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Responses to L5 Quick Check

Describe biomedical Al applications
using the framework for fair Al

- Exam example of biomedical Al application is creation of a model that predicts whether patients will
develop alzheimer’s using patient EHR data.

- Data regulators would define the fairness criteria, which data should be used and what is the measure of
similarity between users. For instance, how to determine the similarity between individuals within groups of
black, white, asian etc. patients. Likely the health system or biomedical institution would ask as the regulator.
- Producers would take advice from data regulators and build a dataset that adhere to their requirements,
defining the input and producing fair representation outputs. Likely to be research lab or clinic that has
access to data from hospital and uses it as input.

- Users that build model that produces output prediction (i.e. prob that someone develops alzheimer’s
disease). This is likely clinic or research lab with technical skillsets.

Use a Al algorithm predicting heart disease risk as an example. The data regulator will determine the criteria
of fairness. For example, if they use group fairness, then statistical parity or equal opportunity (eg. in terms of
true positive rates) can be potential choices. Data producers will try to produce fair representations of data.
Data users will take the data and train models to make predictions for some purpose. An expert in CDC or
American Heart Association can be the data regulator who set the criteria. An architecture of a clinic EHR
system can be the data producer and design the system to present fair data. A researcher from a lab will be
the data user who use data for his/her research.



Responses to L5 Quick Check

Describe biomedical Al applications
using the framework for fair Al

In the use of X-ray images to predict heart diseases:

The regulator would determine if certain attributes such as race or income level can be used, as they may
introduce bias due to access to care. They will also determine the right fairness metric to use, for example by
requiring group fairness across gender groups. Examples of regulators include regulatory boards or
administrators

The producer are the ones who would collect and organise the chest x-ray images. To ensure fairness, they
might perform survey sampling of collected x-ray images such that the dataset is representative of the
population. They may also use image augmentation to obfuscate features that results in leakage of protected
attributes such as body shapes that correspond to certain races. Examples include hospital departments or
specialised teams in research labs who are responsible for data curation.

The data users are responsible for building fair ML models given the regulations and cleaned data. They will
need to adhere to the fairness metrics and make efforts to clean or check for residual biases in their data and
models. Examples include researchers in a research lab

In a health system or institution, a data regulator may be a research board like IRB or CMIO team prior to
launch of an algorithm - they would determine which criteria constitute fairness and how individuals may be
considered similar. The data producer creates the vectors of the people who are similar (they can be
constructed based on feature learning or metric learning) - they could be data analysts in the institution. The
data user trains the ML model on the vectors from the DP and they could be the computer scientists or
informatician in the lab.



Responses to L5 Quick Check

Examples that require implementing individual fairness

When there are high heterogeneity of the samples in the model, ensuring individual fairness is necessary. For
example, if we are using the EHR data to predict the cost of the health care of patients for insurance
purposes, then ensuring individual fairness is important because the patient population could be very
heterogenous and the number of features in the population is high. If we only consider the group fairness, the
within group heterogeneity might also be high such that a probability that could apply to the group can't be
apply on the individual level.

Guaranteeing individual fairness, which one could see as a stricter form of fairness than group, would be
important for applications where underlying confounders are not well-known. A model to decide
appointment/scheduling priorities for patients may fit into this group.

It is important to have individual fairness for everyone when determining waiting time appointments that may
get determined by Al-based algorithms, this does not necessarily mean being treated the same though. here
fairness is attained at the individual level.



Responses to L5 Quick Check

Examples that require implementing individual fairness

Cancer state prediction. Cancer is highly heterogeneous such that group fairness may not make sense in
terms of broad categories of race or gender. Predictions should instead ensure that individuals with similar
features such as gene mutations or transcriptional profiles receive similar predictions and can be treated
similarly.

Guaranteeing individual fairness, which one could see as a stricter form of fairness than group, would be
important for applications where underlying confounders are not well-known. A model to decide
appointment/scheduling priorities for patients may fit into this group.



Responses to L5 Quick Check

Examples that require implementing group fairness

Group fairness would matter more for when underlying confounders are less significant or if computation
complexity prevents ensuring individual fairness. Predicting the outcome of drug intake would be a good
example.

Group fairness is necessary for applications that serves a broad variety of people (like the US population as a
whole). An example would be the Framingham study, where longitudinal heart disease risk are measured for
different groups (race, gender, ...) of people. In such a study, we want the disease risk to be fair across these
different groups. Of course, if individual fairness can be achieved at the same time, it would be even better.

When we are trying to build a model to predict the behavior of mice from different species in the same
behavioral task, where the genetic background (dominated by species) of mice is one of the main contributor
to different behaviors in the task, the group fairness is necessary to be considered.



Responses to L5 Quick Check

Examples that require implementing group fairness

- A model that predicts risk of patients to help insurance systems determine insurance prices.

- These models can be unfair, with “black patients being considerably sicker than white patients at a given
risk level.”

- This may be unfair for white individuals who pay more for being not as sick.

- Alternatively, if insurance rates are linked to ability to get medical treatments, this algorithm may be unfair to
black people because they are sicker than white people at same level of health insurance.

- Another example is when Al is used to diagnose disease based on chase radiographs.
- Past examples show that under diagnosis in black patients can be common (Seyyed-Kalantari et al., 2021).
- Here, ensuring fairness is necessary to prevent this from happening.

Seyyed-Kalantari, L. et al. (2021) “Underdiagnosis bias of artificial intelligence algorithms applied to chest
radiographs in under-served patient populations,” Nature Medicine, 27(12), pp. 2176-2182. Available at:
https://doi.org/10.1038/s41591-021-01595-0.



Outline for today’s class

= Foundations of network medicine

" Foundations of geometric deep learning

Node classification, link prediction, graph clustering,
graph classification

Semi-supervised learning and label diffusion
" Genes-like-me: What does my gene do?

= Patients-like-me: Finding patients with similar
genetic and phenotypic features



Foundations of network
medicine

What are networks/graphs?

Predictive modeling using graphs




Why networks”?

Networks are a general

language for describing

and modeling complex
systems






Network!



General Mathematical Language

co-worker

Peter

Tom

brothers friend

Albert

Protein 5

Protein 9 ( )
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Why Networks? Why Now?

= Question: How are diseases and disease
genes related to each other?

" Findings: Disease genes likely to interact and
have similar expression
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Image from: Goh et al. 2007. The human disease network. PNAS.
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Why Networks? Why Now?

= Question: How to simulate an eukaryotic cell?

" Findings: Simulations reveal molecular

mechanisms of cell growth, drug resistance
and synthetic life

.
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Image from: Ma et al. 2018. Using deep learning to model the hierarchical structure
and function of a cell. Nature Methods.
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https://www.nature.com/articles/nmeth.4627
https://www.nature.com/articles/nmeth.4627

Why Networks? Why Now?

= Question: How to model cancer heterogeneity?

" Findings: New cancer subtypes with distinct
patient survival

Similarly type
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Image from: Wang et al. 2014. Similarity network fusion for aggregating data
types on a genomic scale. Nature Methods.
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https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810

Why Networks? Why Now?

= Question: How to study ecological systems?

" Findings: Pollinators interact with flowers in
one season but not in another, and the same
flower species interact with both pollinators
and herbivores

Image from: Pilosof et al. 2017. The multilayer nature of ecological networks.
Nature Ecology and Evolution.
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https://www.nature.com/articles/s41559-017-0101

Why Networks? Why Now?

= Question: Do large, dense, and cosmopolitan
areas support socioeconomic _rmxmg)and
exposure among diverse individuals:

* Findings: Contrary to expectations, residents of
large cosmopolitan areas have less exposure to a
socioeconomically diverse range of individuals

a Infer individual SES (rent estimate) b Exposure segregation
from night-time location
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Image from: Nilforoshan et al. 2023. Human mobility networks reveal increased
segregation in large cities. Nature.
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https://www.nature.com/articles/s41586-023-06757-3
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Why Networks? Why Now?

0.20 [
-

0.15 é "
-!'
=

0.10 3 —
" | o

0.05 u =

0.00 i

: Ar =

-
-0.05 - W
3 v
'%t: n
-0.10 -
o o
2@

6@05 ¥
o dDMN a @
Salience \ ) I
e Sensorimotor )
« Visuospatial

60+~

40~

Ventral-dorsal

-20¢

-40Ll Al Il L 1 | |
-100 -80 -60 -40 -20 0 20 40 60

Posterior-anterior

Image from: Richiardi et al. 2015. Correlated gene expression supports
synchronous activity in brain networks. Science.
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https://science.sciencemag.org/content/348/6240/1241/
http://science.sciencemag.org/content/357/6353/802
http://science.sciencemag.org/content/357/6353/802

Many Data are Networks

RAD57 Homologous Double-strand
recombination break repair

Recombination
repair

Patient networks Hierarchies of cell systems Disease pathways

Biomedical knowledge Gene interaction Cell-cell similarity
graphs networks networks

Evolution of Resilience in Protein Interactomes Across the Tree of Life, PNAS, 2019; MARS: Discovering Novel Cell Types across
Heterogeneous Single-Cell Experiments, Nat Methods, 2020; Leveraging the Cell Ontology to Classify Unseen Cell Types, Nat
Commun, 2021; Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nat Commun, 2021; Network
Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19, PNAS, 2021; Population-Scale Patient Safety Data

Reveal Inequalities in Adverse Events Before and During COVID-19 Pandemic, Nat Comput Science, 2021 20



Predictive and Generative Modeling

" Predict a type of a given node
= Node classification

= Predict whether two nodes are linked
= Link prediction

= |dentify densely linked clusters of nodes
= Community detection, module detection

= How similar are two nodes/networks
= Network similarity

= Design graphs with desirable properties
= Generative modeling and molecular design

This topic will be covered in M6: Generative Al
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Node Classification

Machine Learning

22



Node Classification: Example

Classifying the

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel
protein—protein interactions. Nature.
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https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Link Prediction

o "

ﬁ >

Machine V4
Learning
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Link Prediction: Example

Drugs Diseases

Predicting which &

\\’%
diseases a new ?& A
\

molecule might 4
treat!

=
— “Treats” relationship

? | Unknown drug-disease relationship

Image from: Zitnik et al. 2020. Network-based discovery of drug indications.
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Community Detection

&0

Machine
Learning

>
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Community Detection: Example
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Image from: Menche et al. 2015. Uncovering disease-disease relationships
through the incomplete interactome. Science.
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Graph Classification
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Graph Classification: Example

Designing new
small molecule
compounds to
treat a disease!

Image from: Jin et al. 2018. Junction Tree Variational Autoenc
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http://proceedings.mlr.press/v80/jin18a/jin18a.pdf

Generative Modeling and Design

Geometric deep learning underlies several
breakthroughs, including AlphaFold for
protein structure prediction

Geometric deep
learning model

) .
il i
‘ (Single repr. (r,c)]

@'IIJ‘_L_<

Input sequence

Evoformer
(48 blocks)

< Recycling (three times) ]

Geometric deep learning is receiving increasing interest in
biology, chemistry, and medical sciences as a new tool for
molecular design and optimization

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021 30



AlphaFold Network

= What drives accurate protein structure
prediction?
= Novel neural architecture based on the evolutionary,

physical and geometric constraints of protein
structures

" |nput:
= Primary AA sequence of a given protein
= Aligned sequences of homologues

PrTeT

Input sequence

= Qutput:

= Predicted 3D coordinates of all heavy o iy
atoms in a protein

r.m.s.d.gs = 2.2A; TM-score = 0.96

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021 31



Genes-like-me

What does my gene do? Give me

more genes like these




Recommender Systems

Consider user x: Find set S of other users whose
ratings are “similar” to x’s ratings; Estimate x’s
preference based on ratingsin S

NETFLIX
CHEF'S TABLE

AMERIKA 2 X |

Yol o

GONF
anmg. WIND
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Recommender Systems in Biology

“Give me more “Give me more
movies like proteins like
this one” this one”

lUMANIL

W THE NEXT LEVEL

34



Biological Rationales

= Local hypothesis: Proteins involved in the
same disease have an increased tendency to
interact with each other

= Disease module hypothesis: Cellular
components associated with disease tend to
cluster in the same network neighborhood

(D Aldosteronism @0 Epilepsy @2 Myocardial infarction

() Alzheimer's disease @D Fanconi’s anaemia Myopathy

(3) Anaemia, congenital @2 Fatty liver @4 Nucleoside phosphorylase
deserythropoietic @3 Gastric cancer deficiency

(%) Asthma @% Gilbert’s syndrome Obesity

(5) Ataxia-telangiectasia @9 Glaucoma 1A @6 Paraganglioma

(6) Atherosclerosis 26 Goitre congenital @) Parkinson’s disease

(@ Blood group @7 HARP syndrome @8 Pheochromocytoma

Breast cancer HELLP syndrome Prostate cancer

(9) Cardiomyopathy 29 Haemolytic anaemia 60 Pseudohypoaldosteronism

Cataract 30 Hirschprung disease 61 Retinitis pigmentosa

1D Charcot-Marie-Tooth 3D Hyperbilirubinaemia 52 Schizoaffective disorder
disease 32 Hypertension 53 Spherocytosis

(12 Colon cancer 33 Hypertension diastolic 64 Spina bifida

13 Complement component 34 Hyperthyroidism 65 Spinocerebellar ataxia
deficiency 39 Hypoaldosteronism 66 Stroke

Coronary artery disease 36 Leigh syndrome 67 Thyroid carcinoma

1% Coronary spasm 37 Leukaemia 58 Total iodide organification

(16 Deafness Low renin hypertension defect

(1) Diabetes mellitus Lymphoma 59 Trifunctional protein

8 Enolase- deficiency Mental retardation deficiency

Epidermolysis bullosa @) Muscular dystrophy 0 Unipolar depression

Barabasi et al., Network medicine: a network-based approach to human disease, Nature Reviews Genetixs 2011



Recommender Systems in Biology

= “What does my gene do?”

" Goals: Determine a gene’s function based on who it
interacts with — “guilty-by-association” principle

= “Give me more genes like these”

= Goals:
" Find more multiple sclerosis genes
" Find new ciliary genes

= Find members of a proteasome complex, etc.

36



“"What Does My Gene Do?"”

Networks

Find set N of other genes o e @ <

whose interactions are ° 0% &
“similar” to TP53’s e w

interactions

Query gene
TP53

Prediction using guilty-by-association principle: Estimate TP53’s
function in the cell based on functions of genesin N

37



“Give Me More Genes Like These”

Networks

X

Gene recommender

ATP2A2
ATP2A3
NOS1 Networks Functions
CNN1 Co-expression B muscle system process
GSTO1 Shared protein domains [ muscle contraction
NOS3 g ' .
Physical interactions [ regulation of system process
Ch Path 1 f 1
athway regulation of muscle system process
MYLK2
CALD1 Co-localization heart contraction
ACTA1 Genetic interactions
MYL2
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Finding “Guilty Associates”

" Predict gene functions using guilty-by-association:

Red: Genes involved in protein folding
White: Genes with unknown function

Protein folding cpcas

CPR3
MCA1

TDH2

0d

= What other genes participate in “protein
folding”?
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“Guilty Associates” Problem

" Llet W be a nXn (weighted) adjacency matrix
over n genes

" lety = {—1,0, 1}" be a vector of labels:

= 1: positive gene, known to be involved in a gene
function/biological process

= -1: negative gene
= 0:unlabeled gene

» Goal: Predict which unlabeled genes are likely
positive

40



“Guilty Associates” Approach

= Approach: Learn a vector of discriminant
scores f, where f; is likelihood that node i is
positive

= Example:
cDC48 y = [1, 1,1,1, 0,0,0,0,0,0,0,0;0;0]

W = (weighted) adjacency matrix

41



Approach 1: Neighbor Scoring

" Node score f; is weighted sum of the labels
of i’s direct neighbors:

n
fi= Z Wiyj
=1

fca = Wgamcal - YMcal

= Example:

CDC48

MCA1l
fes = WegBcpcas * Yepcas + WeBTDH2 * YeDcas

fcc = WeetpH2 * YTDH2
TDH2

S\g
GD
GF Red: Positive nodes

White: fi =0 42



Approach 1: Neighbor Scoring

" Node score f; is weighted sum of the labels
of i’s direct neighbors:

n
fi= Z Wiyj
=1

fca = Wgamcal - YMcal

= Example:

CDC48

MCA1l
fes = WegBcpcas * Yepcas + WeBTDH2 * YeDcas

fcc = WeetpH2 * YTDH2

TDH2

= One half of GC’s neighbors are positives
S\g " One third of GA’s neighbors are positives

= But: fGC — fGA (If W is binary)

GD

GF
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Weighted Neighbors

" Normalize matrix W by node degrees:

Matrix notation:
fi=D"'wy

n
1
fi =d_2 Wij)’j; d; =2]_Wij D = diag(d)
|
J=1

= Example:

CDC48

MCA1l
fca = §WGA,MCA1 * YMCA1

TDH2 fcB = 3 (WeB.cpcas * Ycepcas T WeBTDHZ * YTDH2)

GC 1
GD Q\g foc = EWGC,TDHZ * YTDH2
GF
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Random Walks

= Matrix P = D~ 1W is known as Markov
transition matrix

= D is a diagonal matrix with diagonal elements d;

= P is a row stochastic matrix, }.; P;; = 1

= Row [ is a probability distribution over random

walks starting at node i
= P;; is probability of a random walker
following a link from node i to node j
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Indirect Neighbor Scoring

® Use random walks to include indirect
neighbors in computations

= |dea: Extend direct neighbor scoring formula
f = D Wy = Py toinclude 2-hop
neighbors

= Probability of a random walk of length two
between node i and node j is:

n
P,
Plij = z Pikij P,
k=1

46



Approach 2: 2-Hop Neighbors

= Consider 2-hop neighbors when calculating
node score f; as:

= 3 ey
E=

Direct 2-hop
neighbors neighbors
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Example: 2-Hop Neighbors

cDC4s P=D1w

n n
fi= Zpijyj +2[P2]ijyj
= =

L

Direct
neighbors

fca = Pgamcal * YMcaA1l

2 2

fceE = PGemcar - YMmca1 + PGETDH2 * YTDH2
2

+ PGEcDCas * YcDcas

o Direct neighbor of a positive gene

o 2-hop neighbor of a positive gene
Red: Positive genes
White: fi =0
[P?];;> 0if there is a walk of length 2 between i and j
48



Beyond 2-Hop Neighbors

" This approach can be extended to include nodes at
distance r (usually r < 4):

= [P"];; = Probability of a walk from i to j in " steps

" |[ncreasing r beyond 2 sometimes results in
degradation of prediction performance

" [Chua et al., Bioinformatics 2006; Myers et al., Genome
Biology 2005, Cowen et al., Nature Reviews 2017]

" Next: Use random walks propagate labels
throughput the network
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Beyond 2-Hops: Label Propagation

" Label propagation generalizes neighborhood-
based approaches by considering random walks
of all possible lengths

" The algorithm can be derived as:
1. lterative diffusion process [Zhou et al., NIPS 2004]

2. Solution to a specific convex optimization task
[Zhou et al., NIPS 2004, Zhu et al., ICML 2003]

3. Maximum a posteriori (MAP) estimation in Gaussian
Markov Random Fields [Rue and Held, Chapman &
Hall, 2005]

= Next: Derivation based on diffusion

50



Label Propagation: Intuition

Intuition: Diffuse labels through edges of the network

(b) First Iteration

(a) Initial Labels Score

O O . O high
O
@) Q Oo O OO0
O O
O—0o.  og©° O—g.  OgO Ll
O O
-0 0RO o0 0RO
O O O OO o O O O
e=¢ oe=o =
N Red: positive nodes
Red: positive nodes Pink: f; > 0

White: unlabeled nodes White: f; = 0
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Diffusion Process: Idea

= Diffusion is defined as an iterative process [Zhou et
al., NIPS 2004]

= Diffuse labels through network edges:

= Start with initial label information, fgo) =Y

= |In each iteration, node i receives label information

from its neighbors and also retains some of its initial
label

= A specifies relative amount of label information from i’s
neighbors and its initial label

" Finally: Label for each unlabeled node is set to be
the class (-1 or 1) of which it has received most
information
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Details

Diffusion Process: Formally

= Diffusion process is defined as iteration:

At iteration r = 0, define fgo) < y;

At iteration r + 1, the score for node i is

weighted average of the scores for i’s neighbors
in iteration r, and i’s initial label:

n
FO e =Dy + )y Wi
=1

0 < A < 1ismodel parameter
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Details

Diffusion Process: Example

Score

(a) Initial Labels (b) First Iteration I high
O-@ Q
O-@ @
O \ O—/-0 o o /N |
O ow
O—u O O(O)O o5 YO
® 1. =7 o fO =awy+ @1 -2y
OO0 O O
00 0 Q-0
Q O O
(OS=©) O
(OS=®)
L Red: positive nodes
e All nodes within 2 hops are fi>0
00 assigned a non-zero value White: f; = 0
@) O—/-0

O

@ fA=awfD+1-2y
00 o Q-0
O 1y OO , : :
36 O Question: How many iterations?
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Details

Convergence Condition

= |f all eigenvalues of W are in range [—1, 1],
then the sequence f(’") converges to:

f=(0-2) QwW)y
r=0

[W"];;> 0if a walk of length r between i and j
Weight A" decreases with increasing distance

® = Discriminant scores f are weighted sum of
walks of all lengths between nodes

® = High value f;: i is connected to positively
labeled nodes with many short walks
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Details

Diffusion Process: Example

Score

(a) Initial Labels (b) First Iteration I high
O-@ Q @)
O - o—/-o R Q Oo
O
O—o_ ogPo° Oy &go ow
® fO= @ FfU = Wy+(1-2y
Q
o © Ve gy, O e
Oo—0O oO—0O
. _ Red: positive nodes
B All nodes within 2 hops are (d) Final Scores fi>0
assigned a non-zero value (ONNG) O White: f; = 0
O
o fO = WO +(1 -y ° f=0-2 Z(AW)’“

O 0D
Oooo O S

-0 ©) o0
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Details

Does the Process Always Converge?
" Problem: The infinite sum converges only if all

eigenvalues of W arein [—1,1],i.e., p(W) <1
= Solution: Normalize W before diffusion:

= Symmetric normalization:
S = D 12wp-1/2 D = diag(d)
= Signal is spread in a breadth-first search manner

= Asymmetric normalization:

P=D'w

57



Details

Exact Solution at Convergence

= If p(W) < 1, use Taylor expansion to compute
exact solution for label propagation:

f=-2)) GS’y
r=0 |
U (I - A) 1= z:;m
f= (- -1y
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Function Prediction: Setup

* Multi-label node classification: Node (gene) has 0+
labels (functions):

1. For each label learn a separate vector f:

= High value of f;: i is connected to many labeled
nodes through many short walks — i likely has
the label

2. Train: Observe a fraction of nodes and their labels
3. Test: Predict functions for the remaining nodes

= Select optimal value for A using cross-validation
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[Mostafavi et al., Genome Biology 2008]

Function Prediction: Results

T "B GeneMANIA (15 networks)
[ ] Label Propagation on BioPIXIE
0.95 "I Local Neighborhood on BioPIXIE

0.9

085

0.8

BP 3 BP 11 BP 30 BP 101
Evaluation Category

Label propagation outperforms neighborhood scoring

methods



[Cowen et al., Nature Reviews 2017]

Function Prediction: Results
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Network propagation variants outperform their frequency-based counterparts (compare the blue curve to the green
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GeneMANIA Tool (genemania.org)

®  ® @ GeneMANIA

& C 1 @ genemania.org

Function
(O DNA recombination
(O reciprocal DNA recombination

(O reciprocal meiotic
recombination

(O meiotic nuclear division

(O meiotic cell cycle

O meiosis |

(O structure-specific DNA binding

(O cellular process involved in
reproduction

(O double-stranded DNA binding
O nuclear division

(O organelle fission

(O double-strand break repair

(O ATPase activity

(O double-strand break repair via

homologous recombination

(O recombinational repair

(O DNA-dependent ATPase
activity

(O mismatch repair

(O single-stranded DNA binding
(O regulation of DNA
recombination

(O ribonucleoside
monophosphate catabolic
process

(O purine nucleoside
monophosphate catabolic
process

(O purine ribonucleoside
monophosphate catabolic
process

(O ATP catabolic process

FDR

3.29¢-36
1.32e-22
1.32e-22

3.33e-22
4.53e-22
9.47e-21
4.58e-19
9.19e-17

9.00e-16
1.59e-15
5.38e-15
1.86e-14
1.59e-13
1.64e-13

1.70e-13
1.70e-13

2.52e-12
9.04e-12
8.76e-11

5.88e-10

Coverage ||

22/151
12/35
12/35

14/84
14/87
12/50
14/142
14 /207

11/84
14 /257
14/282
11/112
12/197
9/55

9/56
9/56

7/22
8/50
7/35

9/139

Query list:

Marinka

Networks
» Predicted

» Physical interactions
] 13.72%

» Shared protein domains
|| 12.86

» Co-expression
|

» Pathway
|

» Co-localization
[ |
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Quick Check

https://forms.gle/mHGeVkk7yZu2oUhr7

BMI 702: Biomedical Artificial
Intelligence

Foundations of Biomedical Informatics Il, Spring 2024

Foundations of geometric deep learning, graph representation learning, link prediction,
node classification, graph clustering, graph classification, semi-supervised learning, label
propagation, network medicine, disease modules.

Course website and slides: https://zitniklab.hms.harvard.edu/BMI702

* Indicates required question

First and last name *

Your answer

Harvard email address *

Your answer

Think of another network example in biology or medicine that was not covered in *
today's lecture. What are nodes? How are edges defined? What predictive or
generative tasks can be meaningfully defined on your network?

Your answer

In class, we introduced the guilty-by-association approach (i.e., direct neighbor ~ *
scoring, indirect neighbor scoring, label propagation) through gene function
prediction. Can you think of a different biomedical problem where the same
approach can be helpful?

Your answer
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Patients-like-me

Finding patients with similar genetic

and phenotypic features




Diagnostic Odysseys

= Qver 7,000 rare diseases, each affects < 200,000 patients in the US

= Most diseases are phenotypically heterogeneous

= Front-line clinicians might lack disease experience, resulting in expensive clinical workups for patients
across multiple years

= Diagnosis often requires a specialist, sub-specialist, or multi-disciplinary referrals

= On average, the long search for a rare disease diagnosis takes 5 to 7 years, 4 up to 8
physicians, and 2 to 3 misdiagnoses

= Diagnostic delay is so pervasive that it leads to problems for patients:
= Undergoing redundant testing and procedures
= Substantial delay in obtaining disease-appropriate management and inappropriate therapies

= Irreversible disease progression—time window for intervention can be missed leading to disease
progression

Can Al help shorten diagnostic

odysseys for rare disease patients?

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022 65



Al-assisted Medical Diagnosis

= Deep learning models trained (via supervised learning) on large
labeled datasets can achieve near-expert clinical accuracy for

common diseases

= Existing models require labeled datasets with thousands of
diagnosed patients per disease:

= Diabetic retinopathy: deep neural net on 128 K retinal images
= Skin lesions: deep neural net on 129 K clinical images of skin cancers
= Childhood diseases: deep neural net on 1 M pediatric patient visits

The challenge with rare diseases is fundamental — datasets are three orders

of magnitude smaller than in other uses of Al for medical diagnosis
Needed is an entirely new approach to making Al-based rare disease diagnosis

possible. This is for two primary reasons:

* Rare disease diagnosis cannot simply be solved by recruiting/labeling more patients because of
high disease heterogeneity and low disease prevalence

* Rare disease diagnosis cannot be solved by supervised deep learning because the models cannot
extrapolate to novel genetic diseases and atypical disease presentations

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022 66



Graph Learning Approach

Embed Biomedical
Knowledge

Sample biomedical
knowledge nodes

(unrelated to patients)

Embed Rare Disease
Patient Information

Embed knowledge
graph entities

phenotype > B

q ,/OQ € disease

o
gene> BT

Self-supervised learning
via link prediction on the
rest of knowledge graph.

Input candidate c Input a set of
gene or disease patient phenotypes
O ® [
m N
KG | #Types | Count
Nodes 7 105,220
Edges 15 1,678,274
Embed candidate Embed & aggregate
gene or disease patient phenotypes
B € disease x
> ]
. B € phenotype
patienti > B
Bg g
genea> By 2
patient i ; T R E
° disease x
e
.
=i &
L]
genea 4 el .
. -------------- °“ e
[ patient j
patient k e T .
ok E /
E o d-dimensional disease z
gene b

embedding space

Embed patient closer to the correct gene, disease, or patients
with the same gene/disease, and farther from the incorrect
gene, disease, or patients with a different gene/disease.

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Step 1: Incorporate knowledge of

known phenotype, gene, an

disease relationships via GNN

= Knowledge-guided learning is
achieved by self-supervised pre-
training on our precision-medicine
knowledge graph

Step 2: Pre-trained GNN from Step
1 is fine-tuned using synthetic
patients

= Training exclusively on synthetic rare
disease patients without the use of
any real-world labeled cases

= Synthetic patients used for training
are created using an adaptive
simulation approach

= Realistic rare disease patients with
varying numbers of phenotypes and
candidate genes
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Downstream Diagnostic Tasks

= Three diagnostic tasks:

= Causal gene discovery: Given a patient's set of phenotypes and a list of
genes in which the patient has mutations, prioritize genes harboring
mutations that cause the disease (phenotypes)

= Patients-like-me: Given a patient, find other patients with similar genetic
and phenotypic features suitable for clinical follow-up

= Characterization of novel diseases: Given a patient's phenotypes, provide
an interpretable NLP name for the patient's disease based on its similarity
to each disease in the KG

SHEPHERD

o X Molecular
&nﬂ a& Genetic sequencing Experimental or Sanosts
3& & 3‘ & analysis cohort validation
A 4 N 4 ~——y Causal gene Disease
o
| W
-

Phenotypes Variant filtered Expert curated
candidate genes candidate genes

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022 68



Experimental Setup

https://undiagnosed.hms.harvard.edu

SHEPHERD’s model training: L' Undiagnosed

Diseases Network

= 36K synthetic patients —
[ Simulated Patients }
®o_0 0_0o
_ .‘\{ S
 J o o S
V4 . T b - /’:/1 \\\\\\\‘\
SHEPHERD’s model evaluation % R -
§§ ,z’ ,/// IR Y S o
. . i e v N Se B
= UDN patient cohort: 465 rare disease Y O R R
patients with labeled diagnoses, spanning ’-;% ' ' R
. 33 \
299 diseases 85 | N
2 | \
= 79% of genes and 83% of diseases are - . .
represented in only a single patient [ =
u MyGenez patient COhort: 146 ra re Patient dataset ‘ Train cohort Validation cohort Test cohort
disease patients, spanning 55 diseases R I s
MyGene2 — s N =146

Simulation of undiagnosed patients with novel genetic conditions, medRxiv 2022
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Results: Causal Gene Ranking

Performance on expert curated gene list

SHEPHERD
Information Theoretic
Network Science
Shallow Embedding
LR (PCA)

LR (Embed)

Random

Performance by clinical site

Site A (n=47)
Site B (n=41)
Site C (n=37)

Site D (n=41)

Site E (n=37)

Site F (n=44)

Site G (n=40)

T
T
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Rank of Causal Gene
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d
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2019 (n=29) .—-1 ‘ "
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Rank of Causal Gene

Causal gene
discovery

Correlation between network distance & performance
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= = N N
3] o 8] o u1

SHEPHERD's Rank of Causal Gene

o

R2=0.166

For 75 % of patients whose phenotypes are far
: away from their causal genes, SHEPHERD ident
: the correct causal gene among top-5 predictions

. ®
» CO_ OMmHe
0 (Oh ey ..Onﬂllbﬂ@..ﬁd.ﬂ o

15 2.0 2.5 3.0 3.5

Distance Between Phenotypes & Causal Gene

e Performance by presenting symptom

Allergies / Immunology (n=8) D +
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Results: Patients-Like-Me

Q Patient: UDN-P3 Patient Card
Causal gene: RPS6KA3
Disease: Coffin-Lowry syndrome
Patient Gene Disease
Rank

1 GRIA3 X-linked intellectual disability
due to GRIA3 anomalies

2 RPS6KA3 Coffin-Lowry syndrome

3 THOC2 X-linked intellectual disability-
short stature-overweight

syndrome
4 AP1S2 Fried syndrome
5 SMS Syndromic X-linked intellectual

disability Snyder type

Patient: UDN-P4 Patient Card
Causal gene: CAPN1

Disease: autosomal recessive spastic
paraplegia type 76

Patient Gene Disease
Rank

1 REEP1 hereditary spastic paraplegia 31

2 KIFIA hereditary spastic paraplegia 30

3 DDHD1 hereditary spastic paraplegia 28

4 CAPN1 autosomal recessive spastic
paraplegia type 76

5 MTPAP hereditary spastic paraplegia 3A

Patients-like-me

UMAP plot of SHEPHERD’s embedding space of all simulated (circle), UDN (up-facing triangle), and
MyGene?2 (down-facing triangle) patients colored by their Orphanet disease category

o .
N7

Patient: UDN-P5 Patient Card
Causal gene: NLRP12, RAPGEFL1

Disease: Atypical presentation of familial cold
autoinflammatory syndrome

Patient Rank Gene Disease

1 NLRP3 Familial cold-induced
autoinflammatory syndrome 1
2 NLRP12  Familial cold-induced
autoinflammatory syndrome 2
3 FAS autoimmune lymphoproliferative
syndrome type 1
4 IL6ST GP130-deficient hyper-IgE syndrome
5 FLG atopic dermatitis 2
o P o
o
$
Ew o - ’
P
" 00!
e
Patient: UDN-P6 Patient Card
Causal gene: GATAD2B
Disease: GATAD2B-associated syndrome
Patient Rank Gene Disease
1 SMARCC2 Coffin-Siris syndrome 8
2 GATAD2B GATAD2B-associated syndrome
3 NACC1 neurodevelopmental disorder

with epilepsy, cataracts, feeding
difficulties, and delayed brain
myelination syndrome

4 GRIN2B intellectual disability, autosomal
dominant 6
5 KMT2C Kleefstra syndrome
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Results: New Disease Naming

Novel disease
characterization

@Y®
O

& s
a Rank Disease Rank Disease
1 AR limb-girdle muscular 5 . s 10 1 Methylmalonic aciduria &
dystrophy type 2B T 10 T 8 homocystinuria type cblF
GNE myopathy g 8 é . 2 Neonatal
MYH7-related late-onset 9 ¢ @ Bemachramatosls
scapuloperoneal muscular § S 4 3 Homgzygous 11P15-p14
dystrophy E 4 g deletion syndrome
4  Emery-Dreifuss muscular & 12 I I I I I I I - I 4 ALG8-CDG
dystrophy 2, AD 0 0 5 Congenital anemia
2 gss't'r';‘;"gy"tz':e';g“”'a’ Patient: UDN-P2 Patient Card
Causal gene: GLYR1
Disease: Novel syndrome - pancreatic insufficiency & malabsorption
y Top 5 phenotypes: Failure to thrive in infancy, Global developmental
:::i:anltg:nDeN-S'ZCA Patient Card X dslgx,‘Ga‘stroparesis, Abnormality of vision, Duodenal atresia
Disease: AR limb-girdle muscular atrophy type 2D @ ) - N
Top 5 phenotypes: Toe walking, Calf muscle
pseudohypertrophy, Elevated serum creatine
kinase, Proximal muscle weakness, Generalized
muscle weakness A ™
Patient: UDN-P9 Patient Card
Causal gene: RPL13
Disease: Spondyloepimetaphyseal dysplasia, Isidor-Toutain type
Top 5 phenotypes: Spondylometaphyseal dysplasia, Genu
SRR patient: UDN-P8 Patient Card varum, Short femoral neck, Flat glenoid fossa, Platyspondyly
. " Causal gene: ATP5PO
1 Combined oxidative s
phosphoryiation Disease: ATP5PO-related Leigh syndrome Rank Disease
deficiency 39 Top 5 phenotypes: Profound global developmental 1 Multiole epiohvseal
% Ao e . ultiple epiphysea
S delay, cerebral hypomyelination, limb hypertonia, :
2 HypomyeNinating hypoplasia of the corpus callosum, infantile spasms dySplesiatypei
leukodystropy-20 £ 2 Progressive
3 Pyruvate dehydrogenase 20 pseudorheumatoid
E3-binding protein 2 215 arthropathy of childhood
deficiency & 15 & 3 Multiple epiphyseal
4 Intellectual disability- £ £ dysplasia type 5
epilepsy-extrapyramidal V.10 v 10 4  Metaphyseal
syndrome § § chondrodysplasia, Spahr
5 Combined oxidative g5 I g 5 type
phosphorylation defect I I I I I I I 5  Multiple epiphyseal
type 27 0 I i I . I 0 ll I I I I dysplasia
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Take-away Messages

= SHEPHERD overcomes limitations of standard machine learning:
= Model inputs as KG subgraphs (i.e., clinic-genetic subgraphs of patients)
= Use self-supervised pre-training on biomedical knowledge
= Train the model on a large cohort of synthetic patients

= SHEPHERD generalizes to novel phenotypes, genes, and diseases:
= Performs well on patients whose subgraphs are of varying size
= Performs well on diagnosing patients with novel diseases

= |mplications:
= Implications for generalist models applicable across diagnostic process
= New opportunities to shorten the diagnostic odyssey for rare disease
= Implications for using deep learning on medical datasets with very few labels

First deep learning approach for individualized diagnosis
of rare genetic diseases

Graph learning approach is not only helpful but necessary
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