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Lecture 6: Foundations of geometric deep learning, graph representation learning, link 
prediction, node classification, graph clustering, graph classification, semi-supervised 

learning, label propagation, network medicine, disease modules and endotypes



Responses to L5 Quick Check
Describe biomedical AI applications

using the framework for fair AI

2



Responses to L5 Quick Check
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Describe biomedical AI applications
using the framework for fair AI



Responses to L5 Quick Check
Examples that require implementing individual fairness
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Responses to L5 Quick Check
Examples that require implementing individual fairness
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Responses to L5 Quick Check
Examples that require implementing group fairness
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Responses to L5 Quick Check
Examples that require implementing group fairness
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Outline for today’s class

§ Foundations of network medicine
§ Foundations of geometric deep learning

§ Node classification, link prediction, graph clustering, 
graph classification 

§ Semi-supervised learning and label diffusion
§ Genes-like-me: What does my gene do? 
§ Patients-like-me: Finding patients with similar 

genetic and phenotypic features
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Foundations of network 
medicine

What are networks/graphs? 
Predictive modeling using graphs



Why networks?
Networks are a general 
language for describing 
and modeling complex 

systems
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Network!
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Why Networks? Why Now?

Image from: Goh et al. 2007. The human disease network. PNAS.
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Fig. 2. The HDN and the DGN. (a) In the HDN, each node corresponds to a distinct disorder, colored based on the disorder class to which it belongs, the name
of the 22 disorder classes being shown on the right. A link between disorders in the same disorder class is colored with the corresponding dimmer color and links
connecting different disorder classes are gray. The size of each node is proportional to the number of genes participating in the corresponding disorder (see key),
and the link thickness is proportional to the number of genes shared by the disorders it connects. We indicate the name of disorders with !10 associated genes,
as well as those mentioned in the text. For a complete set of names, see SI Fig. 13. (b) In the DGN, each node is a gene, with two genes being connected if they
are implicated in the same disorder. The size of each node is proportional to the number of disorders in which the gene is implicated (see key). Nodes are light
gray if the corresponding genes are associated with more than one disorder class. Genes associated with more than five disorders, and those mentioned in the
text, are indicated with the gene symbol. Only nodes with at least one link are shown.

Goh et al. PNAS ! May 22, 2007 ! vol. 104 ! no. 21 ! 8687
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§ Question: How are diseases and disease 
genes related to each other?

§ Findings: Disease genes likely to interact and 
have similar expression
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Why Networks? Why Now?

Image from: Ma et al. 2018. Using deep learning to model the hierarchical structure 
and function of a cell. Nature Methods.

§ Question: How to simulate an eukaryotic cell?
§ Findings: Simulations reveal molecular 

mechanisms of cell growth, drug resistance 
and synthetic life
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https://www.nature.com/articles/nmeth.4627
https://www.nature.com/articles/nmeth.4627


Why Networks? Why Now?

Image from: Wang et al. 2014. Similarity network fusion for aggregating data 
types on a genomic scale. Nature Methods.

§ Question: How to model cancer heterogeneity?
§ Findings: New cancer subtypes with distinct 

patient survival
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https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810


Why Networks? Why Now?

Image from: Pilosof et al. 2017. The multilayer nature of ecological networks. 
Nature Ecology and Evolution.

§ Question: How to study ecological systems?
§ Findings: Pollinators interact with flowers in 

one season but not in another, and the same 
flower species interact with both pollinators 
and herbivores

17

https://www.nature.com/articles/s41559-017-0101


Why Networks? Why Now?

Image from: Nilforoshan et al. 2023. Human mobility networks reveal increased 
segregation in large cities. Nature.

§ Question: Do large, dense, and cosmopolitan 
areas support socioeconomic mixing and 
exposure among diverse individuals?

§ Findings: Contrary to expectations, residents of 
large cosmopolitan areas have less exposure to a 
socioeconomically diverse range of individuals
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https://www.nature.com/articles/s41586-023-06757-3
https://www.nature.com/articles/s41586-023-06757-3


Why Networks? Why Now?

Image from: Richiardi et al. 2015. Correlated gene expression supports 
synchronous activity in brain networks. Science.
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https://science.sciencemag.org/content/348/6240/1241/
http://science.sciencemag.org/content/357/6353/802
http://science.sciencemag.org/content/357/6353/802


Hierarchies of cell systemsPatient networks

Cell-cell similarity 
networks

Biomedical knowledge
graphs

Disease pathways

Gene interaction
networks

Many Data are Networks

Evolution of Resilience in Protein Interactomes Across the Tree of Life, PNAS, 2019; MARS: Discovering Novel Cell Types across 
Heterogeneous Single-Cell Experiments, Nat Methods, 2020; Leveraging the Cell Ontology to Classify Unseen Cell Types, Nat 

Commun, 2021; Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nat Commun, 2021; Network 
Medicine Framework for Identifying Drug Repurposing Opportunities for COVID-19, PNAS, 2021; Population-Scale Patient Safety Data 

Reveal Inequalities in Adverse Events Before and During COVID-19 Pandemic, Nat Comput Science, 2021 20



Predictive and Generative Modeling

§ Predict a type of a given node
§ Node classification

§ Predict whether two nodes are linked
§ Link prediction

§ Identify densely linked clusters of nodes
§ Community detection, module detection

§ How similar are two nodes/networks 
§ Network similarity

§ Design graphs with desirable properties
§ Generative modeling and molecular design

21

This topic will be covered in M6: Generative AI
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Machine Learning

Node Classification

22



Node Classification: Example

Classifying the 
function of proteins 
in the interactome!

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel 
protein–protein interactions. Nature.
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https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience


Machine 
Learning
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Link Prediction
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Predicting which 
diseases a new 
molecule might 

treat!

Drugs Diseases

“Treats” relationship

?

?

? Unknown drug-disease relationship

Link Prediction: Example

Image from: Zitnik et al. 2020. Network-based discovery of drug indications.
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Community Detection

? ?

?
?

?

Machine 
Learning?

? ?

?

26



Image from: Menche et al. 2015. Uncovering disease-disease relationships 
through the incomplete interactome. Science.

Identifying 
disease proteins 

in the 
interactome!

Community Detection: Example
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mailto:http://science.sciencemag.org/content/347/6224/1257601
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Graph Classification
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Graph Classification: Example
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Designing new 
small molecule 
compounds to 
treat a disease!

Image from: Jin et al. 2018. Junction Tree Variational Autoencoder for Molecular Graph Generation. ICML.

http://proceedings.mlr.press/v80/jin18a/jin18a.pdf


Generative Modeling and Design
Geometric deep learning underlies several 

breakthroughs, including AlphaFold for 
protein structure prediction 

30

Geometric deep learning is receiving increasing interest in 
biology, chemistry, and medical sciences as a new tool for 

molecular design and optimization
Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021

Geometric deep
learning model



§ What drives accurate protein structure 
prediction?
§ Novel neural architecture based on the evolutionary, 

physical and geometric constraints of protein 
structures

§ Input:
§ Primary AA sequence of a given protein
§ Aligned sequences of homologues

§ Output:
§ Predicted 3D coordinates of all heavy             

atoms in a protein

AlphaFold Network

31Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021



What does my gene do? Give me 
more genes like these

Genes-like-me



Recommender Systems
Consider user x: Find set S of other users whose 
ratings are “similar” to x’s ratings; Estimate x’s 
preference based on ratings in S 
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Recommender Systems in Biology

“Give me more 
proteins like

this one”

“Give me more 
movies like
this one”

34



Biological Rationales
§ Local hypothesis: Proteins involved in the 

same disease have an increased tendency to 
interact with each other

§ Disease module hypothesis: Cellular 
components associated with disease tend to 
cluster in the same network neighborhood

Barabasi et al., Network medicine: a network-based approach to human disease, Nature Reviews Genetics 201135



§ “What does my gene do?”
§ Goals: Determine a gene’s function based on who it 

interacts with – “guilty-by-association” principle

§ “Give me more genes like these”
§ Goals: 

§ Find more multiple sclerosis genes

§ Find new ciliary genes

§ Find members of a proteasome complex, etc.

Mostafavi, Morris, Proteomics 2012

Recommender Systems in Biology
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Networks

Query gene

TP53

Find set N of other genes 
whose interactions are 

“similar” to TP53’s 
interactions

Prediction using guilty-by-association principle: Estimate TP53’s 
function in the cell based on functions of genes in N 

“What Does My Gene Do?”

TP53
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Networks

Query genes

Gene recommender 
system

“Give Me More Genes Like These”
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§ Predict gene functions using guilty-by-association:

§ What other genes participate in “protein 
folding”?

MCA1

CDC48

CPR3

TDH2

Finding “Guilty Associates”

Red: Genes involved in protein folding
White: Genes with unknown functionProtein folding
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§ Let 𝑾 be a 𝑛×𝑛 (weighted) adjacency matrix 
over 𝑛 genes 

§ Let 𝒚 = −1, 0, 1 ! be a vector of labels:
§  1: positive gene, known to be involved in a gene 

function/biological process

§ -1: negative gene

§  0: unlabeled gene

§ Goal: Predict which unlabeled genes are likely 
positive

“Guilty Associates” Problem

40



§ Approach: Learn a vector of discriminant 
scores 𝒇, where 𝒇"  is likelihood that node 𝑖 is 
positive

§ Example:
𝒚 = [1, 1, 1, 1, 0,0,0,0,0,0,0,0,0,0]

𝒇 =	?

𝑾 = (weighted) adjacency matrix

“Guilty Associates” Approach

GD

GB
GA

MCA1

CDC48
CPR3

TDH2

GCGE

GF
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Approach 1: Neighbor Scoring
§ Node score 𝒇"  is weighted sum of the labels 

of 𝑖’s direct neighbors:

§ Example:

Red: Positive nodes
White: 𝒇! = 0

𝒇$ =#
%&'

(

𝑾$%𝒚%

GD

GB
GA

MCA1

CDC48
CPR3

TDH2

GCGE

GF

𝒇"# = 𝑾"#,%&#' * 𝒚%&#'
𝒇"( = 𝑾"(,&)&*+ * 𝒚&)&*+ +𝑾"(,,)-. * 𝒚&)&*+
𝒇"& = 𝑾"&,,)-. * 𝒚,)-.
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Approach 1: Neighbor Scoring
§ Node score 𝒇"  is weighted sum of the labels 

of 𝑖’s direct neighbors:

§ Example:
𝒇"# = 𝑾"#,%&#' * 𝒚%&#'
𝒇"( = 𝑾"(,&)&*+ * 𝒚&)&*+ +𝑾"(,,)-. * 𝒚&)&*+
𝒇"& = 𝑾"&,,)-. * 𝒚,)-.

𝒇$ =#
%&'

(

𝑾$%𝒚%

§ One half of GC’s neighbors are positives
§ One third of GA’s neighbors are positives
§ But: 𝒇!" = 𝒇!# (if 𝑾 is binary)

GD

GB
GA

MCA1

CDC48
CPR3

TDH2

GCGE

GF
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Weighted Neighbors
§ Normalize matrix 𝑾	by node degrees:

§ Example:

𝒇$ =
1
𝒅$
&
%&'

(

𝑾$%𝒚% , 𝒅𝒊 =&
%
𝑾$%

𝒇! = 𝑫/'𝑾𝒚
𝑫 = 𝑑𝑖𝑎𝑔(𝒅)

Matrix notation:

𝒇"# =
1
3
𝑾"#,%&#' * 𝒚%&#'	

𝒇"( =
1
3
(𝑾"(,&)&*+ * 𝒚&)&*+ +𝑾"(,,)-. * 𝒚,)-.)

𝒇"& =
1
2
𝑾"&,,)-. * 𝒚,)-.GD

GB
GA

MCA1

CDC48
CPR3

TDH2

GCGE

GF
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§ Matrix 𝑷 = 𝑫#$𝑾 is known as Markov 
transition matrix
§ 𝑫	is a diagonal matrix with diagonal elements 𝒅$
§ 𝑷 is a row stochastic matrix, ∑%𝑷$% = 1

§ Row 𝑖 is a probability distribution over random 
walks starting at node 𝑖

§ 𝑷"%  is probability of a random walker 
following a link from node 𝒊 to node 𝒋

𝑖 𝑗
𝑷$%

Random Walks

45



[𝑷
!
]$% 	= /

*&'

(

𝑷$*𝑷*% 𝑷$*
𝑷*%

𝑖

𝑗

𝑘

Indirect Neighbor Scoring
¡ Use random walks to include indirect 

neighbors in computations

¡ Idea: Extend direct neighbor scoring formula 
𝒇 = 	𝑫#$𝑾𝒚 = 𝑷𝒚 to include 2-hop 
neighbors

¡ Probability of a random walk of length two 
between node 𝑖 and node 𝑗 is:
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Approach 2: 2-Hop Neighbors
§ Consider 2-hop neighbors when calculating 

node score 𝒇"  as:

𝑷$*
𝑷*%

𝑖

𝑗

𝑘

𝒇$ =	#
%&'

(

𝑷$%𝒚% +#
%&'

(

[𝑷9]$% 𝒚%

Direct 
neighbors

2-hop
neighbors
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Example: 2-Hop Neighbors

𝒇! =	$
"#$

%

𝑷!"𝒚" +$
"#$

%

[𝑷&]!" 𝒚"

Direct 
neighbors

2-hop
neighbors

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GC
GE

GF

Red: Positive genes
White: 𝒇! = 0

Direct neighbor of a positive gene
2-hop neighbor of a positive gene

𝒇"0 = 𝑷"0,%&#'. * 𝒚%&#' +𝑷"0,,)-.. * 𝒚,)-.
+ 𝑷"0,&)&*+. * 𝒚&)&*+

𝑷 = 𝑫'$𝑾 

𝒇"# = 𝑷"#,%&#' * 𝒚%&#'

[𝑷&]!"> 0 if there is a walk of length 2 between 𝑖 and	𝑗
48



§ This approach can be extended to include nodes at 
distance 𝒓 (usually 𝑟 < 4):
§ [𝑷𝒓]"#	= Probability of a walk from 𝑖 to 𝑗 in 𝒓 steps

§ Increasing 𝑟 beyond 2 sometimes results in 
degradation of prediction performance 
§ [Chua et al., Bioinformatics 2006; Myers et al., Genome 

Biology 2005, Cowen et al., Nature Reviews 2017]

§ Next: Use random walks propagate labels 
throughput the network 

Beyond 2-Hop Neighbors

49



§ Label propagation generalizes neighborhood-
based approaches by considering random walks 
of all possible lengths

§ The algorithm can be derived as:
1. Iterative diffusion process [Zhou et al., NIPS 2004]

2. Solution to a specific convex optimization task 
[Zhou et al., NIPS 2004, Zhu et al., ICML 2003]

3. Maximum a posteriori (MAP) estimation in Gaussian 
Markov Random Fields [Rue and Held, Chapman & 
Hall, 2005]

§ Next: Derivation based on diffusion

Beyond 2-Hops: Label Propagation

50



Intuition: Diffuse labels through edges of the network

Red: positive nodes
White: unlabeled nodes

Score

high

low

Label Propagation: Intuition

Red: positive nodes
Pink: 𝒇! > 0

White: 𝒇! = 0
51



§ Diffusion is defined as an iterative process [Zhou et 
al., NIPS 2004]

§ Diffuse labels through network edges:
§ Start with initial label information, 𝒇"

(%) = 𝒚𝒊
§ In each iteration, node 𝑖 receives label information 

from its neighbors and also retains some of its initial 
label

§ 𝜆 specifies relative amount of label information from 𝑖’s 
neighbors and its initial label

§ Finally: Label for each unlabeled node is set to be 
the class (-1 or 1) of which it has received most 
information

Diffusion Process: Idea
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§ Diffusion process is defined as iteration:

§ At iteration 𝑟 = 0, define 𝒇!
(#) ← 𝒚𝒊

§ At iteration 𝑟 + 1, the score for node 𝑖 is 
weighted average of the scores for 𝑖’s neighbors 
in iteration 𝑟, and 𝑖’s initial label:

𝒇$
(;<') ← 1 − 𝜆 𝒚$ + 𝜆#

%&'

(

𝑾$%𝒇%
(;)

0 < 𝜆 < 1 is model parameter

Diffusion Process: Formally

53
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Score
high

low

𝒇(.) = 𝜆𝑾𝒇(') + 1− 𝜆 𝒚

𝒇(') = 𝜆𝑾𝒚+ 1 − 𝜆 𝒚

All nodes within 2 hops are 
assigned a non-zero value

Diffusion Process: Example

𝒇(3) = 𝒚

Red: positive nodes
Pink: 𝒇! > 0
White: 𝒇! = 0

Question: How many iterations?
54
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§ If all eigenvalues of 𝑾 are in range −1, 1 ,	
then the sequence 𝒇(') converges to:

§ [𝑾;]$%> 0 if a walk of length 𝑟 between 𝑖 and	𝑗
§ Weight 𝜆;  decreases with increasing distance

𝒇 = (1 − 𝜆)/
+&,

-

𝜆𝑾 +𝒚

Convergence Condition

¡ ⇒ Discriminant scores 𝒇 are weighted sum of 
walks of all lengths between nodes

¡ ⇒ High value 𝒇!: 𝑖 is connected to positively 
labeled nodes with many short walks

Zhou et al., NIPS 2004

55
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Score
high

low

𝒇(.) = 𝜆𝑾𝒇(') + 1− 𝜆 𝒚

𝒇(') = 𝜆𝑾𝒚+ 1 − 𝜆 𝒚

Diffusion Process: Example

𝒇(3) = 𝒚

𝒇 = (1 − 𝜆)?
453

6

𝜆𝑾 4𝒚

Red: positive nodes
Pink: 𝒇! > 0
White: 𝒇! = 0

All nodes within 2 hops are 
assigned a non-zero value

56
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§ Problem: The infinite sum converges only if all 
eigenvalues of 𝑾 are in −1, 1 , i.e., 𝜌 𝑾 ≤ 1

§ Solution: Normalize 𝑾 before diffusion:
§ Symmetric normalization:

§ Signal is spread in a breadth-first search manner

§ Asymmetric normalization:

𝑺 = 	𝑫@'/9𝑾𝑫@'/9

𝑷 = 	𝑫@'𝑾

Does the Process Always Converge?

𝑫 = 𝑑𝑖𝑎𝑔(𝒅)

57
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§ If 𝜌 𝑾 ≤ 1, use Taylor expansion to compute 
exact solution for label propagation:

𝒇 = (1 − 𝜆)(𝑰 − 𝜆𝑺)@'𝒚

(𝐼 − 𝑨)"#=0
$%&

'
𝑨$

Taylor expansion, sum 
of geometric series:

Exact Solution at Convergence

𝒇 = (1 − 𝜆)#
;&B

C

𝜆𝑺 ;𝒚

⇒

58
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§ Multi-label node classification: Node (gene) has 0+ 
labels (functions):

1. For each label learn a separate vector 𝒇:
§ High value of 𝒇$: 𝑖 is connected to many labeled 

nodes through many short walks → 𝒊 likely has 
the label 

2. Train: Observe a fraction of nodes and their labels

3. Test: Predict functions for the remaining nodes

§ Select optimal value for 𝜆 using cross-validation

Function Prediction: Setup
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Label propagation outperforms neighborhood scoring 
methods

[Mostafavi et al., Genome Biology 2008]

Function Prediction: Results
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[Cowen et al., Nature Reviews 2017]

Function Prediction: Results

Network propagation variants outperform their frequency-based counterparts (compare the blue curve to the green 
curve, and the red curve to the black curve)
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MRE11A
RAD51
MLH1
MSH2
DMC1
RAD51AP1
RAD50
MSH6
XRCC3
PCNA
XRCC2

Query list:

GeneMANIA Tool (genemania.org)
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https://genemania.org/


Quick Check
https://forms.gle/mHGeVkk7yZu2oUhr7
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https://forms.gle/mHGeVkk7yZu2oUhr7


Finding patients with similar genetic 
and phenotypic features

Patients-like-me



Diagnostic Odysseys
§ Over 7,000 rare diseases, each affects < 200,000 patients in the US

§ Most diseases are phenotypically heterogeneous
§ Front-line clinicians might lack disease experience, resulting in expensive clinical workups for patients 

across multiple years
§ Diagnosis often requires a specialist, sub-specialist, or multi-disciplinary referrals

§ On average, the long search for a rare disease diagnosis takes 5 to 7 years, 4 up to 8 
physicians, and 2 to 3 misdiagnoses

§ Diagnostic delay is so pervasive that it leads to problems for patients:
§ Undergoing redundant testing and procedures
§ Substantial delay in obtaining disease-appropriate management and inappropriate therapies
§ Irreversible disease progression—time window for intervention can be missed leading to disease 

progression

Can AI help shorten diagnostic 
odysseys for rare disease patients?

65Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022



AI-assisted Medical Diagnosis

§ Deep learning models trained (via supervised learning) on large 
labeled datasets can achieve near-expert clinical accuracy for 
common diseases

§ Existing models require labeled datasets with thousands of 
diagnosed patients per disease:
§ Diabetic retinopathy: deep neural net on 128 K retinal images
§ Skin lesions: deep neural net on 129 K clinical images of skin cancers
§ Childhood diseases: deep neural net on 1 M pediatric patient visits

The challenge with rare diseases is fundamental — datasets are three orders 
of magnitude smaller than in other uses of AI for medical diagnosis 
Needed is an entirely new approach to making AI-based rare disease diagnosis 
possible. This is for two primary reasons:
• Rare disease diagnosis cannot simply be solved by recruiting/labeling more patients because of 

high disease heterogeneity and low disease prevalence 
• Rare disease diagnosis cannot be solved by supervised deep learning because the models cannot 

extrapolate to novel genetic diseases and atypical disease presentations

66Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022



§ Step 1: Incorporate knowledge of 
known phenotype, gene, and 
disease relationships via GNN
§ Knowledge-guided learning is 

achieved by self-supervised pre-
training on our precision-medicine 
knowledge graph

§ Step 2: Pre-trained GNN from Step 
1 is fine-tuned using synthetic 
patients 
§ Training exclusively on synthetic rare 

disease patients without the use of 
any real-world labeled cases

§ Synthetic patients used for training 
are created using an adaptive 
simulation approach 

§ Realistic rare disease patients with 
varying numbers of phenotypes and 
candidate genes 

1 2

67Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Graph Learning Approach



Downstream Diagnostic Tasks

§ Three diagnostic tasks:
§ Causal gene discovery: Given a patient's set of phenotypes and a list of 

genes in which the patient has mutations, prioritize genes harboring 
mutations that cause the disease (phenotypes)

§ Patients-like-me: Given a patient, find other patients with similar genetic 
and phenotypic features suitable for clinical follow-up

§ Characterization of novel diseases: Given a patient's phenotypes, provide 
an interpretable NLP name for the patient's disease based on its similarity 
to each disease in the KG

68Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022



Experimental Setup

SHEPHERD’s model training: 
§ 36K synthetic patients

SHEPHERD’s model evaluation
§ UDN patient cohort: 465 rare disease 

patients with labeled diagnoses, spanning 
299 diseases
§ 79% of genes and 83% of diseases are 

represented in only a single patient

§ MyGene2 patient cohort: 146 rare 
disease patients, spanning 55 diseases
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https://undiagnosed.hms.harvard.edu



Results: Causal Gene Ranking
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Results: Patients-Like-Me
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UMAP plot of SHEPHERD’s embedding space of all simulated (circle), UDN (up-facing triangle), and 
MyGene2 (down-facing triangle) patients colored by their Orphanet disease category 
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Results: New Disease Naming
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Take-away Messages

§ SHEPHERD overcomes limitations of standard machine learning:
§ Model inputs as KG subgraphs (i.e., clinic-genetic subgraphs of patients)
§ Use self-supervised pre-training on biomedical knowledge
§ Train the model on a large cohort of synthetic patients

§ SHEPHERD generalizes to novel phenotypes, genes, and diseases:
§ Performs well on patients whose subgraphs are of varying size
§ Performs well on diagnosing patients with novel diseases

§ Implications: 
§ Implications for generalist models applicable across diagnostic process
§ New opportunities to shorten the diagnostic odyssey for rare disease
§ Implications for using deep learning on medical datasets with very few labels 
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First deep learning approach for individualized diagnosis 
of rare genetic diseases

Graph learning approach is not only helpful but necessary


