BMI 702: Biomedical Artificial Intelligence

Foundations of Biomedical Informatics II, Spring 2024

Lecture 4: Interpretability and explainability in biomedical AI

Marinka Zitnik marinka@hms.harvard.edu

Outline for today's class

- 1. What is trustworthy ML and why should I care?
- 2. Interpretability vs. explainability
- 3. Explaining ML predictions
- 4. Case studies
 - Drug repurposing
 - Treatment recommendation

Trustworthy ML

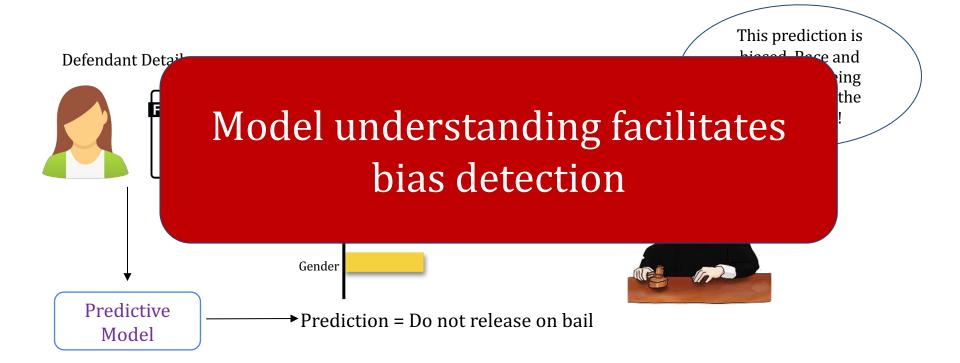
- ML models are increasingly being deployed in real-world applications
 - It is critical to ensure that these models are behaving responsibly and are trustworthy
- There has been growing interest to develop and deploy ML models and algorithms that are:
 - Not only accurate
 - But also explainable, fair, privacy-preserving, causal, and robust
- This broad area of research is commonly referred to as trustworthy ML

Motivation

Model understanding is absolutely critical in several domains - particularly those involving high stakes decisions

Why model understaning?

Why model understanding?



Why model understanding?

Loan Applicant Details

Model

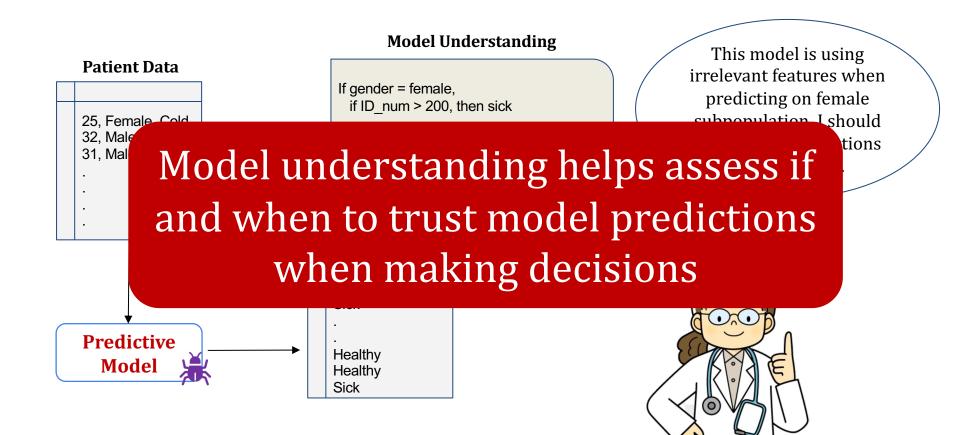
FILE

I have some means for recourse. Let me

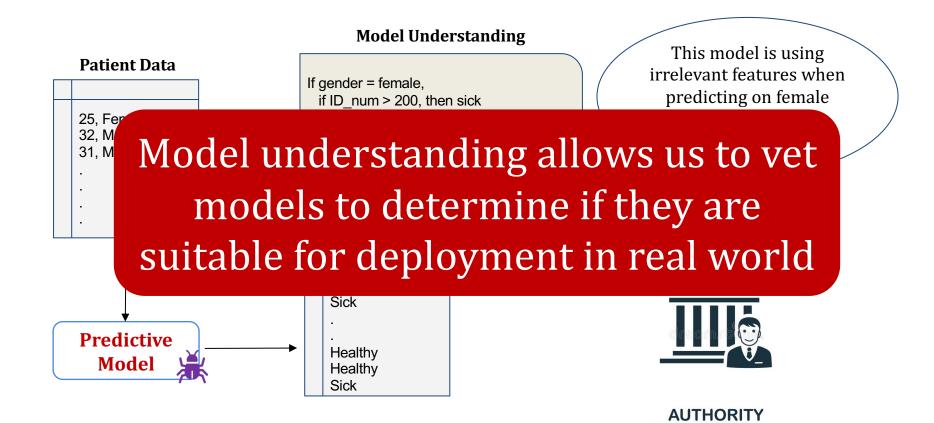
Model understanding helps provide recourse to individuals who are adversely affected by model predictions Predictive

Prediction = Denied Loan

Motivation: Why model understanding?



Motivation: Why model understanding?



Why should I care about understanding ML models?

Utility

Debugging

Bias Detection

Recourse

If and when to trust model predictions

Vet models to assess suitability for deployment

Stakeholders

End users (e.g., loan applicants)

Decision makers (e.g., doctors, judges)

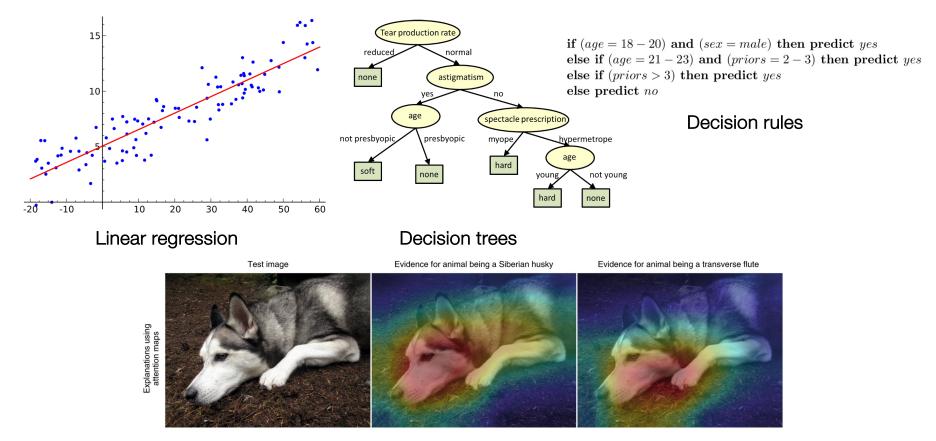
Regulatory agencies (e.g., FDA, European commission)

Researchers and engineers

Outline for today's class

- 1. What is trustworthy ML and why should I care?
 - 2. Interpretability vs. explainability
 - 3. Explaining ML predictions
 - 4. Case studies
 - Drug repurposing
 - Treatment recommendation

Achieving model understanding Goal: Build inherently interpretable predictive models

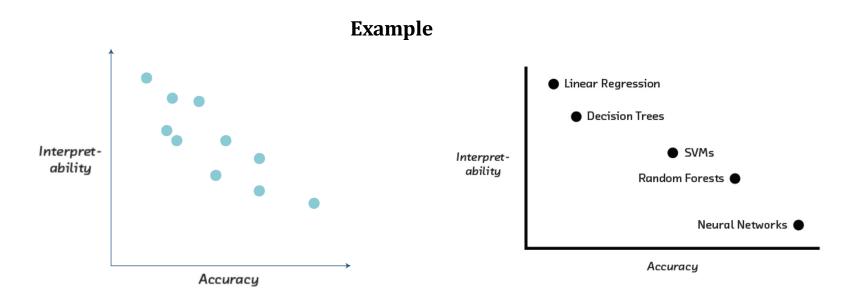


Saliency map of a black box (deep learning) model does not explain anything except where the model is looking: We have no idea why this image is labeled as either a dog or a musical instrument when considering only saliency. The explanations look essentially the same for both classes

Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead, *Nature Machine Intelligence* 2019 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al

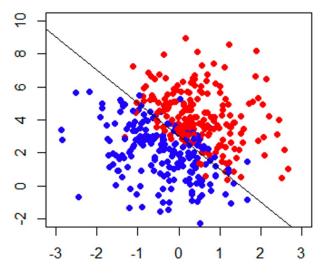
Inherently interpretable models vs. post hoc explanations

Accuracy-interpretability trade offs may exist in certain settings

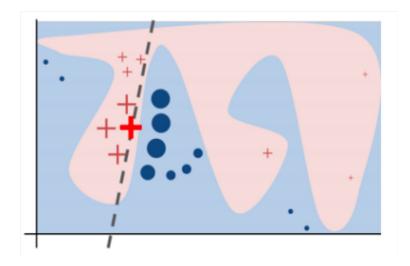


[Cireşan et. al. 2012, Caruana et. al. 2006, Frosst et. al. 2017, Stewart 2020] Marinka Zitnik - marinka@hms.harvard.edu - BMI 702; Biomedical Al

Inherently interpretable models vs. post hoc explanations



Build interpretable and accurate models



Complex models might achieve higher accuracy

Achieving model understanding

Explain pre-built models in a post-hoc manner

Interpretability/accuracy tradeoffs and proliferation of black box models force us to rely on post hoc "explanations" of ML models

edict yes hen predict yes Inherently interpretable models vs. post hoc explanations

- If you can build an interpretable model which is also adequately accurate for your setting, DO IT!
- Sometimes, you don't have enough data to build your model from scratch
- And, all you have is a (proprietary) black box!
- Post hoc explanations come to the rescue!

Next: Overview of post hoc explanations methods

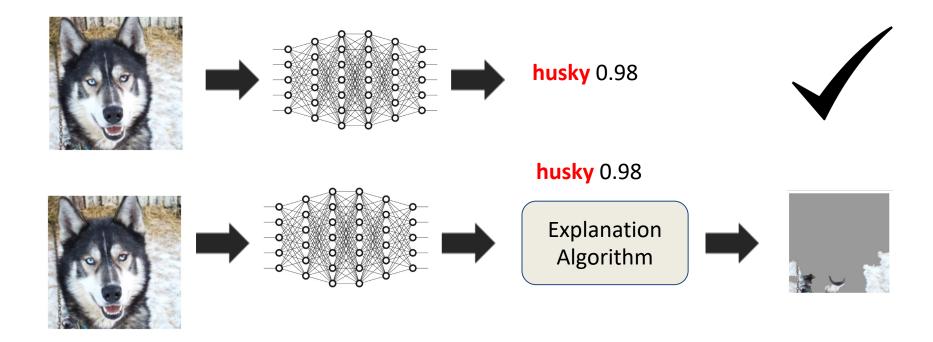
16

Outline for today's class

- 1. What is trustworthy ML and why should I care?
- 2. Interpretability vs. explainability
 - 3. Explaining ML predictions
 - 4. Case studies
 - Drug repurposing
 - Treatment recommendation

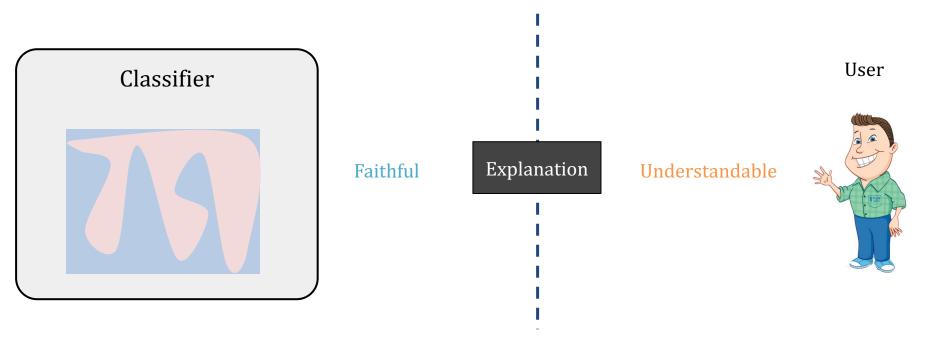
Explainable AI

"Explainable AI refers to the set of approaches that provide an interpretable description of the behavior of a given (complex) model to end users."



What is an explanation?

 Definition: Interpretable description of the model behavior



Overview of explanation methods

Local explanations

Explain individual predictions

Help unearth biases in the *local neighborhood* of a given instance

Help vet if individual predictions are being made for the right reasons

Global explanations

Explain complete behavior of the model

Sheds light on *big picture biases* affecting larger subgroups

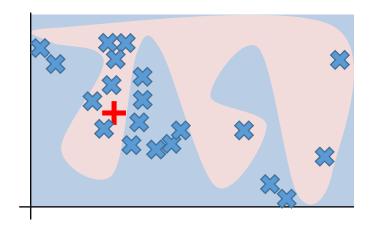
Help vet if the model, at a high level, is suitable for deployment

Overview of explanation methods

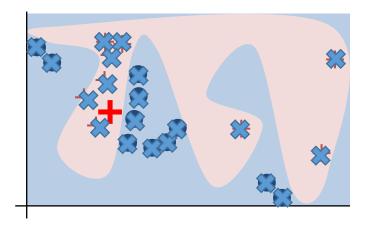
Local explanation methods:

- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

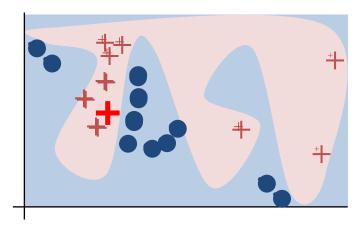
1. Sample points around x_i



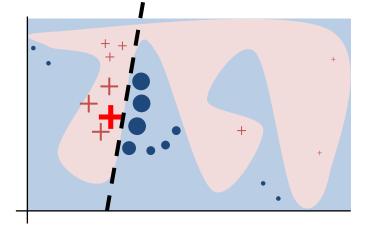
- 1. Sample points around x_i
- 2. Use model to predict labels for each sample



- 1. Sample points around x_i
- 2. Use model to predict labels for each sample
- 3. Weigh samples according to distance to x_i



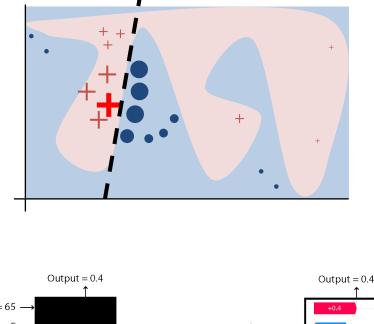
- 1. Sample points around x_i
- 2. Use model to predict labels for each sample
- 3. Weigh samples according to distance to x_i
- 4. Learn simple linear model on weighted samples



- 1. Sample points around x_i
- 2. Use model to predict labels for each sample
- 3. Weigh samples according to distance to x_i
- 4. Learn simple linear model on weighted samples
- 5. Use simple linear model to explain x_i

Another popular method which outputs feature importance scores: SHAP

SHAP values are based on game theory and assign an importance value to each feature in a model. Features with positive SHAP values positively impact the prediction, while those with negative values have a negative impact. The magnitude is a measure of how strong the effect is



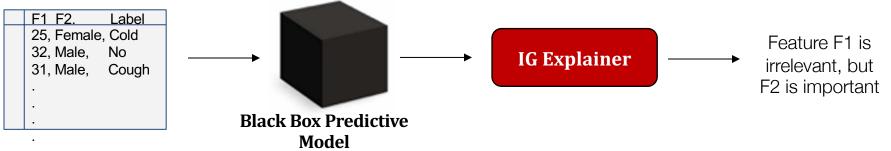
Overview of explanation methods

Local explanation methods:

- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

Integrated Gradients (IG)

- Integrated Gradients (IG) is an explanation method for deep neural networks
- It identifies important features that contribute most to the model's prediction



- Appealing properties of integrated gradients:
 - It can be applied to any differentiable model like models for images, text, or structured data
 - It requires no modification to the original ML model

https://distill.pub/2020/attribution-baselines

How does IG work?

- IG computes gradients of the model's prediction w.r.t. input features
- IG is built on two axioms which need to be satisfied:
 - Sensitivity and
 - Implementation invariance
- Sensitivity:
 - We establish a baseline instance as a starting point
 - We then build a sequence of instances which we interpolate from a baseline instance to the actual instance to calculate

Implementation invariance:

- Implementation invariance is satisfied when two functionally equivalent models have identical attributions for the same input image and the baseline image.
- Two models are functionally equivalent when their outputs are equal for all inputs despite having very different implementations

Setup:

- Let's consider an ML model for image classification
- We aim to use IG to explain the predicted image label

Step 1:

- Start from a baseline where the baseline can be a black image whose pixel values are all zero or an allwhite image, or a random image
- Baseline input is one where the prediction is neutral and is central to any explanation method and visualizing pixel feature importance scores

Step 2:

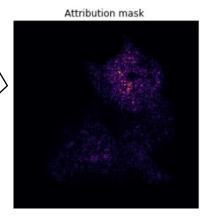
- Generate a linear interpolation between the baseline and the original image
- Interpolated images are small steps(a) in the feature space between your baseline and input image and consistently increase with each interpolated image's intensity

- Step 3: Calculate gradients to measure the relationship between changes to a feature and changes in the model's predictions
- The gradient informs which pixel has the strongest effect on the models predicted class probabilities
 - Varying variable changes the output, and the variable will receive some attribution to help calculate the feature importances for the input image
 - Variable that does not affect the output gets no attribution
- Step 4: Compute the numerical approximation through averaging gradients (that's why the method's name is integrated gradients)

• Step 5:

- Scale IG to the input image to ensure that the attribution values are accumulated across multiple interpolated images are all in the same units
- Represent the IG on the input image with the pixel importances

IG helps us explain what an ML model looks at to make a prediction by highlighting the feature importances. It does this by computing the gradient of the model's prediction output to its input features.



Overlay IG on Input image

Overview of explanation methods

Local explanation methods:

- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

Prototype-based explanations

- Use examples (synthetic or natural) to explain individual predictions
- Influence Functions (Koh & Liang 2017)
 - Identify instances in the training set that are responsible for the prediction of a given test instance
- Activation Maximization (Erhan et al. 2009)
 - Identify examples (synthetic or natural) that strongly activate a function (neuron) of interest

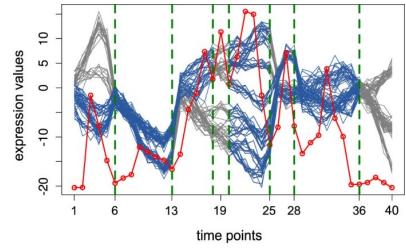
Prototypes for explaining time series models

Time series are not easily visually interpretable

- Noisy samples
- Dense informative features, unlike imaging and text modalities

Temporal patterns

- Only show up when looking at time segments and long-term behaviors
- Perturbations matter
 - Setting a value to zero does not ignore that time point
 - Temporal dependencies cannot be ignored

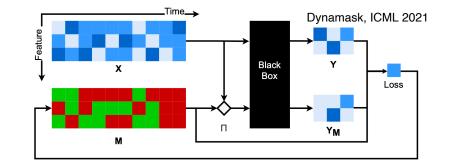


Omranian et al., 2015

Existing time series explainers are inadequate

Perturbations are continuous

- Can deform shape of samples
- 2 Give only instance-based explanations
 - Cannot relate patterns across samples
- Fail to match performance of generic explainers
 - Post-hoc methods suffer from a lack of faithfulness and stability

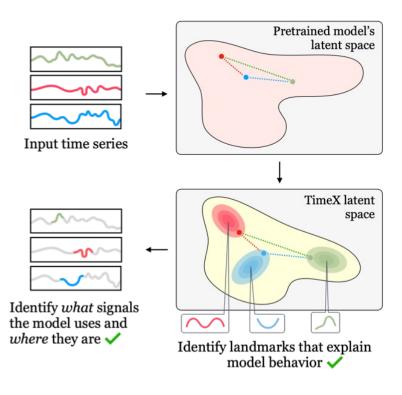


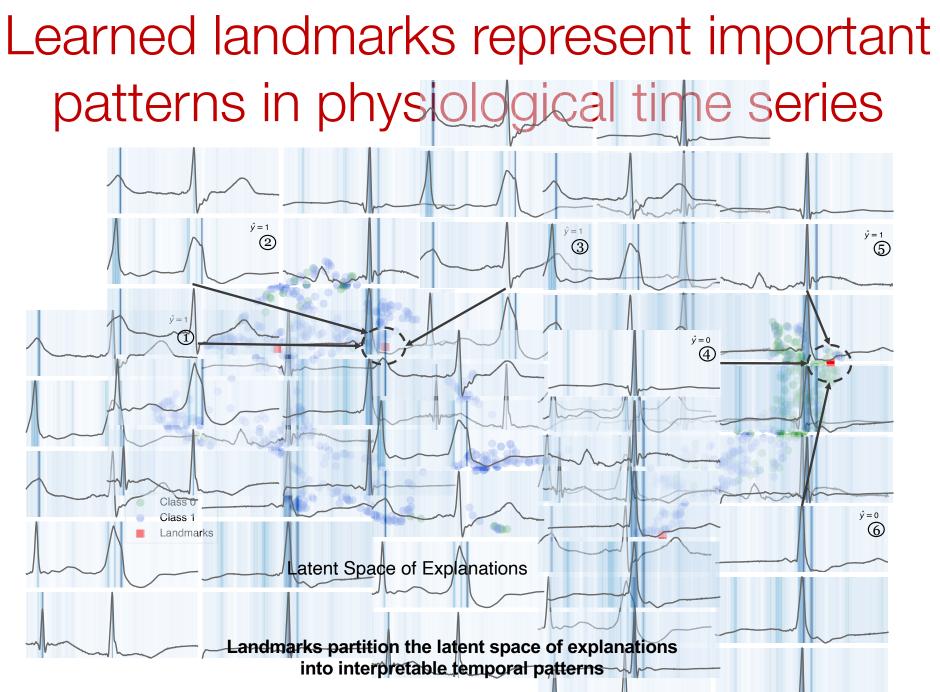
Desiderata for time series explanations

- Temporally connected and visually digestible
- Identify the <u>location</u> of predictive time series signals and underlying interpretable <u>patterns</u>
- Connect explanations across samples

TimeX is a time-series consistency explainer

- Surrogate model to mimic the behavior of a pretrained time series model
- TimeX makes inferences on masked samples
- Model behavior consistency
 - Enforces faithfulness at the level of the latent space
 - Learns a flexible latent space of explanations





Encoding Time-Series Explanations through Self-Supervised Model & phavior Consistency, NeurIPS 2023

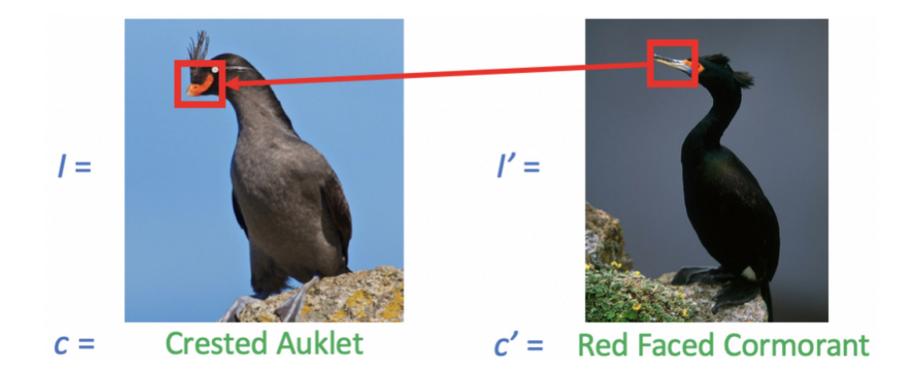
Overview of explanation methods

Local explanation methods:

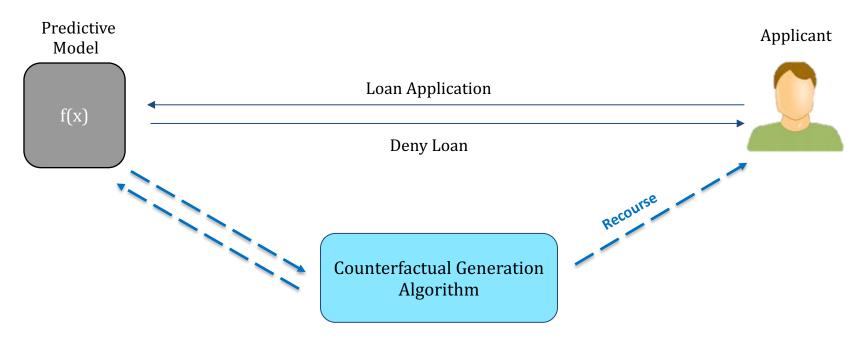
- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

Counterfactual explanations

What features need to be changed and by how much to flip a model's prediction?

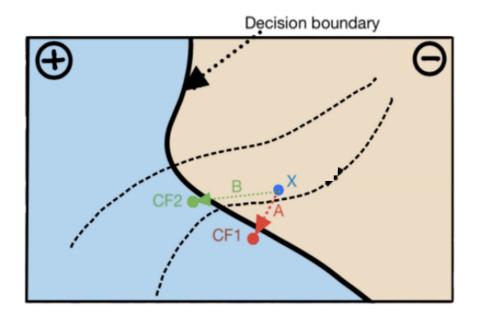


Counterfactual explanations



Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

Generating counterfactual explanations: Intuition



Proposed solutions differ on:

- 1. How to choose among candidate counterfactuals?
- 1. How much access is needed to the underlying predictive model?

Quick Check

https://forms.gle/An2ZzQHbc568XAhe9

BMI 702⁻ Biomedical Artificial Intelligence

Foundations of Biomedica	l Informatics II, Spring 2024
Quick check quiz for lectu	re 4: Interpretability and explainability in biomedical AI
Course website and slides	s: https://zitniklab.hms.harvard.edu/BMI702
Not shared	
* Indicates required questi	ion
First and last name *	
Your answer	
Harvard email address *	•
Your answer	
biomedical dataset and	which a predictive model is created using a healthcare or the LIME explainability method is used to analyze its expected from the LIME explanations?
Your answer	
biomedical dataset and	vhich a predictive model is created using a healthcare or the Integrated Gradients explainability method is used to nat can be expected from the Integrated Gradients
Your answer	

Overview of explanation methods

Local explanation methods:

- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

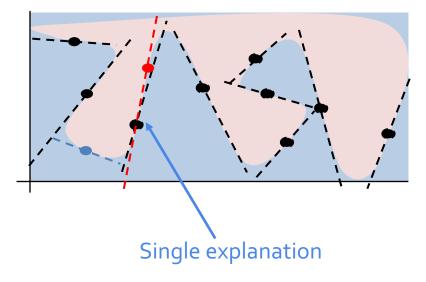
Global explanations from local feature importances: SP-LIME

LIME explains a single prediction local behavior for a single instance

Can't examine all explanations Instead pick *k* explanations to show to the user

Representative Should summarize the model's global behavior Diverse Should not be redundant in their descriptions

SP-LIME uses submodular optimization and *greedily* picks k explanations

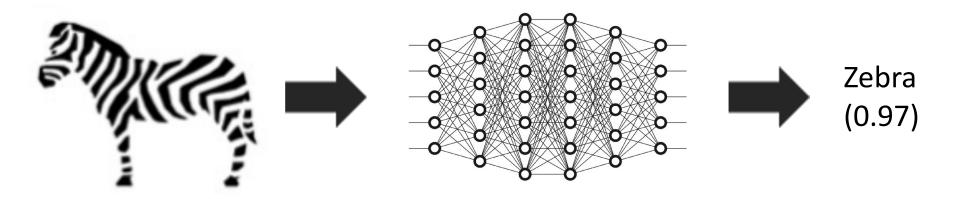


Overview of explanation methods

Local explanation methods:

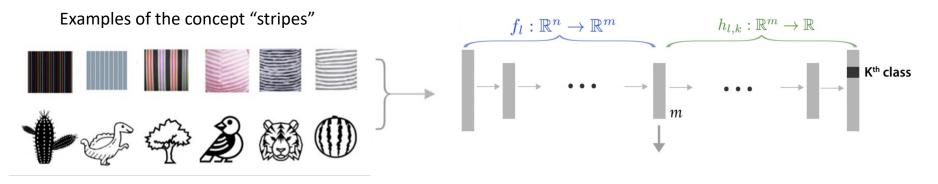
- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

Representation-based explanations



How important is the notion of "stripes" for this prediction?

Representation-based explanations: TCAV approach

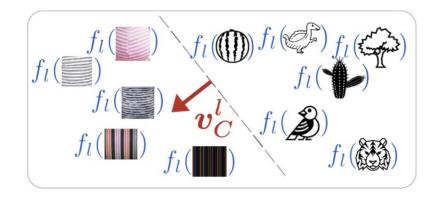


Random examples

Train a linear classifier to separate activations

The vector orthogonal to the decision boundary denotes the concept "stripes"

Compute gradient w.r.t. this vector to determine how important is the notion of stripes for a prediction

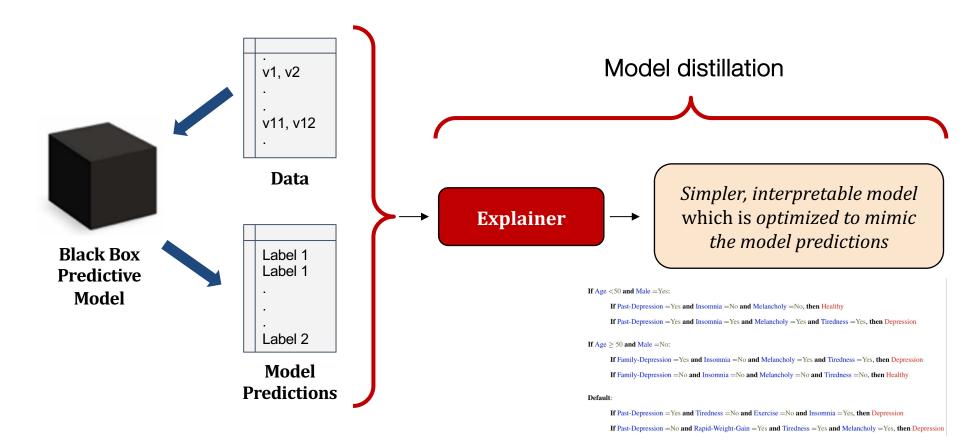


Overview of explanation methods

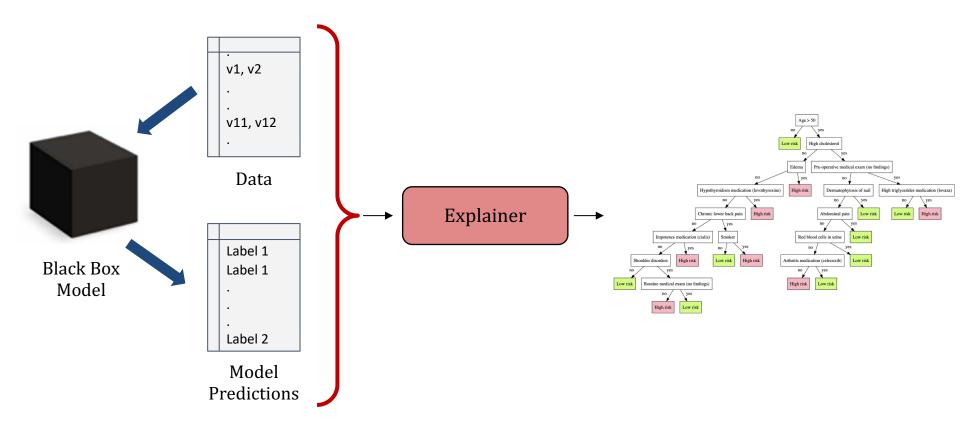
Local explanation methods:

- Feature importance scoring
- Integrated gradients
- Prototypes/Example-based explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

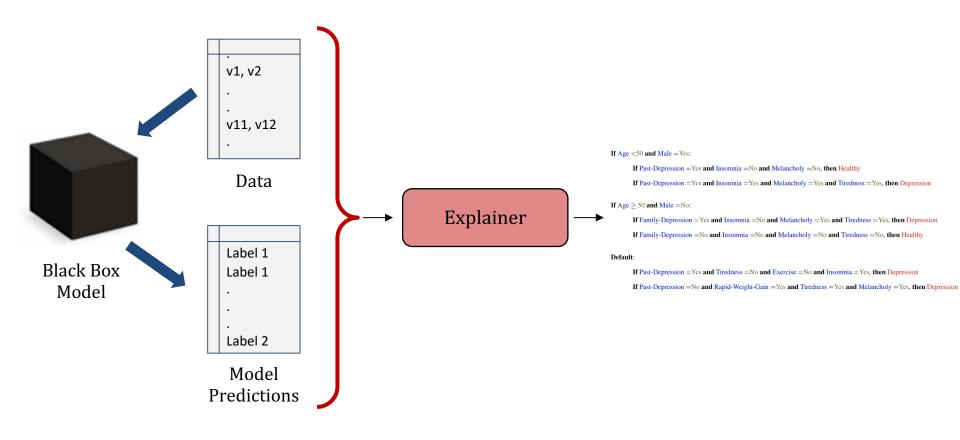
Model distillation



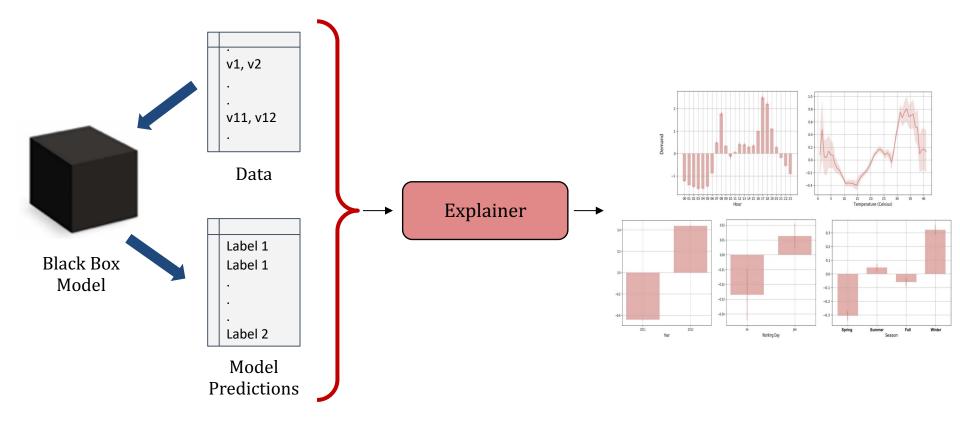
Model distillation using decision trees



Model distillation using decision sets



Model distillation using generalized additive models



Overview of explanation methods

Local explanation methods:

- Feature importance scoring
- Integrated gradients
- Prototype explanations
- Counterfactuals
- Global explanation methods:
 - Collection of local explanations
 - Representation-based explanations
 - Model distillation

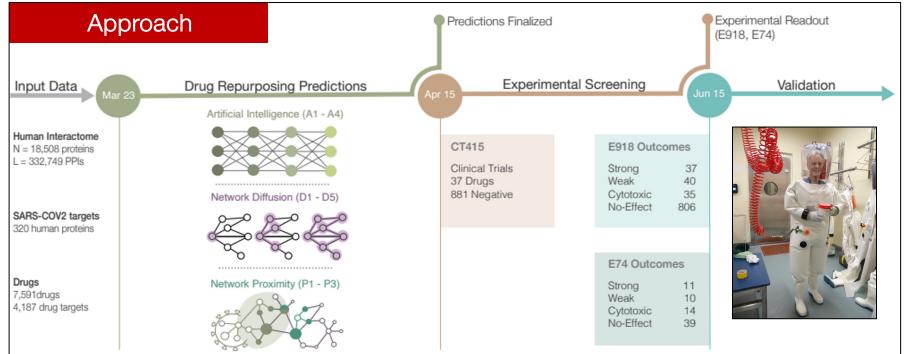
Outline for today's class

- 1. What is trustworthy AI/ML and why should I care?
- Interpretability vs. explainability
 Explaining AI/ML predictions

 - 4. Case studies
 - Drug repurposing
 - Treatment recommendation

Rapid therapeutic innovation

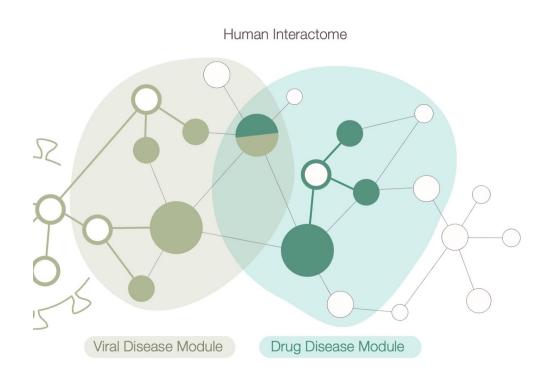
- Pandemics demand safe and effective therapies developed at an unprecedented speed
- Traditional, iterative development, experimental and clinical testing, and approval of new drugs not feasible
- Challenge: How to compress years of work into months or even weeks through AI, automation, and new data resources?



Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al

Design therapies to target biological networks

Disease disrupts the normal behavior of genes. Drugs intervene against the disease by restoring the function of disrupted genes. **Goal:** What chemical compounds can intervene against disease?



Human-Human Protein-Protein Interaction

Viral-Human Protein-Protein Interaction

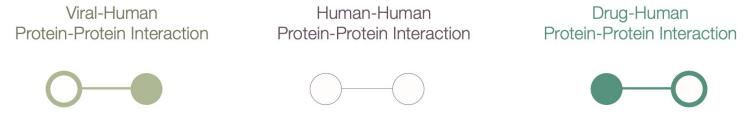
Drug-Human Protein-Protein Interaction

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design, medRxiv 2023 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical AI

Dataset and experimental setup

COVID-19 repurposing knowledge graph:

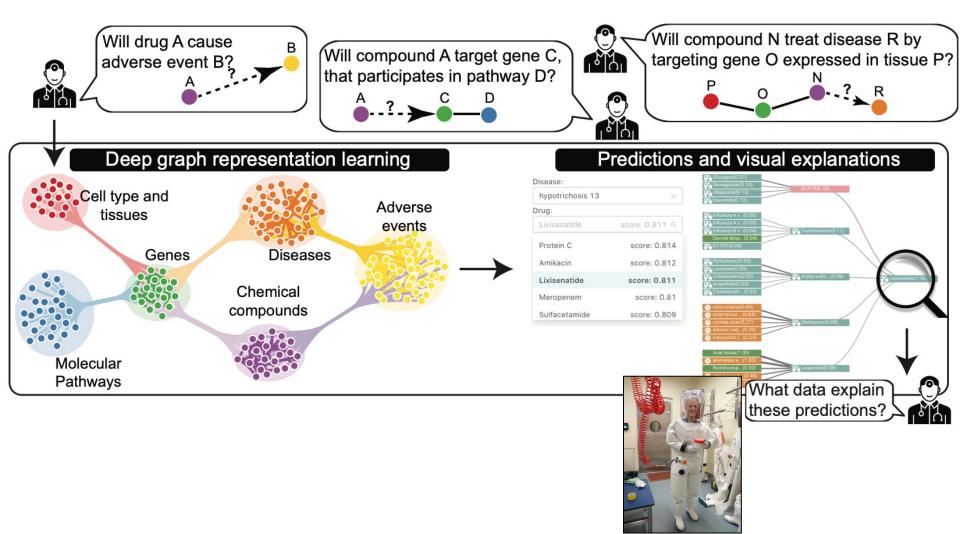
- Human protein-protein interaction graph
- Approved drugs and proteins that each drug targets
- Diseases and proteins perturbed in each disease
- Approved drug-disease treatments



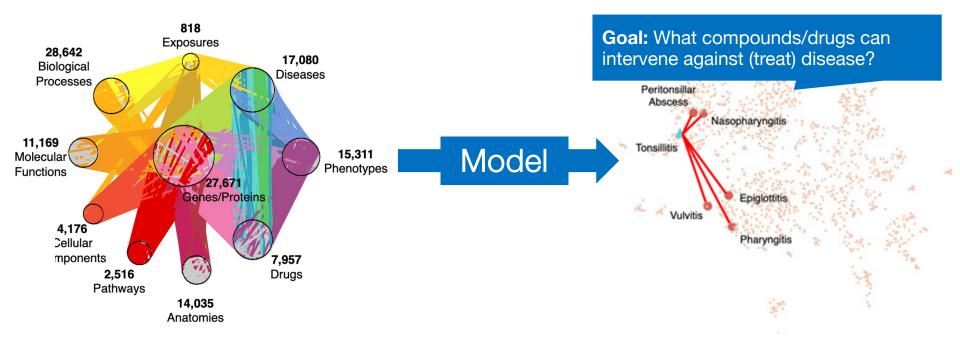
 ML task: Given approved drug-disease treatments, identify candidate treatments for COVID-19

> Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS, 2021 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al

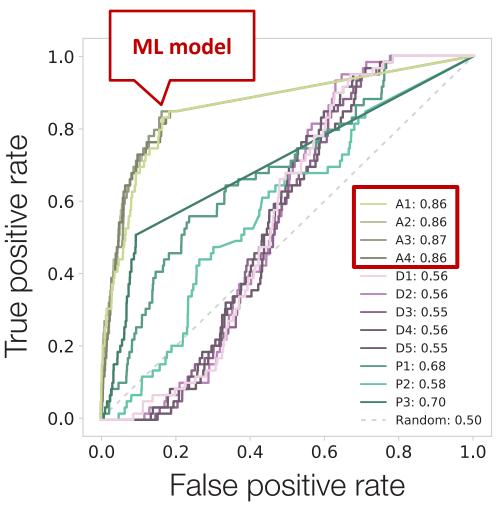
Approach: Graph ML model



Approach: Graph ML model



Results: COVID-19 repurposing



We test each method's ability to recover drugs currently in clinical trials for COVID-19 (67 drugs from ClinicalTrials.gov)

The best individual ROC curves are obtained by the GNN methods

The second-best performance is provided by the proximity P3. Close behind is P1 with AUC = 0.68 and AUC = 0.58

Diffusion methods offer ROC between 0.55-0.56

Results: Experimental screening

National Emerging Infectious Diseases Laboratories (NEIDL)

CRank	Drug Name	
1	Ritonavir	
2	Isoniazid	
3	Troleandomycin	
4	Cilostazol	
5	Chloroquine	
6	Rifabutin	
7	Flutamide	
8	Dexamethasone	
9	Rifaximin	
10	Azelastine	
11	Crizotinib	

17	Celecoxib
18	Betamethasone
19	Prednisolone
20	Mifepristone
21	Budesonide
22	Prednisone
23	Oxiconazole
24	Megestrol acetate
25	Idelalisib
26	Econazole
07	Debenrozela

Predicted lists of drugs

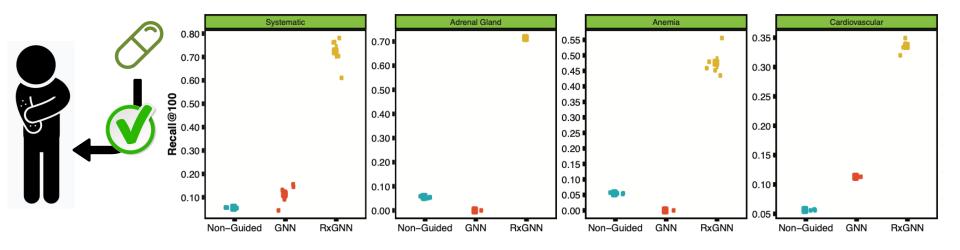
New algorithms:

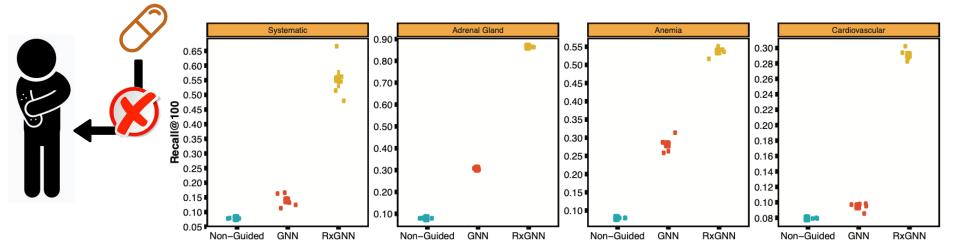
Prioritizing Network Communities, *Nature Communications* 2018 Subgraph Neural Networks, *NeurIPS* 2020 Graph Meta Learning via Local Subgraphs, *NeurIPS* 2020

Results: 918 compounds screened for their efficacy against SARS-CoV-2 in VeroE6 & human cells:

- We screened in human cells the top-ranked drugs, obtaining a <u>62% success rate</u>, in contrast to the <u>0.8% hit rate</u> of nonguided screenings
- This is an order of magnitude higher hit rate among top 100 drugs than alternative approach

Results: Predicting therapeutic use



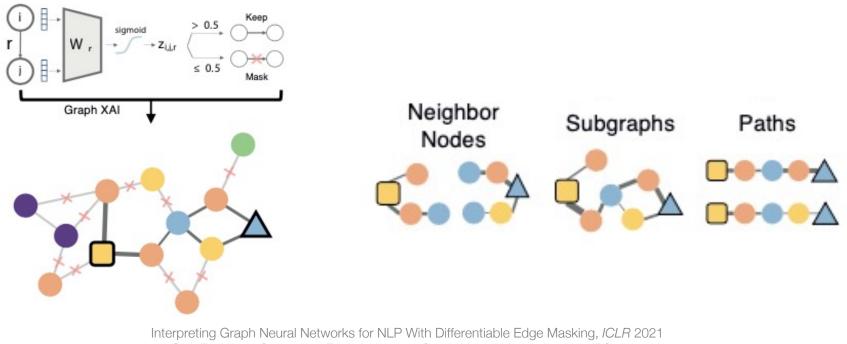


Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical AI

Explaining model predictions

Key idea:

- Summarize where in the data the model "looks" for evidence for its prediction
- Find a small subgraph most influential for the prediction



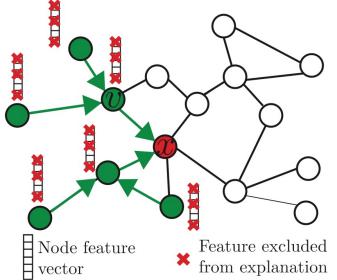
GNNExplainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019

GNNExplainer: Key idea

- Input: Given prediction f(x) for node/link x
- Output: Explanation, a small subgraph M_x together with a small subset of node features:
 - M_x is most influential for prediction f(x)

• Approach: Optimize mask M_x in a post-hoc manner

 Intuition: If removing v from the graph strongly decreases the probability of prediction ⇒ v is a good counterfactual explanation for the prediction



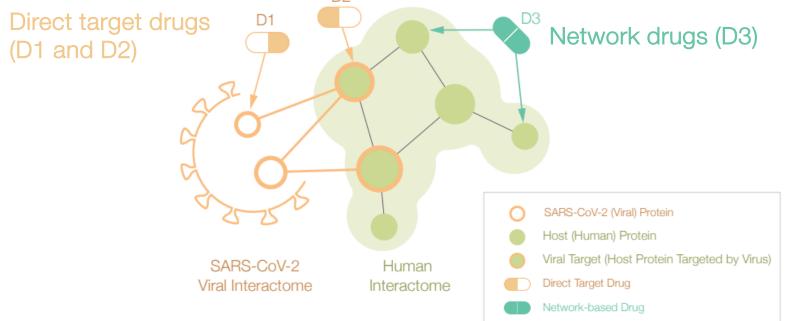
GNN Explainer: Generating Explanations for Graph Neural Networks, NeurIPS 2019 Marinka Zittirk - marinka@hms.harvard.edu - BMI 702: Biomedical Al

Explanations: Network drugs

"What is the disease treatment mechanism for drugs with **positive experimental outcomes**?"

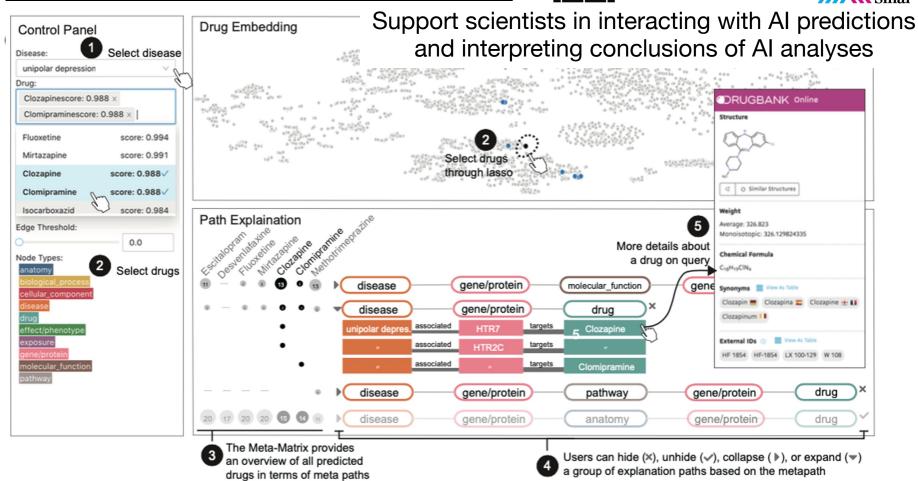
76/77 predicted drugs with positive experimental outcomes do not directly bind to SARS-CoV-2 targets:

 Instead, the drugs rely on network-based actions and cannot be identified by alternative, non-network methods



Al-clinician collaboration

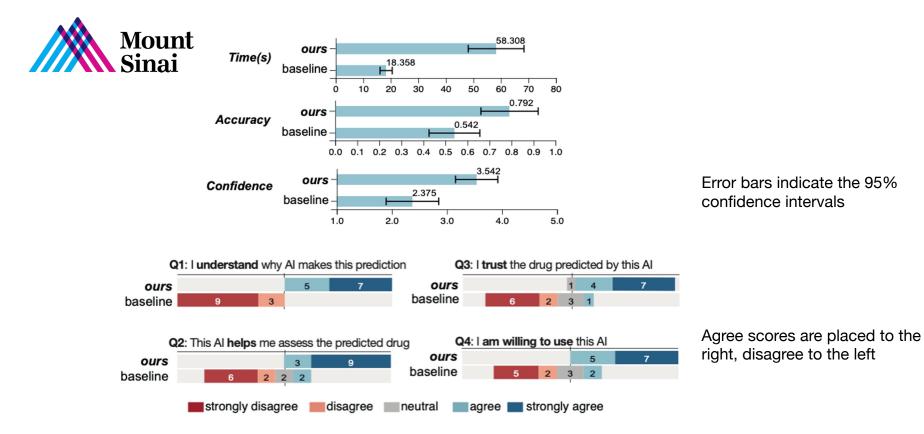
"Will clozapine treat unipolar depression? What is the disease treatment mechanism?"



Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods, AISTATS 2022 Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing, IEEE VIS 2022 (Best Paper Award) Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nature Communications 2021 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical AI Mount

Clinician-centric study

Compared to a no-explanation baseline in terms of user answer accuracy, exploration time, user confidence, and user agreement across a spectrum of usability questions



Practical and ethical challenges

Q: Are decision-makers benefitting from explanations?A: (Mixed) evidence of real-world benefit

Q: How are explanations calibrating trust in AI?A: Explanations can be used to manipulate & miscalibrate trust

Q: How are explanations calibrating perceptions of fairness?A: Explanations can be used to change fairness perceptions

Q: Can adversaries fool explanation algorithms & hence users?

A: Adversaries can easily obfuscate true model behavior

Outline for today's class

1. What is trustworthy AI/ML and why should I care?

Interpretability vs. explainability
 Explaining AI/ML predictions

Case studies

- Drug repurposing
- Treatment recommendation