners, Brown et al., 2020]
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An In-Context Learning example

Task Instruction
Definition ,(;[ Positive Examples } A
“... Given an utterance and recent dialogue context containing past 3 i t: “C X “That's tic. I lad .
utterances (wherever available), output ‘Yes’ if the utterance nput: ) M at .S'f ar’”am( , I'm glad we came 1o
contains the small-talk strategy, otherwise output ‘No’. Small-talk is something we both agree with.” Utterance: ‘Me too. I hope you
a cooperative negotiation strategy. It is used for discussing topics have a wonderﬁtl ('an'lping trip.’"
apart from the negotiation, to build a rapport with the opponent.” «Ou tput: “Yes”
* Explanation: “The participant engages in small talk when wishing
| their opponent to have a wonderful trip.”
. J
Evaluation Instances ’E[ Negative Examples ] N
T Fristranct - * Input: “Context: ... ‘Sounds good, I need food the most, what is
* Input: “Context: ... */ am excited to spend time your most needed item?!” Utterance: ‘My item is food too’.”
with everyone from camp!’ Utterance: ‘That’s « Output: “Yes”
awesome! I really love being out here with my Sl P “Th —— e d
. .
son. Do you think you could spare some food?’” Xp anatl.on' ) € utterance only takes the negotla'tlon orwar
« Expected Output: “Yes” | and there is no side talk. Hence, the correct answer is ‘No’.” ]

[Language Models are Few-Shot Learners, Brown et al.. 2020,
Matching Networks for One Shot Learning, Vinyals et al., 2017] 104
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Language Models as Few-Shot Learners (GPT-3)

How does this phenomenon emerge?

BEn
[Language Models are Few-Shot Learners, Brown et al., 2020] 105
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Language Models as Few-Shot Learners (GPT-3)

outer loop

How does this phenomenon emerge?

Learning via SGD during unsupervised pre-training

WV

5 5 5
1
5+ 8 =13 8 gaot => goat 8 thanks => merci 8
3 - 3
- = e
7+2=09 g sakne => snake g hello => bonjour 2
Lo d i ~
> ® , o
) 1+0 =1 o brid => bird - mint => menthe o
inner loop = 5 3
= = -
3+4=7 (=] fsih => fish «Q wall => mur «Q
5+9 =14 dcuk => duck otter => loutre
9 +8=17 cmihp => chimp bread => pain
VvV A4 V
sequence #1 sequence #2 sequence #3

[Language Models are Few-Shot Learners, Brown et al., 2020] 106
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Understanding In-Context Learning

st. (W — VWL(D”m“))fB(mtcst) = Ytest

Could Self-Attention implement a gradient-based learning algorithm?

107

[Transformers Learn In-Context by Gradient Descent, von Oswald et al... 2023]
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Understanding In-Context Learning

to(Tquery)
Find 6
Bt ol et D) B Wauery T
‘ Transformer QJ
N N S O I
st. (W — VwL(D"™")) fo(Ztest) = Yrest [ (8 ] [%ueryJ

Could Self-Attention implement a gradient-based learning algorithm?

108

[Transformers Learn In-Context by Gradient Descent, von Oswald et al... 2023]



https://proceedings.mlr.press/v202/von-oswald23a/von-oswald23a.pdf

Understanding In-Context Learning

to(Tquery)
Find 6
. Tolaaai D) Sy | ”
Tr d .
‘ ansformer J
SN N N N A O

Dcontext

J [mquery]

Could Self-Attention implement a gradient-based learning algorithm?

(W — Vw L(D"™™)) fo(@test) = Yrest [

s.t.

109

[Transformers Learn In-Context by Gradient Descent, von Oswald et al... 2023]

== (Gradient descent
4 Trained Transformer

0 20 40
GD Steps / Transformer Layers
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Understanding In-Context Learning in Linear Transformers

N
1
Squared error for a linear model: L(W) — ﬁ E ”sz _ yz||2
1=1
N
Update with Gradient descent: AW = _anL( — _% § sz 7JT
=1

3 £
[Transformers Learn In-Context by Gradient Descent, von Oswald et al.., 2023] 110
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Understanding In-Context Learning in Linear Transformers

N
Squared error for a linear model: L(W) = % Z ||sz - ysz

Update with Gradient descent: ~ ATJ/ — _anL(W) —

New Loss: L(W + AW) =

m

[Transformers Learn In-Context by Gradient Descent, von Oswald et al... 2023]

=1

N
n T
N Z(Wﬂfz — Yi)T;

>
I
Y

“transformed targets’
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Understanding In-Context Learning in Linear Transformers

/ Tokens
ej < e; +SAq(J,{e1,...,en}) qn,; = Wh,o€;

— €, + Z Pthsoftmax(K}:fqh,j) (similarly for Values and Keys)
h

3 £
[Transformers Learn In-Context by Gradient Descent, von Oswald et al.., 2023] 112
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Understanding In-Context Learning in Linear Transformers

/ Tokens
ej < e; +SAq(J,{e1,...,en}) qn,; = Wh,o€;

— €, + Z Pthsoftmax(K?;qh,j) (similarly for Values and Keys)
h

Let's consider a linear Transformer:

ej < ej -I—LSAg(j, {61, v ooy 6N}) — 6j + Zh PthKth,j

13

[Transformers Learn In-Context by Gradient Descent, von Oswald et al... 2023]
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Understanding In-Context Learning in Linear Transformers

/ Tokens
ej < e; +SAq(J,{e1,...,en}) qn,; = Wh,o€;

— €, + Z Pthsoftmax(K}:fqh,j) (similarly for Values and Keys)
h

Let's consider a linear Transformer:
1 — T
ej <+ e; +LSAg(j,{e1,...,en}) =¢; + >, PLVaK; qn,;

Let's set up an in-context regression problem:

c; = (23,45) € RN=HY

EN+1 = (xN—I—layN-l—l) — (wtestaﬁtest) = Ctest

B
[Transformers Learn In-Context by Gradient Descent, von Oswald et al., 2023] 14
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Understanding In-Context Learning in Linear Transformers

Proposition 1. Given a 1-head linear attention layer and
the tokens e; = (x;,y;), for j = 1,..., N, one can con-
struct key, query and value matrices Wy, Wq, Wy as well
as the projection matrix P such that a Transformer step on
every token e; is identical to the gradient-induced dynam-
ics ej < (z5,y;) + (0, —AWzx;) = (z;,y;) + PVK?!q,
such that e; = (z;,y; — Ay;). For the test data token
(*N+1,YN+1) the dynamics are identical.

Details in the paper

)

o
[Transformers Learn In-Context by Gradient Descent, von Oswald et al.., 2023] 15
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Prompting

In practice, it turns out that in-context learning is extremely sensitive to the way prompts
are phrased:

116
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Prompting

In practice, it turns out that in-context learning is extremely sensitive to the way prompts
are phrased. These all give very different results using the same data:

Model Prompt

CoT ““Let’s think step by step.”

PS “Let’s first understand the problem and devise a plan to solve the problem. Then, let’s
carry out the plan and solve the problem step by step.”

PS+ “Let’s first understand the problem, extract relevant variables and their correspond-

ing numerals, and make a plan. Then, let’s carry out the plan, calculate intermediate
variables (pay attention to correct numerical calculation and commonsense), solve the
problem step by step, and show the answer.”

APE “Let’s work this out in a step by step way to be sure we have the right answer.”

OPRO  “Take a deep breath and work on this problem step-by-step.”

[PromptBreeder, Fernando et al., 2023] 17
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https://arxiv.org/pdf/2309.16797.pdf

Prompting

In practice, it turns out that in-context learning is extremely sensitive to the way prompts
are phrased:

Method LLM MultiArith* SingleEq* AddSub* SVAMP* SQA CSQA AQuA-RAT GSMSK
CoT text-davinci-003 (83.8) (88.1) (85.3) (69.9) | (63.8) (65.2) (38.9)  (56.4)

PoT text-davinci-003 (92.2) 91.7) (85.1) (70.8) = = 43.9)  (57.0)

. PS text-davinci-003 (87.2) (89.2) (88.1) (72.0) s e @42.5)  (58.2)
g PS+ text-davinci-003 (91.8) (94.7) (92.2) (75.7) | (65.4) (71.9) 46.0)  (59.3)
7 PS PaLM 2-L 97.7 90.6 724 83.8 | 500  77.9 40.2 59.0
3 PS+ PaLM 2-L 92.5 94.7 74.4 863 | 50.1  73.3 39.4 60.5
APE PaLM 2-L 95.8 82.2 722 730 | 384  67.3 45.7 77.9

OPRO PaLM 2-L = = = = = y = 80.2

PB (ours) PaLM 2-L 99.7 96.4 87.8 90.2 | 71.8  85.4 62.2 83.9

. [Manual-CoT text-davinci-003 (93.6) (93.5) (91.6) (80.3) | (71.2)  (78.3) 48.4)  (58.4)

2 | Auto-CoT text-davinci-003 (95.5) 92.1) (90.8) (78.1) - - @17  (57.1)
=~ PB (ours) PaLM 2-L 100.0 98.9 87.1 937 | 802  85.9 64.6 83.5

o

[PromptBreeder, Fernando et al., 2023]

Same data, same model

18

103 2
1B9)


https://arxiv.org/pdf/2309.16797.pdf

Chain-of-Thought Prompting

In practice, it turns out that in-context learning is extremely sensitive to the way prompts
are phrased. One common trick that almost always works in adding explanations:

Standard Prompting hin-of-Thought Prompting

\

Q: Roger has 5 tennis balls. He buys 2 more cans of Q: Roger has 5 tennis balls. He buys 2 more cans of
tennis balls. Each can has 3 tennis balls. How many tennis balls. Each can has 3 tennis balls. How many These can be even
tennis balls does he have now? tennis balls does he have now? auto-generated

(using another LLM!)

1. The answer is 11. ~—
Q: The cafeteria had 23 apples. If they used 20 to
make lunch and bought 6 more, how many apples Q: The cafeteria had 23 apples. If they used 20 to
do they have? ) make lunch and bought 6 more, how many apples

Co they have?
A: The answer is 27. x )

[Chain-of-Thought Prompting Elicits Reasoning in Large Language Models,
Wei et al. 2022] 19

A: The answer is 11.

=

answer s 9.
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Can we predict the expected improvement?

GPT-3 Training Curves
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Training Compute Optimal Models

Number of datapoints

Nopt(C), Dope(C) = argmin  L(N, D)
4 N,D s.t. FLOPs(N,D)=C

Number of parameters /
FLOPS budget

B
[Training Compute-Optimal Large Language Models, Hoffmann et al. 2022] 122


https://arxiv.org/abs/2203.15556

Scaling Laws from Classical Risk Decomposition

Nopt(C), Dope(C) = argmin  L(N, D)
N,D s.t. FLOPs(N,D)=C

Number of data seen so far

Estimated loss 7 / " A B
“~L(N,D) 2E+ —+ —;
y N® DA

Number of parameters

"
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Scaling Laws from Classical Risk Decomposition

Nopt(C), Dope(C) = argmin  L(N, D)
N,D s.t. FLOPs(N,D)=C

Loss for an ideal generative process (entropy of natural text)

N A B
A

L(IN,D) £ E+ — + —

N« DP

Perfectly trained transformer with N parameters

underperforms the ideal setting

Transformer is not trained to convergence,
as we only make a finite number of
optimisation steps, on a sample of the
dataset distribution

-8
[Training Compute-Optimal Large Language Models, Hoffmann et al., 2022] 124
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Scaling Laws from Classical Risk Decomposition

A N A B
5 L(N,D) 2 E+ — + —;
s X% N« Dﬁ

103 2
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Scaling Laws from Classical Risk Decomposition

N A .A. B

5 L(N,D) 2 E+ — + —;
— N« DB
— 1/X2

4 c— 1/X05
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Scaling Laws from Classical Risk Decomposition

. . A B

5 L(N,D) 2 E+ — + —;
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Scaling Laws from Classical Risk Decomposition

\ . A B
5 L(N,D) 2 E+ — + —;
— 1/x Na D,B
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Scaling Laws from Classical Risk Decomposition

N A B
A

L(IN,D) £ E+ — + —

N« DP

Perfectly trained transformer with N parameters

underperforms the ideal setting

Loss for an ideal generative process (entropy of natural text)

Transformer is not trained to convergence,
as we only make a finite number of
optimisation steps, on a sample of the
dataset distribution

Parameters are learned from existing training curves:
min Z Huber;g ( log L(N;, D;) — log Ll-)

L BE D Runs i

B
[Training Compute-Optimal Large Language Models, Hoffmann et al., 2022] 129
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Can we predict the expected improvement?
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from transformers import AutoModelForCausallLM

Using these models in practice:
if 'mixtral' in model_type:
model = AutoModelForCausallLM.from_pretrained(
'mistralai/Mixtral-8x7B-v0.1"',
device_map=device_map,
cache_dir=CACHE_PATH,

132 vy



o ° o from transformers import AutoModelForCausallLM
Using these models in practice:
if 'mixtral' in model_type:
model = AutoModelForCausallLM.from_pretrained(
'mistralai/Mixtral-8x7B-v0.1"',
device_map=device_map,
cache_dir=CACHE_PATH,

RuntimeError: CUDA out of memory. Tried to allocate 200.00 MiB (GPU ©; 15.78 GiB total
capacity; 14.56 GiB already allocated; 38.44 MiB free; 14.80 GiB reserved in total by

PyTorch) If reserved memory is >> allocated memory try setting max_split size mb to avoid

fragmentation. See documentation for Memory Management and PYTORCH_CUDA_ALLOC_CONF
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(Post-training) Quantization argmi | |WX — WX| |§

quantized + low-precision matrix multiplication

B
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(Post-training) Quantization argmi | |WX — WX‘ |§

quantized + low-precision matrix multiplication

> = >
1

|I.‘
-

Weight/Activation distribution Quantized distribution

Non-uniform quantization

103 2
[GPTQ, Frantar et al, 2023, LLM.int8(), Dettmers et al, 2022, Image Source] 135



https://arxiv.org/pdf/2210.17323.pdf
https://arxiv.org/pdf/2208.07339.pdf
https://arxiv.org/abs/2103.07156

(Post-training) Quantization argmi | |WX — WX| |§

quantized + low-precision matrix multiplication

Specifically, GPTQ can quantize GPT models with 175 billion parameters in approximately
four GPU hours, reducing the bitwidth down to 3 or 4 bits per weight, with negligible
accuracy degradation relative to the uncompressed baseline. Our method more than
doubles the compression gains relative to previously-proposed one-shot quantization
methods, preserving accuracy, allowing us for the first time to execute an 175
billion-parameter model inside a single GPU for generative inference.

B
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(Post-training) Quantization argmi | |WX — WX| |§

quantized + low-precision matrix multiplication

|
Method ®
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(Post-training) Quantization

8-bit Vector-wise Quantization

LLM.INtS()  SlUvecioms Quantsstion i

1
1 (1) Find vector-wise constants: Cw& CX
]
]
1
: X 12<«—(C
w
H 2 [ e = -1]0
i 3032 02
! 1[1]afo 5B
H F16 16
2 [as[1 171 -1j0 ' T W
X o [12]3 Je3 2 2|0 W H C
137|183 0 0]-2 i X
FP16 3]-2
-1)2

FP16

X |12]63
37|83

[] Regular values
[] Outliers

-
[ |
[ ]
1
1
| ]
]
]
1
- 45117
1
]
1
| ]
| ]
1
]
L ]

F16

W_= Out

F16

argmi||WX — WXH%

quantized + low-precision matrix multiplication

(2) Quantize (4) Dequantize
* =
X*(127/Cy) = X, Outlaﬂ; (Cx® Copd 5
W, (127/Cw) =Wy, 127+ 127 OVt

(3) Int8 Matmul
X W = Out
18 18 132

F16

Out

1
1
1
1
1
1
1
1
1
H FP16
1
1
1
1
1
1
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(Post-training) Quantization argmi | |WX — WX| |§

OPT Model Family quantized + low-precision matrix multiplication
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Parameter-Efficient Fine-Tuning (PEFT)

Common Workflow:

(1) Download state-of-the-art pre-trained LLM trained on internet text for general "world
knowledge" and reasoning abilities

(2) Test in-context learning abilities for sufficient few-shot performance.

[Parameter-Efficient Fine-Tuning Methods, A Review, 2023] 140
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Parameter-Efficient Fine-Tuning (PEFT)

Common Workflow:

(1) Download state-of-the-art pre-trained LLM trained on internet text for general "world
knowledge" and reasoning abilities

(2) Test in-context learning abilities for sufficient few-shot performance.

(3) Use a parameter-efficient fine-tuning scheme to update a subset of parameters (~1%).

BEn
[Parameter-Efficient Fine-Tuning Methods, A Review, 2023] 141
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Low-Rank Adaptation (LoRA)

h=Wyx+ AWx = Wyox + BAx

/ Pretrained
Weights

Zero at initialization

143
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Low-Rank Adaptation (LoRA)

h = W()CC‘FAWZC = W0£U-|-BAQZ

| / | Pretrained
Zero at initialization Welghts

— Can easily train and share different LoORA modules

= Rdxd

for various tasks, only need to store B) A

— No changes to inference speed

— Efficient Training (No need to calculate and store

[
gradients for full model, no need to store optimizer state) X | |

[LoRA: Low-Rank Adaptation of Large Language Models, Hu et al., 2021] 144
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Prefix Tuning vl & v2

Fine-tuning

Transformer (Translation)
F [ 1 [ 1 [ 1 1 [ 1 1 1 [ ]

Transformer (Summarization)
[ 1] [ 1] [ 1 [ 1 [ 1 [ 1 [ 1 [ 1

Transformer (Table-to-text)

Nl

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

Prefix
(Translation)

Prefix-tuning

Prefix
(Summarization)
/i

Prefix

(Tableo-text) Transformer (Pretrained)

oL LI L L

name Starbucks type coffee shop [SEP] Starbucks serves coffee
Input (table-to-text) Output (table-to-text)

[Prefix-Tuning: Optimizing Continuous Prompts for Generation, Li & Liang, 2021,
P-Tuning v2. Liu et al, 2022] 145
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Prefix Tuning vl & v2

Fine-tuning

Transformer (Translation)

o Y S 0 o o o Optimization
. . . \
F Transformer (Summarization) § Reparameterization (Optional) o bizaon
1 1 1 1 r—4 -1 34 - teoao-Z Tmmmmmm—mm e m e e m s .
Transformer (Table-to-text) 1 [CL*S] Amazing movie |

I s canng et o)

Layerl Prompts ..

name Starbucks type coffee shop [SEP] Starbucks serves coffee

(Tr:rrselgit)i(on) Input (table-to-text) Output (table-to-text) Layer2 Promp tS el ;;;'”
- i i I LR LR e
Prefix Prefix-tuning ce e

e LayerN Prompts “\r____ " ____ ¢ :

fix

(Tag‘;:go_te ) Transformer (Pretrained)

TIEHERE R Class Label ‘W%*i lincarhead) |

name Starbucks type coffee shop [SEP] Starbucks serves coffee

Input (table-to-text) Output (table-to-text)
[Prefix-Tuning: Optimizing Continuous Prompts for Generation, Li & Liang, 2021 146 178 -
P-Tuning v2, Liu et al, 2022]
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Implementing Prefix Tuning v2

batch_size = input_ids.shape[0]

past_key_values = self.get_prompt(batch_size=batch_size)

prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)

attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)

SUERULS ‘= SEUFABERE( ~—— Call to a popular LLM (Devlin et al., 2018)
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,

[Prefix-Tuning: Optimizing Continuous Prompts for Generation, Li & Liang, 2021, B E
P-Tuning v2, Liu et al., 2022] 147
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Implementing Prefix Tuning v2

batch_size = input_ids.shape[0]

|past_key_values = self.get_prompt(batch_size=batch_size)

prefix_attention_mask = torch.ones(batch_size, self.pre_seq_len).to(self.bert.device)
attention_mask = torch.cat((prefix_attention_mask, attention_mask), dim=1)

outputs = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
head_mask=head_mask,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
past_key_values=past_key_values,

[Prefix-Tuning: Optimizing Continuous Prompts for Generation, Li & Liang, 2021, B E
P-Tuning v2, Liu et al., 2022] 148
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Prefix Tuning for Multi-Modal models

Generated Text
. (next token prediction)
Input Embeddings
(seq_len, 4096) silhouette of a
‘ <imgl> | silhouette | of | a I | <img2> | cute l | scooter plans Tl yihe e

the sun <pad> cat
on a motorcycle

|

Cross Entropy Loss

Visual
Tokenizer Encoder Tokenizer
[ ] silhouette of a
s;lhomlatte iy et plane against the
: a?nztane sitting on su:set_:t;p?ad> cute
g L cat sitting on a
the sunset scooter
Image #1 Caption #1 Image #2 Caption #2 Combined Groundtruth
Image and Caption Inputs Caption

Image Captioning

[Grounding Language Models to Images for Multimodal Inputs and Outputs,
Ko et al, 2023] 149
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Prefix Tuning for Multi-Modal models

Generated Text :
. el ke pradichen) [C] Frozen Model [ | Linear Layer | |Loss
Input Embeddings
(seq_len, 4096) silhouette of a
: - - plane flying into Cross Entropy Loss
‘ <imgl> | silhouette | of | a 1 | <img2> | cute l | scooter the sun <pad> cat
on a motorcycle
silhoustte of [ silhouette of a
\ 2gg}?\2i the — E silhouette [ of[ [ [RET] ]—~ plane against
Visual Cross Entropy Loss sunset [RET] | Qukpa Einbeddings Ehe sunsetitiE
Tokenizer Encoder Tokenizer ‘ Input Caption sea-tem Generated Text
[ ] W, (next token prediction)
silhouette of a o
silhouette plane against the m H
cute cat - T

of 2 plane sitting on sunset_: <;?ad> cute §2 g InfoNCE Loss

against T cat sitting on a o U

the sunset scooter B

Image #1 Caption #1 Image #2 Caption #2 Combined Groundtruth Input Image
Image and Caption Inputs Caption
Image Captioning Image-Text Retrieval

[Grounding Language Models to Images for Multimodal Inputs and Outputs,
Ko et al, 2023] 150
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Prefix Tuning for Multi-Modal models

BioBERT
Ai2 | SCiBERT
& ClinicalBERT W scifive
- rﬁ%‘\ BioMegatron
[  BiueserT € Biom-BERT N
= B PubMedBERT © (Gatorron MolT5
| H texavol ) kvm o
T —— o I €3 sioinkserT CICR
228 —FwE]— . I (&) Protranstator £ scholarBERT
TTTMe—
b |
R, MedAlpaca May.

a (&) PMC-LLaMA w3 DRAGON
§ (ClinicalCamel O ProteinChat i m 7
=3 EPFL ChemCrow = BioGPT )
& GatorTronGPT KEDD . Now ==
JYU ciame (@) AmAN | _pee — N )
G MolXPT . ChatDrug | o — Jan, —1 2023 - | m Galactica
— Feb. Med-PaLM
@ ChemLLMBench e /Mar' Ll
| / W sioTranslator g BioMedLM
May. O ProteinDT MoleculeSTM
. ) SciGLM
EPFL (MEDITRON m MolTailor
¢ ) 3D-MolLM .-
’““'\ r X protaText O Drigchet Yale Moltm T-Rex
| ul. @ Ada/Aug-T5 idea  InstructMol J) (EhiemBEM TEDMol
e Y o - )
¥ ClinicalGPT [ | S Tencent DrugAssist
@5 | sep— v naChO BioBRIDGE
) LM . | == H]-Mol
& e =) . 1 B ¥ — e
ChatMol & GIT-Mol © GPT-MolBERTa T 20m L,
an.
:
BioMedGPT % moica @& Poiync Feb. —_
DARWIN & ; I[ii TextReact e
s (¥)) InstructProtein I 1 ChemLLM |
B3 prorchateer (i) chatcel
5 |||i|- ProtAgents BioT5+
Biotext Text + Protein = & \ ProLLaMA ) Mol-Instructions
& temom @
Text + Molecule More Modalities T
Drug-to-indication
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Other Tricks: Gradient accumulation

______

GPU
5 MINI-BATCH MINI-BATCH s MINI-BATCH MINI-BATCH
0 1 2 3
W WV WV WV
grado gradl grad2 grad3
WV W WV WV
GLOBAL BATCH GRADIENTS
Time
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Other Tricks: Gradient checkpointing

Assume 1x 166B GPU and a Pretrained wodel of size 1.5 6B

Grodient Checkpoint off Mem Usage

1.56B  Neurons * Layers + Batch Size

Static Dl/namic Uetivations) 3¢

o(n)

All Intermediate Activations stored

153

[Training Deep Nets with Sublinear Memory Cost, Chen et al. 2016]
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Other Tricks: Gradient checkpointing

Assume 1x 166B GPU and a Pretrained wodel of size 1.5 6B

Gradient Checkpoint off Mem Usage

1.56B  Neurons * Layers + Batch Size

Static Dl/namic (Uetivations) 3¢

All Intermediate Activations stored 0n2
Grodient Cke_ckpo?n‘t On
1.56B  Neurons + Layers + Batch Size
] |
wee 0 A
Few Activations are stored 0(sqrt(n))

Total &PU Memory - 166B

Interim Computations pev—
Lese’d s
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Other Tricks: Gradient checkpointing

# Set training parameters

training_args = TrainingArguments(
output_dir=ckpt_path,
num_train_epochs=FLAGS.n_epochs,
max_steps=FLAGS.n_max_steps,
per_device_train_batch_size=FLAGS.batch_size,
per_device_eval_batch_size=FLAGS.eval_batch_size,
# Optimization settings
learning_rate=FLAGS. learning_rate,
weight_decay=0.01,
max_grad_norm=0.3,
1r_scheduler_type='cosine'
warmup_ratio=0.03,
# Logging & Validation settings
logging_steps=25,
evaluation_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=100,
save_total_limit=2,
metric_for_best_model=FLAGS.best_model_metric,
greater_is_better=False if 'eval_loss' == FLAGS.best_model_metric else True,
load_best_model_at_end=False,
# Efficiency settings
fpl6=False,
bfl6=use_bf16,
gradienticheckpointing=False,
gradient_accumulation_steps=1,
group_by_length=False,
optim=optim,
report_to="wandb" if FLAGS.wandb_track else "none",
run_name="'{}_finetune ({})'.format(FLAGS.dataset, FLAGS.model),
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Other Tricks: Gradient checkpointing

# Set training parameters

training_args = TrainingArguments(
output_dir=ckpt_path,
num_train_epochs=FLAGS.n_epochs,
max_steps=FLAGS.n_max_steps,
per_device_train_batch_size=FLAGS.batch_size,
per_device_eval_batch_size=FLAGS.eval_batch_size,
# Optimization settings
learning_rate=FLAGS. learning_rate,
weight_decay=0.01,
max_grad_norm=0.3,
1r_scheduler_type='cosine'
warmup_ratio=0.03,
# Logging & Validation settings
logging_steps=25,
evaluation_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=100,
save_total_limit=2,

Th|nk of both as a metric_for_best_model=FLAGS.best_model_metric,
memorY/Speed trade_Off greater_is_better=False if 'eval_loss' == FLAGS.best_model_metric else True,

load_best_model_at_end=False,

# Efficiency settings

fpl6=False,

bfl6=use_bf16,

gradienticheckpointing=False,

gradient_accumulation_steps=1,

group_by_length=False,

optim=optim,

report_to="wandb" if FLAGS.wandb_track else "none",
run_name="'{}_finetune ({})'.format(FLAGS.dataset, FLAGS.model),
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Outline for today

Part 1:

e N-Gram Language Models
e Transformers

[break]

Part 2:

In-Context Learning & Prompting

Scaling Laws

Parameter Efficient Fine-Tuning & Quantization
Capabilities & Limitations
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Sparks of AGI

Sparks of Artificial General Intelligence:
Early experiments with GPT-4

Sébastien Bubeck Varun Chandrasekaran Ronen Eldan Johannes Gehrke
Eric Horvitz Ece Kamar Peter Lee Yin Tat Lee Yuanzhi Li Scott Lundberg
Harsha Nori Hamid Palangi Marco Tulio Ribeiro Yi Zhang

Microsoft Research

Abstract

Artificial intelligence (AI) researchers have been developing and refining large language models (LLMs)
that exhibit remarkable capabilities across a variety of domains and tasks, challenging our understanding
of learning and cognition. The latest model developed by OpenAI, GPT-4 [Ope23], was trained using an
unprecedented scale of compute and data. In this paper, we report on our investigation of an early version
of GPT-4, when it was still in active development by OpenAI We contend that (this early version of) GPT-
4 is part of a new cohort of LLMs (along with ChatGPT and Google’s PaLM for example) that exhibit
[more general intelligence than previous AI models. | We discuss the rising capabilities and implications of
these models. We demonstrate that, beyond its mastery of language, GPT-4 can [solve novel and difficult|
[tasks that span mathematics, coding, vision, medicine, law, psychology and more| without needing any
special prompting. Moreover, in all of these tasks, GPT-4’s performance is strikingly close to human-level
performance, and often vastly surpasses prior models such as ChatGPT. Given the breadth and depth of
GPT-4’s capabilities, we believe thatlit could reasonably be viewed as an early (yet still incomplete) version |
[of an artificial general intelligence (AGI) system.| In our exploration of GPT-4, we put special emphasis
on discovering its limitations, and we discuss the challenges ahead for advancing towards deeper and more
comprehensive versions of AGI, including the possible need for pursuing a new paradigm that moves beyond
next-word prediction. We conclude with reflections on societal influences of the recent technological leap and
future research directions.

3.12712v5 [cs.CL] 13 Apr 2023

[Sparks of Artificial General Intelligence: Early experiments with GPT-4,
Bubeck et al. 2023] 158
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Sparks of AGI

Prompt: Can you write a proof that there are infinitely
many primes, with every line that rhymes?

GPT-4:

Yes, I think I can,

Though it might take a clever plan.

I’11 start by noting Euclid’s proof,
Which shows that primes aren’t just aloof.
Assume we have a finite list,

0f primes, and that none have been missed.
Multiply them all together,

And add one, just to be clever.

The result will be a number,

That has no prime factors, oh wonder!

But every number has a prime,

That divides it, it’s just a matter of time.
So we’ve found a contradiction,

And our finite list needs eviction.

There must be infinitely many primes,

And that’s the end of my rhyming lines.s

[Sparks of Artificial General Intelligence: Early experiments with GPT-4,
Bubeck et al. 2023] 159



https://arxiv.org/pdf/2303.12712.pdf
https://arxiv.org/pdf/2303.12712.pdf

Sparks of AGI

Prompt: Draw a unicorn in TiKZ.

GPT-4: [Produces IATEX compiling to

following picture.]

[Sparks of Artificial General Intelligence: Early experiments with GPT-4,
Bubeck et al. 2023] 160
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Sparks of AGI

Prompt: Can you generate a pyplot for the following data: = = [1,3,5,6,8],y1 = [2,3,5,18,1],%2 = [3,5,6,8,1],y3 =
[5,1,2,3,4],y4 = [9,7,2,3,1]. I want y1,y2 to be in the same plot, but y3 is in another plot next to that plot, y4 is in
below. I want the legend of y1 to be ”bob”, y2 to be ”alice”, y3 to be "bilbo”, y4 to be ”allie”. I want the z-axis to be
labeled with ”time” and y axis to be labeled with "money”. I want to add a 10 %-40% random error bar to each curve,
through all times (including non-integers). I want smoothed curves to show the plot, and smoothed error bar. Do not
use linear interpolation, use smooth interpolation! I want to also add some small zig-zag to the smoothed curve to make
it look more real. I want to put a baseline as the mean of each line. I want to put a pie chart below indicating the
fraction of the four people in each time step. I also want an animation to show how the fractions are changing in the
pie chart in **continuous time**. Interpolate the missing fractions! I also want vertical line animation in other three

plots to match the pie chart. I want the fanciest plot. Please add as many fancy things as possible.

Here is a possible code to generate a pyplot for the following data, with some comments to explain the steps:

GPT-4: [We give two snapshots from the animation resulting from the produced code]

Bob and Alice

Bilbo

Bob and Alice

Bilbo

Money

— bob
— alice

— bilbo

Money
N W s ou oo

— bob
— alice

Money
N oW os ow oo

— bilbo

allie

bilbo

Time

Fractions at time 3.26

alice

[Sparks of Artificial General Intelligence: Early experiments with GPT-4,

Bubeck et al. 2023]
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allie

Time

Fractions at time 7.86

bilbo
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Sparks of AGI

GPT-4 and Stable Diffusion

Prompt: A screenshot of a city-building game in 3D. The screenshot is showing a terrain
where there is a river from left to right, there is a desert with a pyramid below the river, and
a city with many highrises above the river. The bottom of the screen has 4 buttons with the
color green, blue, brown, and red respectively.

GPT-4: Stable Diffusion v2.1: Stable Diffusion v2.1
with GPT-4’s sketch:

Tuverat

[Sparks of Artificial General Intelligence: Early experiments with GPT-4,
Bubeck et al. 2023] 162
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Sparks of AGI

Can you compose a short tune (say four to eight bars) using ABC notation?
There are many possible ways to compose a short tune in abc notation, but here is one example:

EIH

ample Tune
4
8

QP B
~N N

X:
i
M:
L:
K:
|:G2AB c2BA | G2AB c2c2 | edcB c2BA | G4-G2z2 :|

|:c2de f2ed | c2de f2f2 | g2fe d2cB | c4-c2z2 :|

This tune has two four-bar phrases, each repeated once, forming an A part and a B part. The key is C
major.

Can you describe the tune in musical terms?

Here is one possible description:

The tune starts with a rising arpeggio of the tonic chord (C major), followed by a descending scale that
returns to the tonic. This pattern is repeated, but the second time the scale continues to the higher
tonic note. The first phrase ends with a long tonic note.

\"4 X% I 1 Il Il 1 T T 1 Il - T T I X
A X | I | o & - I o r 2 1 F P 5 9 & T | 1 rd
N4 1 g r i 1 & r 1 1 T 1 1 =1 [ & =
ANV 3 L i 1 T T I 1T | Il I 1| I
<J T T T — T
} } | } } }
T 1 I I I r r J T I | r r I > T 1 I
y O 3 | il | | 1 1 1 | I 1 1 I | r J r Il I J rd
I 1~ & r i | | - r A 1 1 T I 1 1 177 r A ~
L 3 | 0l 1 1 1 I I J | I i i I
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Sparks of AGI

Prompt:

A function f is called {increasing}_{emphasize!} if f(s) H= f(t) holds for every s H= t. Consider the formula:
limit_{x goes to 0} {limit when n approaches infinite} underscore{

\matrix[ [ sum of i from 1 to n (f(nx) - integral from O to x sin(nx) dx ),

((x + 2/8)°2 - 5)/((4x-1/x"2) /(n xor 3)), \\ , ..., partial f(x/n)

over partial x * (e”"{-i*omega n x} + 3(x#7) ) , f inverse of (x mod n) ]]

multiply \matrix{1, 1, ..., 1 \\' 1, 1, ..., 1} }

{grey_color{this gives us a good impression about the function}}

Convert the above paragraph to LaTeX.

GPT-4:

A function f is called increasing if f(s) < f(t) holds for every s < t. Consider the formula:

* 1 (f(nz) — [ sin(nz) dz) Mﬁ
= 0 ’ 4z—1/22
n®3 CEEEEY
z—0n—o0 & ' L 5 o .
Of(x/n) . (e=iwnz 4 3(@#7)), f)(z mod n)

Ve
this gives us a good impression about the function

[Sparks of Artificial General Intelligence: Early experiments with GPT-4, 164 B E
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Embers of Autoregression

Embers of Autoregression: Understanding Large Language
Models Through the Problem They are Trained to Solve

R. Thomas McCoy Shunyu Yao Dan Friedman Matthew Hardy Thomas L. Griffiths

Princeton University

One-sentence summary:
To understand what language models are, we must understand what we have trained them to be.

Abstract:

The widespread adoption of large language models (LLMs) makes it important to recognize their strengths and
limitations. We argue that in order to develop a holistic understanding of these systems we need to consider
the problem that they were trained to solve: next-word prediction over Internet text. By recognizing the
pressures that this task exerts we can make predictions about the strategies that LLMs will adopt, allowing us
to reason about when they will succeed or fail. This approach—which we call the teleological approach—Ileads
us to identify three factors that we hypothesize will influence LLM accuracy: the probability of the task to
be performed, the probability of the target output, and the probability of the provided input. We predict
that LLMs will achieve higher accuracy when these probabilities are high than when they are low—even in
deterministic settings where probability should not matter. To test our predictions, we evaluate two LLMs
(GPT-3.5 and GPT-4) on eleven tasks, and we find robust evidence that LLMs are influenced by probability
in the ways that we have hypothesized. In many cases, the experiments reveal surprising failure modes. For
instance, GPT-4’s accuracy at decoding a simple cipher is 51% when the output is a high-probability word
sequence but only 13% when it is low-probability. These results show that Al practitioners should be careful
about using LLMs in low-probability situations. |More broadly, we conclude that we should not evaluate LLMs
as if they are humans but should instead treat them as a distinct type of system—one that has been shaped
by its own particular set of pressures.

).13638v1 [cs.CL] 24 Sep 2023
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Embers of Autoregression

Humans

Unique Unique \\

human Shared LLM
capacities properties capacities
and biases and biases

o — -
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Embers of Autoregression
@ Couting ]

Swap each article (a, an, or the) with the word before it.

Count the letters.

It does not specify time a limit for registration the procedures.

Input 1: iiiiiiiiiiiiiiiiiiiiiiiiiiiiii Input 1:

Correct: 30 Correct: It does not specify a time limit for the registration procedures.
v GPT-4: 30 v GPT-4: It does not specify a time limit for the registration procedures.

Input 2: iiiiiiiiiiiiiiiiiiiiiiiiiiiii Input 2: It few with it to lying take the get just a hands would kinds.

Correct: 29 Correct: It few with it to lying the take get a just hands would kinds.

X GPT-4: 30 X GPT-4: It flew with a few kinds to take the lying just to get the hands.

Shift ciphers

Multiply by 9/5 and add 32.

Decode by shifting each letter 13 positions backward in the alphabet.
Input: Jryy, vg jnf abg rknpgyl cynaarq sebz gur ortvaavat. Input: 328
Correct: Well, it was not exactly planned from the beginning. Correct: 622.4

v/ GPT-4: Well, it was not exactly planned from the beginning. v GPT-4: 6224

Multiply by 7/5 and add 31.

Decode by shifting each letter 12 positions backward in the alphabet.

Input: 328
Correct: 490.2
X GPT-4: 4576

Input: Igxx, uf ime zaf qjmofxk bxmzzqp rday ftq nqsuzzuzs.
Correct: Well, it was not exactly planned from the beginning.
X GPT-4: Wait, we are not prepared for the apocalypse yet.

[Embers of Autoregression: Understanding Large Language Models Through 167
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Embers of Autoregression

Ember of
autoregression

Definition

Example

Sensitivity
to task
frequency

Sensitivity
to output
probability

Sensitivity
to input
probability

LLMs perform better on tasks that are frequent
than ones that are rare, even when the tasks have
an equivalent level of complexity.

LLMs achieve higher accuracy when the correct
answer is high-probability text than when it is
low-probability text, even when the task is de-
terministic.

Even when the task is deterministic, LLMs
sometimes achieve higher accuracy when the in-
put text is high-probability than when it is low-
probability, but input probability is less influen-
tial than output probability.

When asked to translate English sentences into
Pig Latin, GPT-4 gets 42% accuracy when using
the most common variant of Pig Latin but only
23% accuracy when using a rare variant.

When asked to reverse a sequence of words,
GPT-4 gets 97% accuracy when the answer is
a high-probability sentence yet 53% accuracy
when the output is low probability.

When asked to encode sentences in a simple ci-
pher (rot-13), GPT-4 gets 21% accuracy when
the input is a high-probability sentence yet 11%
accuracy when the input is low probability.

[Embers of Autoregression: Understanding Large Language Models Through
the Problem They are Trained to Solve, McCoy et al., 2023] 168
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Embers of Autoregression

Shift cipher: Task probability

Common task: Rot-13. Decode the message by shifting each
letter thirteen positions backward in the alphabet.

Input: Jryy, vs gurl gba’g pbzr, fb or vg.
Correct: Well, if they don’t come, so be it.

v GPT-4: Well, if they don’t come, so be it.
Uncommon task: Rot-2. Decode the message by shifting
each letter two positions backward in the alphabet.

Input: Ygnn, kh vjga fqp’v eqog, uq dg kv.
Correct: Well, if they don’t come, so be it.
X GPT-4: Well, if there isn’t cake, to be it.

103 2

[Embers of Autoregression: Understanding Large Language Models Through
169
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Embers of Autoregression

Shift cipher: Task probability

Common task: Rot-13. Decode the message by shifting each 1.00 1
letter thirteen positions backward in the alphabet.

GPT-3.5

0.754
Input:  Jryy, vs gurl gba’g pbzr, fb or vg.

Correct: Well, if they don’t come, so be it.
v GPT-4: Well, if they don’t come, so be it.

Decoding accuracy
o o
N 3]
(9] o

Uncommon task: Rot-2. Decode the message by shifting
each letter two positions backward in the alphabet.

0.004

. 1 ) T T T T T T T T T T T T T T T T T T T T T T T T
Input:  Ygon, kh vjga fqp’v eqog, uq dg kv. 1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Correct: Well, if they don’t come, so be it. Shift

X GPT-4: Well, if there isn’t cake, to be it.

[Embers of Autoregression: Understanding Large Language Models Through 2
the Problem They are Trained to Solve, McCoy et al., 2023] 170 128
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Outline for today

Part1:

e N-Gram Language Models
e Transformers

[break]

Part 2:

In-Context Learning & Prompting

Scaling Laws

Parameter Efficient Fine-Tuning & Quantization
Capabilities & Limitations

+ Glossary of new ideas (RLHF, RAG, Instruction Tuning), time permitting
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Bonus: Reinforcement Learning from Human Feedback

[Source: OpenAl]

Step 1:

The role of RLHF in ChatGPT

Collect demonstration data and
train a supervised policy.

A prompt is
sampled from
our prompt
dataset.

A labeler
demonstrates
the desired
output behavior.

This data is
used to fine-
tune GPT-3 with
supervised
learning.

Explaining the
moon landing
to 6 year old

v
8

Some people
went to the
moon...

v

SFT

<%

288

Step 2: Collect comparison
data, and train a reward

model.

A prompt and
several model
outputs are
sampled.

A labeler
ranks the
output from
best to worst.

This data is
used to train
our reward
model.

172

500
Q5%
00

Explaining the
moon landing

to 6 year old
A] (5]
(C] (O]

v
8

0>0>0-0

!

RM

o

©0>0>0=0

Step 3: Optimize a policy
against the reward model
using reinforcement learning.

A new prompt
is sampled
from the
dataset.

The policy
generates an
output.

The reward
model
calculates the
reward for an
output

The reward is
used to update
the policy
using PPO.

2D

Write a story
about frogs
v
PRO

%

v
Once upon a
time...

v
RM

&

v
I




Bonus: Instruction Tuning

Parameter-Efficient (or full) Finetuning

(( \
Pretrained ' » Finetune on » Inference Instruction Tuning
[ LM task A on task A
/& i
* Typically requires man - e ‘
tgspk-spgcifig examplesy Pretrained v '“s?nu:.ﬁ?oggll;? ol , Inference
e One specialized model LM B g Dl on task A
k for each task o  dloet. St i
Model learns to perform Inference on
. . . many tasks via natural unseen task
In-Context Learning / Prompt Engineering \ language instructions
7
Improve performance
via few-shot prompting
Pretrained w or prompt engineering Inference
) > ontask A

BEn
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Bonus: Instruction Tuning

Task Instruction

Definition

“... Given an utterance and recent dialogue context containing past 3
utterances (wherever available), output ‘Yes’ if the utterance
contains the small-talk strategy, otherwise output ‘No’. Small-talk is
a cooperative negotiation strategy. It is used for discussing topics
apart from the negotiation, to build a rapport with the opponent.”

Evaluation Instances

Tk-Instruct
* Input: “Context: ... ‘I am excited to spend time
with everyone from camp!’ Utterance: ‘That’s
awesome! I really love being out here with my
son. Do you think you could spare some food?’”
* Expected Output: “Yes”

,(;[ Positive Examples }

L

* Input: “Context: ... ‘That's fantastic, I'm glad we came to
something we both agree with.” Utterance: ‘Me too. I hope you
have a wonderful camping trip.””

* OQutput: “Yes”

* Explanation: “The participant engages in small talk when wishing
their opponent to have a wonderful trip.”

[Super-Natural Instructions, Wang et al.. 2022]

N
(.

fE[ Negative Examples ]

* Input: “Context: ... ‘Sounds good, I need food the most, what is
your most needed item?!” Utterance: ‘My item is food too’.”

* Qutput: “Yes”

* Explanation: “The utterance only takes the negotiation forward

and there is no side talk. Hence, the correct answer is ‘No’.”

1
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Bonus: Retrieval Augmentation

Answer @

7’ \\

{’l \‘|
! |
i i
i ebase |
\ LM J

Question C)P T

Amortized Contexts, Tack et al.. 2022] 175
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Bonus: Retrieval Augmentation

Answer
RAG-System

d;

Ss
\

N

¢* ebase

Uy S ————
- l o

N i ———————

Adapted LM :

\
Question C)P @ T

Learning to contextualize and/or keen the System up-to-date

v
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