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Real-world applications of clinical AI + 
genomics



Overview

● A brief primer on genetics

● Break (?)

● Assessing the interplay between genetic ancestry and disease risk

○ Leveraging genomic diversity for discovery in an EHR-linked biobank-- the 
UCLA ATLAS Community Health Initiative (Johnson et al. Genome Medicine 
2022)

● Predicting rare disease through EHR signatures

○ Electronic health record signatures identify undiagnosed patients with 
Common Variable Immunodeficiency Disease (Johnson et al. medRxiv 
2022) 
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What does precision medicine with genomics entail?



Genomic medicine is a key component for individualized 
diagnoses and treatments



Genomic medicine is a key component for individualized 
diagnoses and treatments



DNA

gene

A key goal of genomic medicine is identifying genes that 
cause a disease
Monogenic diseases are typically 
caused by a single gene 

● Cystic fibrosis
● Sickle cell anemia
● Huntington disease
● Duchenne muscular 

dystrophy

many, many more!



DNA

gene

Numerous genes across the genome contribute to disease 
risk for most common diseases

Complex traits/diseases are 
polygenic 
(many genes contribute)

● Coronary heart disease
● Type I and Type II diabetes
● Breast cancer
● Height and BMI

many, many more!

gene gene



Commonly measured biospecimens and biomarkers

Genotyping Exome sequencing Whole genome sequencing RNA-sequencing

 ~650K common SNPs 
and small indels

exons (protein coding 
regions) in the genome, 
~20K variants

all variants (including very 
rare) in exons and introns 
and large structural 
variants, ~3.5 variants

Captures cellular 
content of RNAs

~$100 ~$1000 ~$1000 ~$1000

studying complex 
traits/diseases and 
common genetic 
variation

Studying rare genetic 
diseases

ultra rare genetic diseases, 
including de novo 
mutations

understanding 
transcriptome, i.e. 
connecting genes to 
functional proteins



Commonly measured biospecimens and biomarkers

Genotyping Exome sequencing Whole genome sequencing RNA-sequencing

 ~650K common SNPs 
and small indels

exons (protein coding 
regions)

all variants (including very 
rare) in exons and introns 
and large structural 
variants

Captures cellular 
content of RNAs

~$100 ~$8K - $11K ~$10K - $20K ~10K - $50K+

studying complex 
traits/diseases and 
common genetic 
variation

Studying rare genetic 
diseases

Ultra rare genetic diseases, 
including de novo 
mutations

Understanding 
transcriptome, i.e. 
connecting genes to 
functional proteins
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Single nucleotide polymorphisms (SNP) are “common” point 
mutations across the genome (minor allele frequency > 1%)
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y eG

Disease phenotypes are a combination of genetic and 
environmental components 



y eXβ
genotype genetic 

effects

Some SNPs have no physiological effect, while others are 
linked to changes in phenotype



Hypothesis test at the mth SNP
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Genome-wide association studies (GWAS) aims to estimate the 
effects of the SNPs affecting a given phenotype
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Genome-wide association studies (GWAS) aims to estimate the 
effects of the SNPs affecting a given phenotype

β
genetic effectsβ ~ N(0, Iσg

2)
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(assumes phenotypes [y] are i.i.d.)

, for ith individual

, for heart disease
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X3

Global variables 
shared across 

individuals
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More 
significant

→ Identified variants are NOT always causal! Functional validation is needed to 
confirm causality.

● Coronary heart disease: 250+ regions
● Type I and Type II diabetes: 60+ and 500+ regions
● Breast cancer: 200+ regions
● Height and BMI: 700+ and 250+ regions

Disease risk is spread throughout the genome



Polygenic risk scores provide individual-level predictions to identify 
patients with heightened disease risk

Vaura et al. 2021



Wow, if genetics can help us predict disease… why isn’t [insert 
favorite direct-to-consumer genetics company] in all of the clinics?

● It is unclear how much additional risk information PRS provides over current risk 
assessment methods

● The majority of diseases have a much smaller genetic component compared to the 
effect of environmental factors 



Wow, if genetics can help us predict disease… why isn’t [insert 
favorite direct-to-consumer genetics company] in all of the clinics?

● It is unclear how much additional risk information PRS provides over current risk 
assessment methods

● The majority of diseases have a much smaller genetic component compared to the 
effect of environmental factors 

● PRS has relatively poor sensitivity and specificity making it challenging to administer as 
a clinical prediction tool

“Typical sensitivity for a polygenic score is 10-15% (meaning that only 10-15% of 
people who will develop the disease will have a high polygenic score)7—for example, a 
polygenic score developed to detect women at >17% lifetime risk of breast cancer has a 
sensitivity of 39% (it will identify 39% of the women who will go on to develop breast 
cancer, but miss 61% of them) and a specificity of 78% (22% of women who will not 
go onto develop breast cancer will be classified as having a “high risk score”)”  - Sud et 
al. BMJ 2023

https://www.bmj.com/content/380/bmj-2022-073149#ref-7


Wow, if genetics can help us predict disease… why isn’t [insert 
favorite direct-to-consumer genetics company] in all of the clinics?

● It is unclear how much additional risk information PRS provides over current risk 
assessment methods

● The majority of diseases have a much smaller genetic component compared to the 
effect of environmental factors 

● PRS has relatively poor sensitivity and specificity making it challenging to administer as 
a clinical prediction tool

“Typical sensitivity for a polygenic score is 10-15% (meaning that only 10-15% of 
people who will develop the disease will have a high polygenic score)7—for example, a 
polygenic score developed to detect women at >17% lifetime risk of breast cancer has a 
sensitivity of 39% (it will identify 39% of the women who will go on to develop breast 
cancer, but miss 61% of them) and a specificity of 78% (22% of women who will not 
go onto develop breast cancer will be classified as having a “high risk score”)”  - Sud et 
al. BMJ 2023

● Is it equitable? PRS does not have uniform performance across all patient populations.

https://www.bmj.com/content/380/bmj-2022-073149#ref-7


Take 5 min break



Part 2

Assessing the interplay between genetic 
ancestry and disease risk



Majority of genetic studies focus on European ancestry individuals

Martin et al. Nat Genet 2019
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East Asian

South Asian

African

Hispanic/Latinx

Middle East

Majority of genetic studies focus on European ancestry individuals

Martin et al. Nat Genet 2019
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Explicitly considering genetic ancestry is key to precision 
medicine efforts
● Genetic ancestry provides specific information about key patterns of genetic variation, making 

it an important factor in numerous healthcare decisions

○ e.g. Carbamazepine is highly associated with adverse side effects in individuals with the 
HLA allele B*1502 allele

African (0.2%)

European (0%)

Hispanic (0%)

Malay (8.4%)

Filipino (5.3%)

Singapore 
(11.6%)

Korean (0.5%)

Han Chinese 
(10.2%)

India (6%)

HLA allele B*1502 allele frequency

??



Evolutionary forces created a variety of genetic landscapes 
across continents

Historical patterns of migration influenced 
the global distribution of genetic variation 
through gene flow and genetic drift

The out-of-Africa migration led to a bottleneck effect 
that reduced genetic variation across non-African 
ancestry populations



Differential genetic architecture across ancetries affects 
disease risk across populations

HbS allele frequency

Malaria endemicity

Piel et al. Nat Comm 2010



Population structure can lead to spurious associations 

Disease risk SNP

Balding Nat Rev Genet 2006
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Population structure confounds the association between 
genotypes and phenotypes

β
genetic effects
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Population 
structure

(confounding variable)
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PCA is a dimensionality reduction technique that aims to maximize the variance of the data 
represented in the top principal components (vectors) → reconstruct the information represented in 
the data with the fewest dimensions as possible

PCA
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Principal component analysis captures population structure



Principal component analysis captures population structure
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Individual A

PCA is a dimensionality reduction technique that aims to maximize the variance of the data 
represented in the top principal components (vectors) → reconstruct the information represented in 
the data with the fewest dimensions as possible

PCA



Principal component analysis captures population structure at the 
continental and subcontinent level

Novembre et al Nature 2008
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EHR-linked biobanks provide the opportunity to study disease risk 
across ancestrally diverse populations



UCLA ATLAS captures the vibrant diversity of Los Angeles

HL - Hispanic/Latino
NH - Non-Hispanic/Latino
WC - White
AfAm - African American
PI - Pacific Islander
Oth - Other Race

ATLAS self-identified race/ethnicityLos Angeles Census

Within ATLAS, about 40% of individuals self-identify as a race other than White, with 
appreciable sample sizes in the Hispanic Latino and Asian American populations



Self-identified race/ethnicity (SIRE) and genetically inferred 
ancestry (GIA) are not analogous

Self-identified Race and Ethnicity 
(SIRE) have no direct biological 
implications 

Genetically inferred ancestry (GIA): 
genetic characterization of individuals 
within a group who likely share recent 
biological ancestors as inferred by a 
method of choice and a given 
reference panel



No clear 1:1 correspondence between SIRE and GIA

● Hispanic Latino American GIA 
group splits into multiple 
SIREs

● Significant proportion of 
individuals in the European 
American GIA group 
self-identify as one of the 
multiple other SIREs
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African 
American East Asian American

European 
American

Hispanic Latino 
American

South Asian American

Unclassified

NH-AfAm

NH-Asian

HL-Other

NH-White

PCA reveals notable differences between GIA and SIRE 

Continental-level GIA SIRE

● Cline between African and European ancestry, and those who self-identify as African 
American along almost all of PC2

● GIA form a much tighter cluster, leaving many of the individuals who self-identified as 
African American outside this boundary.
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African 
American East Asian American

European 
American

Hispanic Latino 
American

South Asian American

Unclassified

NH-AfAm

NH-Asian

HL-Other

NH-White

● There are also a large number of individuals that could not be assigned a GIA 
cluster and race/ethnicity information does not reveal any patterns either

Continental-level GIA SIRE

PCA reveals notable differences between GIA and SIRE 
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African 
American East Asian American

European 
American

Hispanic Latino 
American

South Asian American

Unclassified

Projecting individuals’ preferred language onto PCs reveals 
individuals likely with Middle Eastern ancestry

● Additional EHR information such as “Language” can help elucidate 
uncharacterized GIA groups

Continental-level GIA

English

Spanish

Tagalog

Chinese (Mandarin)
Chinese (Cantonese)

Russian
Arabic

Farsi, PersianArmenian

Language

Vietnamese
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African 
American East Asian American

European 
American

Hispanic Latino 
American

South Asian American

Unclassified

Projecting individuals’ preferred language onto PCs reveals 
substructure within continental GIA clusters

Continental-level GIA

English

Spanish

Tagalog

Chinese (Mandarin)
Chinese (Cantonese)

Russian
Arabic

Farsi, PersianArmenian

Language

Vietnamese

● Within the East Asian American GIA group, there are a variety of different 
languages represented, such as Mandarin, Cantonese, Vietnamese, and 
Tagalog



PCA identifies fine-scale population structure within the East 
Asian American GIA group

Using information from 1000 Genomes, we can see distinct clusters of individuals of Japanese, 
Vietnamese, and Chinese descent, but there are two distinct clusters that could not be 
characterized.



Self-identified race information projected onto these clusters reveals that these are 
likely individuals of Korean and Filipino descent

PCA identifies fine-scale population structure within the East 
Asian American GIA group



Associations between GIA and phenotypes remain even after 
accounting for SIRE

Nonalcoholic liver disease

Associating each GIA group with disease 
status across 1,800 EHR-derived 
phenotypes (phecodes) yields a total of 
259 significant associations even after 
accounting for SIRE (p-value < 1.12
х10-5)



Extensive genetic diversity within populations is intertwined with 
disease risk

Nonalcoholic liver disease Nonalcoholic liver disease

● Enrichment in the East Asian American group is driven by the Filipino and Korean American 
groups 

● Potential protective effect in the Chinese and Japanese American groups



Characterizing genetic ancestry as a continuum is particularly 
relevant for admixed populations

Neither reference panel nor demographic information can elucidate any clusters of population 
structure in the Hispanic Latino American GIA group

Subcontinental GIA

Puerto Rican

Columbian

Mexican

Peruvian



Population structure beyond discrete clusters in the Hispanic 
Latino American GIA group

Population substructure is better characterized by the clines of European and Native American 
ancestry along PC1

Subcontinental GIA Proportion European 
ancestry

Proportion Native American 
ancestry

Puerto Rican

Columbian

Mexican

Peruvian



Disease prevalence varies with genetic admixture proportions

Tested 1,800 phecodes across 4 ancestry proportions (European, African, East 
Asian, Native American) within each SIRE category → identified 424 significant 
associations (p-value < 2.08х10-5)

Nonalcoholic liver disease

424 significant ancestry proportion - phenotype associations out of 1,800 phecodes x 
4 ancestry tests: European, African, East Asian, Native American (p-value < 2.08х10-5)

Considering the actual proportion of ancestry when assessing disease risk can 
be more informative. 



•There are marked differences between 
race/ethnicity and genetically inferred 
ancestry, emphasizing that the populations 
defined by these two criteria are not analogous

•There is substantial disease risk 
heterogeneity across subgroups of the same 
continental genetic ancestry group, both across 
subcontinental ancestry and genetic admixture

•Association analyses show possible differential 
genetic architecture across populations

Conclusions



Part 3

Predicting rare disease through EHR signatures
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Current diagnostic odyssey for rare diseases is often 
prolonged by years due to misdiagnosis

https://blog.goldenhelix.com/an-end
-to-diagnostic-odysseys-could-lever
aging-cnv-analysis-for-whole-exom
e-or-genome-sequencing-help-provi
de-answers-for-the-undiagnosed/

300 million people 
suffer from a rare 

disease

50% of those with a 
rare disease are 

children

Patients see an 
average of 8 different 

physicians

70% are misdiagnosed
40% more than once

Average diagnosis takes 
8 years

Diagnostic odyssey causes the biggest delay in initiating treatment for rare 
disease patients



● Common Variable Immunodeficiency 
Disorders (CVID) is broadly characterized by 
recurrent viral and bacterial infections, but 
clinical manifestations are very heterogeneous

● Occurs 1 in 25,000 to 1 in 50,000 people

● Genetic basis of CVID is highly variable and 
largely unknown

● Majority of cases have an unknown cause and 
there are currently no specific mutations 
associated with a diagnosis

CVID is a rare, heterogenous immunodeficiency disorder

--> motivates a method that allows us to look at many 
symptoms of a patient, systematically and at scale

i.e. hand-reviewing charts won’t work
One lab test won’t work



● Clinical phenotypes of CVID intersect with 
virtually all medical specialties, making it 
difficult to pin down the immunogenic 
basis of the diagnosis

● Guidelines for recognizing CVID are very 
broad and limited as no single lab test 
can definitively determine a diagnosis

● Patients get ‘lost’ in specialty clinics 
where only a subset of their symptoms 
are treated

Heterogeneity of clinical 
manifestations leads to a 
diagnostic delays of 5-15 years

--> motivates a method that allows us to look at many 
symptoms of a patient, systematically and at scale

i.e. hand-reviewing charts won’t work
One lab test won’t work



0.01% of patients at UCLA diagnosed with CVID



Chronic sinusitis – All: 
All: 4.45% (CVID: 48%)

Bronchiectasis  - 
All: 0.6% (CVID: 23%)

Asthma – 
All: 10% (CVID: 42%)

Acute upper respiratory infections 
of multiple or unspecified sites – 

All: 13% (CVID: 24%)

Aggregating phenotypes prioritizes patients with CVID   

→ some phenotypes are relatively common in the general patient population, but are even more 
highly enriched in the CVID population.



Chronic sinusitis – All: 
All: 4.45% (CVID: 48%)

Bronchiectasis  - 
All: 0.6% (CVID: 23%)

Asthma – 
All: 10% (CVID: 42%)

Acute upper respiratory infections 
of multiple or unspecified sites – 

All: 13% (CVID: 24%)

Aggregating phenotypes prioritizes patients with CVID   

→ some phenotypes are relatively common in the general patient population, but are even more 
highly enriched in the CVID population.



Aggregating phenotypes prioritizes patients with CVID   
Combination of all four – 
All: 0.02% (CVID: 4%)

Chronic sinusitis – All: 
All: 4.45% (CVID: 48%)

Bronchiectasis  - 
All: 0.6% (CVID: 23%)

Asthma – 
All: 10% (CVID: 42%)

Acute upper respiratory infections 
of multiple or unspecified sites – 

All: 13% (CVID: 24%)

→ some phenotypes are relatively common in the general patient population, but are even more 
highly enriched in the CVID population.



EHR-signatures describe key characteristics of a disease and 
how it is represented in the EHR
A major bottleneck is identifying a set of EHR-derived features that characterize CVID-- no 
one test or feature within the medical data that definitievely describes individuals with CVID

Y93.G3 Activity, cooking and baking
R05 Cough
D83.9 Common variable immunodeficiency

IgG (1/1/19): 200 mg/dL
IgG (3/14/19): 606 mg/dL

• Phenotypes are not always cleanly encoded in EHR or clinically 
meaningful on their own

Need to look at the combination of various phenotypes in the medical record, 
not just the absence or presence of a single set
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Obtaining high-quality labeled cases is challenging and 
time-consuming

● Initial set of patients with any type of immunodeficiency are selected and then are 
manually reviewed to determine the diagnosis

● Extreme case data imbalance: 197 cases, 1 million controls

● A key concern is overfitting, where the model can simply ‘memorize’ the cases 
because there are so few of them and so many features in the EHR
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Feature selection to identify a set of features to accurately predict CVID

OMIM clinical description

● Utilize existing clinical databases that act as a proxy for learned information regarding 
CVID phenotype patterns
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OMIM clinical description

HP:0000246

HP:0002090

● Utilize existing clinical databases that act as a proxy for learned information regarding 
CVID phenotype patterns

● Clinical descriptions are annotated with HPO terms which is mapped to diagnosis codes 
listed in the EHR

Feature selection to identify a set of features to accurately predict CVID
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OMIM clinical description Diagnosis codes

•Hypothyroidism (244.0)

•Adrenal hypofunction (255.2)

•Other arthropathies (716.0)

•Psoriasis (696.4)

•Acquired hemolytic anemias (283.0)

HP:0000246

HP:0002090

(Bastarache et al. Science 2018)

34 EHR 
features

● Utilize existing clinical databases that act as a proxy for learned information regarding 
CVID phenotype patterns

● Clinical descriptions are annotated with HPO terms which is mapped to diagnosis codes 
listed in the EHR

● The OMIM database provides 34 EHR-derived features without ever looking at the 
training data 

Feature selection to identify a set of features to accurately predict CVID
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OMIM clinical description Diagnosis codes

•Hypothyroidism (244.0)

•Adrenal hypofunction (255.2)

•Other arthropathies (716.0)

•Psoriasis (696.4)

•Acquired hemolytic anemias (283.0)

HP:0000246

HP:0002090

(Bastarache et al. Science 2018)

34 EHR 
features

1. Chronic sinusitis (All: 4.45%, CVID: 48%)
2. Asthma (All: 10%, CVID: 42%)

…

10. Bronchiectasis (All: 0.6%, CVID: 23%)

+10 EHR 
features

UCLA-specific data capture unique phenotyping patterns 
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PheNet algorithm provides straightforward clinical interpretation 

PheNet scores reflect how closely patients’ EHR matches patterns 
of CVID 

x
1
β

Sinusitis  
+ x

2
β

Pneumonia
+ x

3
β

Asthma 
+ … + x

N
β

IgG
= 0.99

No symptoms 
of CVID

Many CVID 
symptoms

Score weights are inferred by performing a marginal regression for each feature
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PheNet algorithm provides straightforward clinical interpretation 

PheNet model maintains interpretability of the results

x
1
β

Sinusitis  
+ x

2
β

Pneumonia
+ x

3
β

Asthma 
+ … + x

N
β

IgG
= 0.99

Dear Provider,

XXXX XXX XX XX X XXXX X
XX XX XX XX X XX:
- Sinusitis
- Low IgG

XX XX XX XX X XXX XXXX 
XX

XX

Patient follow-up

Clinical predictions require a lot of trust and transparency for both clinicians and patients



PheNet outperforms previous state-of-the art methods

● PheNet performs 17%-31% better when comparing AUC-ROC and 42%-66% better 
when comparing AUC-PR 

● Top 10% of individuals with the highest PheNet score captures 60% of CVID 
cases whereas previous methods only captures 24%-45% of cases.



Numbers referenced in text:
Limiting the analysis to individuals with at least 
1 year of EHR data before their ICD-based 
diagnosis (N=58), PheNet identifies 64% of 
individuals with CVID before their ICD-based 
diagnosis at probability threshold of 0.90. The 
median number of days between the date 
identified by PheNet and the date of diagnosis 
is 244 days (SD: 374).

PheNet identifies CVID patients before formal diagnosis

● PheNet would have identified 64% 
of individuals with CVID before 
their original diagnosis

● Average gap between the date of 
diagnosis and the date identified by 
PheNet 244 days (SD: 374).

Identified by PheNet 
prior to original 
clinical diagnosis

Retrospective study shows PheNet can identify CVID patients 
before their formal clinical diagnosis
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Diagnosis codes

Antibody 
laboratory tests

Phenotype risk 
score percentile

Example patient shows patterns of CVID months before 
diagnosis
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Diagnosis codes

Antibody 
laboratory tests

Phenotype risk 
score percentile

Example patient shows patterns of CVID months before 
diagnosis



Top ranked PheNet patients have probable CVID according 
to an immune specialist blinded chart review 

Numbers referenced in text:
From the list of top 100 ranked individuals, 73% of individuals were assigned a score of 3, 4 or 5, indicating that 
they were highly probable as having CVID (Figure 4). Specifically, 8% of individuals were assigned a score of 5, 
meaning that they were positively diagnosed with CVID. In contrast, the individuals who were randomly chosen 
exclusively had scores of 1, 2, or 3 and 90% of individuals had a score of 1 or 2 indicating that they likely do not 
have CVID. 

● Top 100 PheNet patients and 
random 100 patients were given to 
an immunologist for a blind chart 
review

● From the top 100 ranked 
individuals, 73% highly probable 
(scores 1-5) as having CVID  and 
8% positively diagnosed (score 
5) with CVID

● Top 100 ranked individuals and a 
randomly selected 100 individuals 
were had full medical record 
assessed by immunologist to 
determine likelihood of CVID

● Randomly selected 
individuals exclusively 
had scores of 1, 2, or 3 
and 90% of individuals 
had a score of 1 or 2 
indicating that they likely 
do not have CVID. 



PheNet identifies prospective CVID patients across 5 UC institutions 
through a $5 million grant



UCLA Data Discovery 
Repository (de-identified)

Train 
prediction 

model

Run in Python in Azure VM

SQL for model 
features

(UCLA data 
vocab)

Coordinating a multi-site collaboration
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Train 
prediction 
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Frozen model 
weights (.csv)

Run in Python in Databricks environment

UC Data Warehouse (identified)

Run in Python in Azure VM

Coordinating a multi-site collaboration



PheNet identifies prospective CVID patients across 5 UC institutions 
through a $5 million grant

Year 1 goal

Patients that have 
visited for a full 
immunological 
evaluation



•EHR-signatures leverage common patterns 
of phenotypes to prioritize patients with rare 
disorders

•64% of CVID patients could have been 
identified by PheNet more than 8 months 
earlier than they had been clinically 
diagnosed

•PheNet is validated across 5 additional UC 
health systems to identify new CVID patients

Conclusions
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Questions, Comments, Concerns?

ruth_johnson@hms.harvard.edu



A brief recap of genomics since the Human Genome Project…

First population-scale 
genetic study (GWAS)

GWAS with >100K 
samples for Height



Genetic 
factors “Environmental”

factors

Mendelian phenotypes Complex phenotypes

Inside genes
Large effects

Affects one gene
Rare

Outside of genes
Small effects

Affects many genes
Common

Genetics contribute to the whole spectrum of disease risk

(e.g. Cystic Fibrosis and sickle cell 
anemia)

(e.g. heart disease, type 2 diabetes)



Hundreds of thousands of genetic risk regions have been identified 
through GWAS

2011

NHGRI-EBI GWAS Catalog 2011



Hundreds of thousands of genetic risk regions have been identified 
through GWAS

2018

NHGRI-EBI GWAS Catalog 2018



PCA is extremely computationally intensive

100,000 individuals x 
650,000 SNPs


