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Responses to L4 Quick Check

Describe a scenario in which a predictive model is
created using a biomedical dataset and the LIME
explainability method is used to analyze its behavior.
What can be expected from the LIME explanations?

We could develop a predictive model on a dataset of echocardiogram results to predict risk of future heart
failure. The dataset would include numeric features such as myocardial wall thickness, ejection fraction,
chamber size, etc. After training the prediction model, we could then use LIME by sampling points around a given
example of interest (perturbing the sample data point to create new artificial samples) and seeing how
predictions change; then generating a linear model that is more easily explainable on a local basis. This resulting
model would give us weights (and signs of weights) of each feature to understand how they contribute to
predictions at a local level for a given sample.

Scenario: predictive model for progression, regression or stability of lung disease using a biomedical dataset
including multiple sociodemographic and clinical data. LIME is used post-hoc to explain the model's predictions
of the 3 categories and the expected output is as such: a patient is predicted to have progression, LIME
explainability model would produce a linear model explaining which features about the patient are most relevant
to predict progression. For example f(x) = age+duration of underlying disease+medication response currently.
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Responses to L4 Quick Check

Describe a scenario in which a predictive model is created
using a biomedical dataset and the Integrated Gradients

explainability method is used to analyze its behavior. What can
be expected from the |G explanations?

The Integrated Gradients explainability method is suitable for the images deep learning networks. And a
scenario that we can diagnose the disease from chest X-rays is that the research team at the medical imaging
center developing the deep learning model to diagnose various conditions from chest X-rays and use the pre-
trained inception neural network, fine-tuned on the large dataset of annotated chest X-rays. We can expect from
the integrated gradients is that the IG will provide the visual explanation by highlighting the regions in the chest
X-ray images that are important for the model's prediction, for example, IG may highlight the areas that show
lung consolidation

Scenario: predictive model for pulmonary fibrosis presence on a future CT (in one year) based on baseline CT
using only the baseline CT image and no other clinical data [I think this is going to be very hard but, imagining
something that could be very helpful]. IG is used post-hoc to explain which areas/pixels of the image the model
is prioritizing to predict PF in one year. The IG explainability model would produce the aggregated overlay image
showing highlighted parts of the CT scan the model is prioritizing on the baseline image to predict the 1 year
image as fibrotic.
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Adopting Al In high-stakes areas

Healthcare

enomic medicine
Public health policy
Child welfare

Criminal risk assessment
Surveillance

Financial lending

Hiring
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Fig. 1. Number of chronic illnesses versus algorithm-predicted risk,

by race. (A) Mean number of chronic conditions by race, plotted against
algorithm risk score. (B) Fraction of Black patients at or above a given risk
score for the original algorithm (“original”) and for a simulated scenario

that removes algorithmic bias (“simulated”: at each threshold of risk, defined
at a given percentile on the x axis, healthier Whites above the threshold are
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replaced with less healthy Blacks below the threshold, until the marginal patient
is equally healthy). The x symbols show risk percentiles by race; circles
show risk deciles with 95% confidence intervals clustered by patient. The
dashed vertical lines show the auto-identification threshold (the black

line, which denotes the 97th percentile) and the screening threshold (the gray
line, which denotes the 55th percentile).

Obermeyer et al. Science 2019




Three problematic examples

1. High-risk Healthcare Management

=  Commercial prediction models are used by large health systems
to identify and help patients with complex health needs.

= These models can exhibit significant bias: At a given risk score,
black patients are considerably sicker than white patients

= The bias arises because the algorithm predicts health care costs
rather than illness

2. Criminal Risk Assessment Tools

= Defendants are assigned scores that predict the risk of re-
committing crimes

= These scores inform decisions about bail, sentencing, and parole.
= Some tools have been biased against black defendants

3. Face Recognition Systems
= Surveillance and self-driving cars

= Systems can perform poorly for populations that are not well
represented in training dataset
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" The COMPAS debate

https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing

Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPu

Machine Bias

There's software used across the country to predict future criminals. And it's
biased against blacks.

by Julia Angwin, Jeff Larsan, Surya Mattu.and Lauren Kirchner, ProPublica 5



COMPAS

Correctional Offender Management Profiling for
Alternative Sanctions

Used in prisons across country: AZ, CO, DL, KY,
LA, OK, VA, WA, WI

“Evaluation of a defendant’s rehabilitation needs”
Recidivism = likelihood of criminal to reoffend



COMPAS (continued)

“Our analysis of Northpointe’s tool, called COMPAS,
found that black defendants were far more likely
than white defendants to be incorrectly judged to
be at a higher risk of recidivism, while white
defendants were more likely than black
defendants to be incorrectly flagged as low risk.”




What are protected classes”

= Protected classes in the US:
= Race
= Sex
= Religion
= National origin
= Citizenship
= Pregnancy
= Disability status
= (Genetic information

= Regulated domains in the US:
= Credit (Equal Credit Opportunity Act)
= Education (Civil Rights Act of 1964; Education Amend. of 1972)
= Employment (Civil Rights Act of 1964)
= Housing (Fair Housing Act)
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Fairness in ML

It does not necessarily mean being malicious: Bias can occur
even when everyone, from data generators to engineers to
clinical staff, has the best intentions

It is not one and done: Just because an algorithm has no bias
now does not mean it has no potential bias later

It is not new: Researchers have raised concerns about it over
the last 50 years

It is defined in many ways, for example, disparate treatment or
impact of algorithm

It can be a culmination of a flawed system

= Biases in data collection processes
= Biases in algorithmic design
= Bias in model implementation/deployment

It is the vigilance of how technology can amplify/create bias
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Qutline for today’s class

1. Quantitative definitions of fairness in Al
2. Framework for fair Al @)
3. Algorithmic fairness criteria

» |ndividual fairness

= Group fairness

4. Auditing Al systems
=  Auditing input data
= Auditing ML model



Part |

Quantitative definitions
of fairness in Al




How to define fairness in ML?

= Fairness through unawareness
= Group fairness

= Calibration

= Error rate balance

* Representational fairness

= Counterfactual fairness

" |ndividual fairness

lIrene Chen



Fairness through unawareness

= |dea: Don’t record protected
attributes, and don’t use them in
your algorithm
= Predict risk Y from features X and
group S using P(Y = Y|X) instead of
P(Y =Y|X,S)
* Pros: Guaranteed to not be making
a judgement on protected attribute

= Cons: Other proxies may still be
iIncluded in a “race-blind” setting,
e.g. zip code or conditions

lIrene Chen



lIrene Chen

Group fairness

|dea: Require prediction rate be the same across
protected groups
= E.g9. “20% of the resources should go to the group that has
20% of population”
Predict risk Y from features X and group S such that
P(Y=1S=1)=P(Y =1|S=0)
Pros: Literally treats each race equally

cons:

= Too strong: Groups might have different base rates. Then,
even a perfect classifier wouldn’t qualify as “fair”

= Too weak: Doesn’t control error rate. Could be perfectly
biased (correct for S = 0 and wrong for § = 1) and still
satisfy




lIrene Chen

Calibration

Calibration assessment

1.00 +

|dea: Same positive
predictive value across
groups

Predict Y from features X
and group S with score R:

PY=1R=rA=1) =

o o
o ~
=} o

Observed probability of recidivism
o
o
[4,]

-
-
0.0
' ' '

P(Y=1|R =1,A = 0)
Pros: “Equally right across
groups”

Cons: Not compatible with
error rate balance (next slide)
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Error rate balance

= |dea: Equal false positive

Error balance assessment: FPR

rates (FPR) across groups
P(Y =1Y =0,S=1)

=PP=1Y =0,5=0) ¢
= Pros: “Equally wrong across e« ii
groups”
= Cons: Incompatible with ‘lLLLh

1.00 -

positive rate
o -
3

False

calibration and false R NE T A
negative rates (FNR), could
dilute with easy cases

lIrene Chen



Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg * Sendhil Mullainathan Manish Raghavan *

Abstract

Recent discussion in the public sphere about algorithmic classification has involved tension between
competing notions of what it means for a probabilistic classification to be fair to different groups. We
formalize three fairness conditions that lie at the heart of these debates, and we prove that except in highly
constrained special cases, there is no method that can satisfy these three conditions simultancously.
Morcover, even satisfying all three conditions approximately requires that the data lie in an approximate
version of one of the constrained special cases identified by our theorem. These results suggest some
of the ways in which key notions of faimess are incompatible with each other, and hence provide a
framework for thinking about the trade-offs between them.

I EEEEEEEEEEEEE———
framework for thinking about the trade-offs between them.
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Representational fairness

* |dea: Transform input feature vectors in “fair
representations Z to minimize group information

* Pros: Reduce information given to model while still
keeping important information

= Cons: Trade-off between accuracy and fairness

= «(2)

WA
max /(X; Z) U

min /(A; Z)

lIrene Chen



Counterfactual fairness

= |dea: Group 4 should not
cause prediction Y

= Pros: Can model explicit @P C‘?
dependencies between @
features

= Cons: P(Vaca (U)=y| X =2,4=a)

= Dependency graphs may _ PPuca(U)=y|X =2,A=a)
not represent real world

= |nference assumes
observed confounders

lIrene Chen



Individual fairness

= |dea: Similar individuals should be treated similarly
= Pros: Can model heterogeneity within each group

= Cons: Notion of “similar” is hard to define
mathematically, especially in high dimensions

M(x)



How to define “fairness” in ML

" | EESH”Sb'gl'b'“a”a'e“ess Not useful

= Group fairness
= Calibration Established

strategies
= Error rate balance
= Representational fairness
= Counterfactual fairness Ongoing and

o , cutting-edge research
» |ndividual fairness



One fairness definition or one
framework

21 Fairness Definitions and Their Woévdy has found o. definition which is
Politics. Arvind Narayanan. widely agreed as a go0d definition of
ACM Conference on Fairness, fairnecs in the came way we have for, cay,

Accountability, and Transparency the cecurity of a random number

Tutorial (2018) ”

generator.
S. Mitchell, E. Potash, and S. Barocas (2018) There are a number of definitione and
P. Gajane and M. Pechenizkiy (2018) research groups are not on the came
S. Verma and J. Rubin (2018) page when it comes to the definition of
Differences/connections between fairnecs.”
fairness definitions are difficult to “The search for one frue definition
grasp. i¢ not a fruitful direction, ac

technical considerations cannot
We lack common language/framework.

adjudicate moral debatec. 7

Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al 23



Qutline for today’s class

V( Quantitative definitions of fairness in Al
2. Framework for fair Al @.

3. Algorithmic fairness criteria
= |ndividual fairness
= Group fairness
4. Auditing Al systems
=  Auditing input data
= Auditing ML model




Part |i

Framework for fair Al



Data User

Computes ML model
given sanitized data

Data Regulator
i AAA x;x
Determines fairness .
criteria, determines data

source(s), audits results

X

Data Producer

Computes the fair
representation given
data regulator criteria

AUTHORITY

Sampling Embedding
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Framework for fair Al/ML

= Data regulator: determines fairness measures, audits results
= Data producer: creates “fair” feature vectors (i.e., “fair” representations)
= Data user: agnostically trains an ML model using “fair” feature vectors

Data Regulator

- %
Sensitive {Group }

attribute S | | stat. v(f,Y|S)

Data Producer

-~

4 N\
Distance
p(Xi, X;) Fairness
- . Criteria /
S~

[InputX } {OutputY }

Data )

{g:X,Yr—)ZJ

Data User

~

Representation

Learning /
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Roles of different parties

= Data regulator determines which fairness criteria to

use, and (optionally) audits the results
= \When training:

= |nput: interaction with users/experts/judges/policy to

determine fairness criteria
= Qutput: fairness criteria

= When auditing the ML model:

= |nput (for auditing the data producer):
= “Fair’ representations

= |nput (for auditing the data user):
= Data and model predictions

= Qutput:
= Are fairness criteria satisfied?
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Data
Regulator

Determines fairness criteria,
determines data source(s),
audits results

e INPUT: Data

e OUTPUT: Fairness criteria
AUDITING

e INPUT: Models

e OUTPUT: Satisfactory?

28



How to achieve fairness?

= Post-processing: Post-process the model outputs
Doherty et al. (2012), Feldman (2015), Hardt et al. (2016), Kusner et
al. (2018), Jiang et al. (2019)

» Pre-processing: Pre-process the data to remove bias, or
extract representations that do not contain sensitive
iInformation during training

Kamiran and Calder (2012), Zemel et al. (2013), Feldman et al. (2015),
Fish et al. (2015), Louizos et al. (2016), Lum and Johndrow (2016),
Adler et al. (2016), Edwards and Storkey (2016)

» |n-processing: Enforce fairness notions by imposing
constraints into the optimization, or by using an adversary

Goh et al. (2016), Corbett-Davies et al. (2017), Agarwal et al. (2018),
Cotter et al. (2018), Komiyama et al. (2018), Narasimhan (2018), Wu
et al. (2018), Zhang et al. (2018), Jiang et al. (2019)
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Qutline for today’s class

V( Quantitative definitions of fairness in Al

. Framework for fair Al

3. Algorithmic fairness criteria
» |ndividual fairness @.
= Group fairness

4. Auditing Al systems
=  Auditing input data
= Auditing ML model




Part lli

Algorithmic fairness
criteria




Algorithmic fairness criteria

1) Individual Fairness

2) Group Fairness



Individual fairness: Similar individuals
should be treated similarly

Baskethall (23%) Baskctball (50%) Baskctball (28%) Baskctball (73%) Basketball (15%) Baskethall (21%)

Ping-pong ball (73%) Rugby Ball (18%) Baseball player (69%) Ping-pong ball (32¢) Volleyball (25%) Ping-pong ball (92%)

Problem: Pairs of similar individuals playing the same sport classified
differently. The model is biased against individuals with certain characteristics

Shown are pairs of pictures Explore biases of a neural net by analyzing the distance of a sample to the
(columns) sampled over the decision boundary using adversarial samples.

Internet along with their The distance to the decision boundary is closely related to the magnitude of the
prediction by a ResNet-10. perturbation necessary to make a sample cross it.

Stock and Cisse, ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases, ‘18
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Individual fairness: Similar individuals
should be treated similarly

= Data Regulator: Which individuals are similar?
equiv., which individuals should be treated
similarly?

= One approach:

= Define a partition of the space
Into disjoint cells such that similar
iIndividuals are in the same cell

= |ndividuals in the same cell should
be treated similarly even if they
are apparently different (e.g., dots
with different colored attributes)




Individual fairness: Similar individuals
should be treated similarly

Data Regulator: Which individuals are similar?
quiv., which individuals should be treated similarly?

An algorithm Ap is (B, €(D))-individually fair if X can be
partitioned into B disjoint subsets denoted {C;}2_, such that Vz; € X

@ € C; = |I(Ap,z1) — [(Ap, z2)| < ¢(D)

Remark: Individual fairness implies algorithmic robustness (c.f. Xu & Mannor ‘11)

Dwork et al., ‘12; Cisse and Koyejo, ‘20
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Individual fairness: Pros and Cons

= Advantages:
= |ntuitive and easy to explain to data producers (and non-experts)
= |ndividual fairness implies generalization (c.f. Xu & Mannor, ‘12)

= |ndividual fairness implies statistical parity given regularity
conditions (Dwork et al., ‘12)

= Challenges:

= Regulator must provide a metric or a set of examples to be treated
similarly

= Constructing a metric requires significant domain expertise and
human insight

= Fairness of the representation heavily depends on the quality of
the metric chosen by the regulator

= Optimizing and measuring individual fairness is generally more
computationally expensive than other measures
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Algorithmic fairness criteria

Vwrndividual Fairness

2) Group Fairness

&




Group fairness: Similar classifier

statistics across groups

= Regulator: Which statistic v(f,Y|S) should be
equalized across groups S7?

relevant elements
| |

false negatives true negatives

= Typical fairness measure is a e o O .
of the ML model performance:
= Eq. of opportunity (Hardt et al., ‘16
TPs =P(Y =1,f = 1]|5)
* Equalized odds (Hardt et al., ‘16)
{TPs; FPs}

= Statistical parity (Dwork et al., ‘12)
TPs + FPs = P(f(Z) = 1|5)

selected elements



Details #1: Statistical Parity

= Statistical parity is a popular measure of group fairness
= Setup:

= Population is a set X

= Subset S c X that is a “protected” subset of the population

= Example:
= X is people
= S is people who dye their hair blue

= We are afraid that banks give fewer loans to the blues
because of hair-colorism, despite blue-haired people being
just as creditworthy as the general population on average



Details #2: Statistical parity

= Assumption: There is some distribution D over X

which represents the probability that any individual
will be drawn for evaluation

= Example:

= Some people will have no reason to apply for a loan
(maybe they’re filthy rich, or don’t like homes, cars, or
expensive colleges)

= D takes that into account

= Generally, we impose no restrictions on D, and the
definition of fairness will work no matter what D is



Details #3: Statistical parity

= Classifier f: X — {0,1} gives labels to X
= When given a person x as input f(x) = 1if x gets a
loan and 0 otherwise

= Statistical imparity of f on S with respect to X, D:

imparity (X, S,D) = P(f(x) = 1|x € S¢) — P(f(x) = 1|x € S)
L'_’ \_'_’

Probability that a random Probability that a random
individual from the complement individual drawn from S
S¢ is labeled 1 is labeled 1

* This is the statistical equivalent of adverse impact

= |t measures the difference that the majority anad
protected classes get a particular outcome
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Details #4: Statistical parity

Statistical imparity measures the difference that the
majority and protected classes get a certain outcome

When the difference is small, the classifier has
statistical parity, it conforms to this notion of fairness

Definition: ML model f: X — {0,1} achieves statistical
parity on D with respect to S up to bias € if
limparity (X, S,D)| < €

If f achieves statistical parity, it treats the general

population statistically similarly as the protected class

= [f 30% of normal-hair-colored people get loans, statistical
parity requires roughly 30% of blue also get loans



Group fairness: Pros and Cons

= Advantages:

= Efficient to compute, measure and enforce for data
producer and regulator

= Often easier to explain to policy-makers (as in terms of
population behavior)

= Challenges:
= Data regulator must determine which classifier statistic(s) to
equalize

= Fairness of the representation depends on the quality of the
fairness metric chosen by the regulator

= Group fairness can lead to (more) violated individual
fairness, e.qg., intersectionality

= [t can lead to fairness gerrymandering (Kearns et. al., ‘18),
and other issues (McNamara et. al., ‘19)
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Algorithmic fairness criteria

Vwrndividual Fairness
j&roup Fairness



Data regulator: Measures (un-)fairness

= Regulator must choose how to measure (un-)fairness:

= For individual fairness: must choose the distance metric
= For group fairness: must choose the classifier statistic to
equalize
= However, remember that there are no magic metrics:
= Measurement 101: all measures have blind spots
= “When a measure becomes a target, it ceases to be a good
measure
= For ML, we generally specify all measures apriori and
optimize them

o Howe_ver, aII. metricg will have failure cases, i.e., unusual
situations with non-ideal behavior

= One productive approach is to select measures that
best capture tradeoffs relevant to the context
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Qutline for today’s class

. Quantitative definitions of fairness in Al
. Framework for fair Al

. Algorithmic fairness criteria
» |ndividual fairness

= Group fairness

4. Auditing Al systems

= Auditing input data @.
= Auditing ML model

PN




Part |V
Auditing Al systems




=
it

AUTHORITY

= How to ensure that our implemented ML model is fair?

Recall: Framework for fair Al

Data Regulator

Determines fairness
criteria, determines data
source(s), audits results

Data User

A xX
Computes ML model = “% [ x*
given sanitized data opo

Data Producer

Computes the fair :g g
representation given :
data regulator criteria S @ oo

= Data regulator (e.g., health department, office for sentencing and incarceration)

needs to audit the ML modell

Who should be audited to ensure that ML predictions are fair and unbiased?
a) Data producer: The regulator audits input data representations for fairness
b) Data user: The regulator audits the final ML model for fairness
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Who should be audited by the data
regulator to ensure fairness”?

= Key task of the data regulator is to audit the
learning system (e.g., Madras et al., ‘18)

= For complex label-dependent settings, or for an
adversarial data user, the data regulator must
audit the final model, i.e., the data user

* The most efficient approach is to audit input data
representations, i.e., the data producer

Next: How to produce fair

input data representations?




How to compute falr | e

Computes the fair
representation given data

representations”?

Data producer computes representations Z
given the fairness criteria and raw input data

Inputs:
= Data X,Y

= Fairness criteria;
= For individual fairness: similarity metric p(X;, X;)

= For group fairness: classifier statistic v(f,Y|S) to equalize across
groups S, e.g., statistical parity

. How to design function g that
OUtpUt. can produce fair representations
= Fair representations, g: X,Y - Z from raw input data?

There are many feature/representation learning
methods with fairness constraints that can serve as g
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Feature/Representation learning

» Representation learning methods produce
condensed data summaries (i.e., feature vectors,
embeddings), usually implemented as low-
dimensional data transformations

|(\,‘/?ms

Camera
- X, Y - 7/ ‘74 SeaWorld

doLFkLV\

FOT’FOLSQ

= Approaches in common use include PCA, non-
linear autoencoders, deep embeddings (more on
this in the next lecture)



Individual fairness: Metric learning
approach

= Regulator (to the data producer):

= Provides sets of examples which should be treated
similarly (e.g., similarly labeled points)

= Producer: Learns distance metric p such that
iIndividuals which should be treated similarly are

closer to each other

Find a metric p such that V(z1, z2, x3):
X1, o © C; and x3 € CJ(] 75 ’l,)
= p(z1,72) < p(x1,23)

Cisse and Koyejo, ‘20

BEFORE

AFTER

b

L
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Individual fairness: Metric learning
approach

= Regulator (to the data producer):
= Provides sets of examples which should be treated
similarly (e.g., similarly labeled points)
= Producer: Equivalently, learns a representation
such that individuals which should be treated
similarly are embedded close together in the

embedding space -

- /"’lf—l;éi?l . [\Iocal neighborhood }m’a:réiﬁ\ "

/ \\\\\\\ \ .l// //// (%O\ \\\I

Find a metric p such that V(x1, zo, x3): ,“ B oz o0 \\\ O_Q /
1,2 € C; and 3 € Cj(j 75 Z) :\ '\\ @O ,: j \-\__///
= ||z1 — z2||2 < ||Z1 — 23”2 \\\\\I % 2 // () similarly labeled

NN S B Differently labeled

where z; = Lz; and p(x;,x;) = x,-TLTij. Il Differently labeled

: H ‘
CISSG and Koyejo’ 20 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al



Qutline for today’s class

Quantitative definitions of fairness in Al
Framework for fair Al

Algorithmic fairness criteria
= |ndividual fairness

= Group fairness

Auditing Al systems

=  Auditing input data
= Auditing ML model

Vi
Y
v’



Quick Check

https://forms.gle/NveESEShda2FzSs57

BMI 702: Biomedical Artificial
Intelligence

F dations of Bi dical ics Il, Spring 2024

Quick check quiz for lecture 5: Bias and fairness in biomedical Al

Course website and slides: https://zitniklab.hms.harvard.edu/BMI702

* Indicates required question

First and last name *

Your answer

Harvard email address *

Your answer

Using the framework for fair Al, describe a biomedical Al application and explain  *
the roles of data regulators, data users, and data producers. Which individuals in

a clinic, research lab, biomedical institution or health system would take on these
roles?

Your answer

Give a biomedical example where you think that ensuring individual fairnessis ~ *
necessary.

Your answer

Give a biomedical example where you think that ensuring group fairness is *
necessary.

Your answer
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