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Overview

e A brief primer on genetics
e Break (?)
e Assessing the interplay between genetic ancestry and disease risk

o Leveraging genomic diversity for discovery in an EHR-linked biobank-- the

UCLA ATLAS Community Health Initiative (Johnson et al. Genome Medicine
2022)

e Predicting rare disease through EHR signatures

o Electronic health record signatures identify undiagnosed patients with

Common Variable Inmunodeficiency Disease (Johnson et al. medRxiv
2022)



What does precision medicine with genomics entail?

INNOVATIVE MEDICINE: PERSONALISED MEDICINE
Cancer patients with e.g. colon cancer receive a personalised therapy based on their biomarkers

The results will
The patients determine the best
are examined Biomarker treatment for each
and analysed diagnostics patient
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Genomic medicine is a key component for individualized
diagnoses and treatments

Genomic
medicine

Pharmacogenomics
Monogenic disease
risk assessment

Translational genomics

PRS
PheRS
Rare disease diagnosis

Genome science Phenome science
Analytic methods: Analytic methods:
GWAS, PheWAS e-phenotyping,

natural language processing,
Resources: machine learning
biobanks, reference genomes,
variant knowledge bases Resources:

EHR data repositories, ontologies
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A key goal of genomic medicine is identifying genes that
cause a disease

Monogenic diseases are typically
caused by a single gene

Cystic fibrosis
Sickle cell anemia
Huntington disease
Duchenne muscular
dystrophy

many, many more!
DNA

gene




Numerous genes across the genome contribute to disease
risk for most common diseases

Complex traits/diseases are
polygenic
(many genes contribute)

Coronary heart disease

Type | and Type Il diabetes
Breast cancer
Height and BMI
many, many more!
ona DOHOOOPHOOC

gene gene gene



Commonly measured biospecimens and biomarkers

Genotyping

~650K common SNPs
and small indels

~$100
studying complex
traits/diseases and

common genetic
variation
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Commonly measured biospecimens and biomarkers

Genotyping Exome sequencing Whole genome sequencing RNA-sequencing
~650K common SNPs exons (protein coding all variants (including very | Captures cellular
and small indels regions) rare) in exons and introns content of RNAs

and large structural
variants
~$100 ~$8K-$§11K ~$10K - $20K ~10K - $50K+
studying complex Studying rare genetic Ultra rare genetic diseases, | Understanding
traits/diseases and diseases including de novo transcriptome, i.e.
common genetic mutations connecting genes to
variation functional proteins
e ——
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Single nucleotide polymorphisms (SNP) are “common” point
mutations across the genome (minor allele frequency > 1%)

Reference allele

Alternate allele



Single nucleotide polymorphisms (SNP) are “common” point
mutations across the genome (minor allele frequency > 1%)
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Disease phenotypes are a combination of genetic and
environmental components

1 )
M Genetics Environment

T T T

y G e



Some SNPs have no physiological effect, while others are
linked to changes in phenotype

Genetics Environmen t

T T T
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genotype genetic
effects



Genome-wide association studies (GWAS) aims to estimate the
effects of the SNPs affecting a given phenotype

Hypothesis test at the m" SNP

cases (n=1,000)
people with heart disease

controls (n=1,000)
people without heart disease

cases

controls

T

62% |e

C
E

Heart disease




Genome-wide association studies (GWAS) aims to estimate the
effects of the SNPs affecting a given phenotype

. 2
B N(O’ Iag ) genetic effects environment Global variables
, for heart disease shared across
individuals

e ~N(0, 0%

y.=x;B+e
, for i" individual

genotypes

(assumes phenotypes [y] are i.i.d.)



Genome-wide association studies (GWAS) aims to estimate the
effects of the SNPs affecting a given phenotype
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Disease risk is spread throughout the genome

Coronary heart disease: 250+ regions

Type | and Type Il diabetes: 60+ and 500+ regions
Breast cancer: 200+ regions

Height and BMI: 700+ and 250+ regions

10 4

More
significant

'|Og1o(P)

Chromosome

— Ildentified variants are NOT always causal! Functional validation is needed to
confirm causality.



Polygenic risk scores provide individual-level predictions to identify
patients with heightened disease risk

Polygenic Risk Score Hypertension Rate

~ 1.00

PRS
>97.5%
- 80-97.5%
— 20-80% ‘
- 2.5-20%
<2.5%

- 0.75

= 0.50

- 0.25

~ 0.00

20 40 60 80
Age, Years
Vaura et al. 2021



Wow, if genetics can help us predict disease... why isn't [insert
favorite direct-to-consumer genetics company] in all of the clinics?

e [tis unclear how much additional risk information PRS provides over current risk
assessment methods

e The majority of diseases have a much smaller genetic component compared to the
effect of environmental factors



Wow, if genetics can help us predict disease... why isn't [insert
favorite direct-to-consumer genetics company] in all of the clinics?

It is unclear how much additional risk information PRS provides over current risk
assessment methods

The majority of diseases have a much smaller genetic component compared to the
effect of environmental factors

PRS has relatively poor sensitivity and specificity making it challenging to administer as
a clinical prediction tool

“Typical sensitivity for a polygenic score is 10-15% (meaning that only 10-15% of
people who will develop the disease will have a high polygenic score).—for example, a
polygenic score developed to detect women at >17% lifetime risk of breast cancer has a
sensitivity of 39% (it will identify 39% of the women who will go on to develop breast
cancer, but miss 61% of them) and a specificity of 78% (22% of women who will not
go onto develop breast cancer will be classified as having a “high risk score”)” - Sud et
al. BMJ 2023


https://www.bmj.com/content/380/bmj-2022-073149#ref-7

Wow, if genetics can help us predict disease... why isn't [insert
favorite direct-to-consumer genetics company] in all of the clinics?

It is unclear how much additional risk information PRS provides over current risk
assessment methods

The majority of diseases have a much smaller genetic component compared to the
effect of environmental factors

PRS has relatively poor sensitivity and specificity making it challenging to administer as
a clinical prediction tool

“Typical sensitivity for a polygenic score is 10-15% (meaning that only 10-15% of
people who will develop the disease will have a high polygenic score).—for example, a
polygenic score developed to detect women at >17% lifetime risk of breast cancer has a
sensitivity of 39% (it will identify 39% of the women who will go on to develop breast
cancer, but miss 61% of them) and a specificity of 78% (22% of women who will not
go onto develop breast cancer will be classified as having a “high risk score”)” - Sud et
al. BMJ 2023

Is it equitable? PRS does not have uniform performance across all patient populations.


https://www.bmj.com/content/380/bmj-2022-073149#ref-7

Take 5 min break



Part 2

Assessing the interplay between genetic
ancestry and disease risk



Majority of genetic studies focus on European ancestry individuals

In millions

European

2006 2008 2010 2012 2014 2016 2018

Martin et al. Nat Genet 2019



Majority of genetic studies focus on European ancestry individuals

Compared to the

global population
In millions v
in billions

European

East Asian

South Asian

African

B East Asian

7‘“_ South Asian HispaniCILatinx
o African
Middle East

Hispanic/Latinx
Other

2006 2008 2010 2012 2014 2016 2018
ox

Martin et al. Nat Genet 2019
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Explicitly considering genetic ancestry is key to precision
medicine efforts

e Genetic ancestry provides specific information about key patterns of genetic variation, making
it an important factor in numerous healthcare decisions

o e.g. Carbamazepine is highly associated with adverse side effects in individuals with the
HLA allele B*1502 allele
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HLA allele B*1502 allele frequency



Evolutionary forces created a variety of genetic landscapes

across continents

gy 17 [ ‘ Denisova Cave
Wk B
Admixture between
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Historical patterns of migration influenced
the global distribution of genetic variation
through gene flow and genetic drift

200 Kya
<4——  Phase I: Modern Human Origins Y
<4—— Phase |I: Population Divergence 150 Kya
<+——  Phase lII: Migration out of Africa 100 Kya
30-50 Kya
15-30 Kya
...........

NE Africa Middle East/Europe Asia Americas Australia/Melanesia

|——————— sub-Saharan Africans |} Non-Africans —————

The out-of-Africa migration led to a bottleneck effect
that reduced genetic variation across non-African
ancestry populations



Differential genetic architecture across ancetries affects
disease risk across populations

HbS allele frequency (%) y &

0-0.51
0.52-2.02
m 2.03-4.04
m 4.05-6.06
= 6.07-8.08 .
= 8.09-9.60
= 9.61-11.11
= 11,12-12.63
= 12.64-14.65
= 14.66-18.18

HbS allele frequency

Malaria endemicity o8

Malaria free

Epidemic
I Hypoendemic
B Mesoendemic
B Hyperendemic gOHY Piel et al. Nat Comm 2010
I Holoendemic Soo” |

Malaria endemicity




Population structure can lead to spurious associations

Case Control

0006...0000 . . .

people without heart disease

: I o controls (n=1,000)
cases (n=1,000)
people with heart disease

1000 O
0000

Disease risk SNP

Balding Nat Rev Genet 2006



Population structure confounds the association between
genotypes and phenotypes

genetic effects environment

/ ! (confounding variable)

N
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Principal component analysis captures population structure

ndviwalA 2 0 1 0 0 1 Individual A 0.1 04 1 09
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PCA is a dimensionality reduction technique that aims to maximize the variance of the data
represented in the top principal components (vectors) — reconstruct the information represented in
the data with the fewest dimensions as possible




Principal component analysis captures population structure
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PCA is a dimensionality reduction technique that aims to maximize the variance of the data
represented in the top principal components (vectors) — reconstruct the information represented in
the data with the fewest dimensions as possible

Individual A




Principal component analysis captures population structure at the
continental and subcontinent level
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EHR-linked biobanks provide the opportunity to study disease risk
across ancestrally diverse populations

biobank® ®NINU g

HUNT Research Centre
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UCLA ATLAS captures the vibrant diversity of Los Angeles

Los Angeles Census ATLAS self-identified race/ethnicity
- . NH-AmIn
! ; /  Hi-Asian 045%  HAOIN e
R —
HL-AfAm 0.03%
B 0.20%
3 NH-AfAm___

6.59%

HL-Oth
8.80%

. Lal
RECTECE i jgarson (@]

.‘i TN s
Palos Verdes Estz%&v" '|='- g

QFF"’V!,“" i = ‘ NH-Othl

Rancho’Palos) Verdgs.:, 9.46%

_________________________

i HL - Hispanic/Latino

' NH - Non-Hispanic/Latino

' WC - White

I AfAm - African American
HL-WC !

8.40% PI - Pacific Islander

Oth - Other Race

Within ATLAS, about 40% of individuals self-identify as a race other than White, with
appreciable sample sizes in the Hispanic Latino and Asian American populations



Self-identified race/ethnicity (SIRE) and genetically inferred
ancestry (GIA) are not analogous

(South Asian American (N=625)"

[Unknown SIRE (N=886)

Other SIRE (N=2930)
|

Genetically inferred ancestry (GIA):
genetic characterization of individuals
within a group who likely share recent
biological ancestors as inferred by a
method of choice and a given
reference panel

NH-White (N=21594

Self-identified Race and Ethnicity I\ vr'jf\ . — ——
(SIRE) have no direct biological /) me
implications

NH-Afr (N=1859
~_ [HL-White (N=2416)

African Amerlcan N_1995
HL-Other (N=3269

GIA SIRE



No clear 1:1 correspondence between SIRE and GIA

————{Unknown SIRE (N=886)
(South Asian American N=625\‘QW

NH-White (N=21594

e Hispanic Latino American GIA (Fiaane Lam=son
group splits into multiple o //
SIREs i

e Significant proportion of
individuals in the European
American GIA group
self-identify as one of the
multiple other SIREs

NH-PI (N=104
\— NH-NatAm (N=97)
NH-Asian (N=3581

=3331)~
= 7 "»‘“ - NH-Afr (N=1859)

Ambiguous (N=2332) e
mbiguous (NE2IVN N\ [HL-White (N=2416)

HL-Other (N=3269

African American (N=1995

GIA SIRE



PCA reveals notable differences between GIA and SIRE

08 Continental-level GIA B85 SIRE
: African '
American East Asian American
0.2 Z South Asian American 0.2
N N
8 0.1 8 0.1
Unclassified
0.0 spa_nic Latino 0.0
American
European
American
] -0.1
o -0.2 -0.1 0.0 0.1 0.2

e Cline between African and European ancestry, and those who self-identify as African
American along almost all of PC2

e GIAform a much tighter cluster, leaving many of the individuals who self-identified as
African American outside this boundary. 38



PCA reveals notable differences between GIA and SIRE

e Continental-level GIA 03 SIRE
: African '
American East Asian American NH-AfAm
0.2 z South Asian American 0.2 NH-Asian
N I3V
8 0.1 8 0.1
Unclassified
00 5 ispa_nic Latino 0.0 fL-Other
American
European NH-White
American
i -0.2 -0.1 0.0 0.1 0.2 -l -0.2 -0.1 0.0 0.1 0.2
PC1 PC1

e There are also a large number of individuals that could not be assigned a GIA
cluster and race/ethnicity information does not reveal any patterns either

39



Projecting individuals’ preferred language onto PCs reveals
individuals likely with Middle Eastern ancestry

0.3

0.2

PC2

0.1

0.0

Unclassified

Continental-level GIA
African
American East Asian American

- South Asian American

Hispanic Latino

® American
European
American
-0.2 -0.1 0.0 0.1 0.2
PC1
o

uncharacterized GIA groups

0.3

0.2

0.0

-0.1

Language

Chinese (Mandarin)
Chinese (Cantonese)

* L la. Viethamese
A Y
English o :ngalog
*
0 0®
Spanish
Arabic 6
° Russian
Armenian . .
arsi, Persian
-0.2 -0.1 0.0 0.1 0.2

PC1

Additional EHR information such as “Language” can help elucidate

40



Projecting individuals’ preferred language onto PCs reveals
substructure within continental GIA clusters

0.3

0.2

PC2

0.1

0.0

Unclassified

European

Continental-level GIA

African
American

American

East Asian American

0.1

0.2

PC2

0.3

0.2

0.1

0.0

-0.1

Language

Chinese (Mandarin)
Chinese (Cantonese)

Viethamese

English

Arabic 6
° Russian

Armenian . .
arsi, Persian

-0.2 -0.1 0.0 0.1 0.2
PC1

Within the East Asian American GIA group, there are a variety of different

languages represented, such as Mandarin, Cantonese, Viethamese, and
Tagalog

41



PCA identifies fine-scale population structure within the East
Asian American GIA group

Subcontinental GIA

‘ Han Chinese
0.05 '

0.0 Southern’ Han

PC4

Chmese’
%g°

o
-0.05
o0
o %
°

29 Viethamese
0.10 Japanese %

-0.1 0.0 0.1 0.2
PC3

Using information from 1000 Genomes, we can see distinct clusters of individuals of Japanese,
Vietnamese, and Chinese descent, but there are two distinct clusters that could not be
characterized.



PCA identifies fine-scale population structure within the East
Asian American GIA group

Subcontinental GIA Self-identified race
Korean ‘g * Han Chinese Korean ‘g .
0.05 0.05 ¥ o *° oggo,
Chinese: a¥’
d il
0.00{_. . °, ooy 0001 _. . °. . . T o s
. Filipino &5%2, ., ¢ . Filipinog’ so o, stk e =
g o g - SR
-0.05 ~0.05 e xR
, Vietnamese
-0.10 -0.10 s
-0.1 0.0 0.1 0.2 0.0 0.1 0.2
PC3 PC3

Self-identified race information projected onto these clusters reveals that these are
likely individuals of Korean and Filipino descent



Associations between GIA and phenotypes remain even after
accounting for SIRE

logit (phecode) = f, + fgenetic_ancestry_group + f,sex + page
+ p,SIRE [over all ATLAS individuals]

Nonalcoholic liver disease

: Associating each GIA group with disease
: status across 1,800 EHR-derived

' phenotypes (phecodes) yields a total of

: 259 significant associations even after
: accounting for SIRE (p-value < 1.12

| x107)
?

European American{ @

African American —0—

Hispanic Latino American

East Asian American ——

0.5 1.0 1.5 2.0
Odds ratio



Extensive genetic diversity within populations is intertwined with
disease risk

e Enrichment in the East Asian American group is driven by the Filipino and Korean American
groups

e Potential protective effect in the Chinese and Japanese American groups

Nonalcoholic liver disease Nonalcoholic liver disease

European American{ @ Chinese American- ®

African American —o— Japanese American ®

Hispanic Latino American Filipino Amerian

Korean American

0.6 0.8 1.0 1.2



Characterizing genetic ancestry as a continuum is particularly
relevant for admixed populations

Subcontinental GIA

0.1

0.0 % Sog0 8% 0 & °
-0.1 i Mexican

§ % Columbian
-0.2 2
Puerto Rican
-3 °
-0.4
-0.2 0.0 0.2

PC1

Neither reference panel nor demographic information can elucidate any clusters of population
structure in the Hispanic Latino American GIA group



Population structure beyond discrete clusters in the Hispanic
Latino American GIA group

Subcontinental GIA
0.1
8e°% o Peruvian
0.0 .:: é?%@zf‘f@os:g%;fgi%a°go e §°
o%o o £
0% .
-0.1 E Mexican
~N & -
S % Columbian
-0.2 P
Puerto Rican
-0.3 ¢
-0.4 °
-0.2 0.0 0.2
PC1

0.0

Proportion European
ade. _ancestry

1

0.0
PC1

0.2

Proportion Native American

_ancestry
0.0 | .
0.1 -
0.2 i °
-0.3 o°
02 00 02
PCH

Population substructure is better characterized by the clines of European and Native American

ancestry along PC1



Disease prevalence varies with genetic admixture proportions

424 significant ancestry proportion - phenotype associations out of 1,800 phecodes x
4 ancestry tests: European, African, East Asian, Native American (p-value < 2.08x107°)

Nonalcoholic liver disease

0.4; 0.4
S03 503
c v c U.
@ @
$ 0.2 2 0.2
e 2
Q0.1 ap1d
0.0 , . ' , 0.01 . . _ _
0.2 04 06 08 1.0 0.2 04 06 08 1.0
Prop European ancestry Prop Native American ancestry

Considering the actual proportion of ancestry when assessing disease risk can
be more informative.



Conclusions

*There are marked differences between
race/ethnicity and genetically inferred
ancestry, emphasizing that the populations
defined by these two criteria are not analogous

*There is substantial disease risk
heterogeneity across subgroups of the same
continental genetic ancestry group, both across
subcontinental ancestry and genetic admixture

*Association analyses show possible differential
genetic architecture across populations
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Part 3

Predicting rare disease through EHR signatures



Current diagnostic odyssey for rare diseases is often
prolonged by years due to misdiagnosis

50% of those with a
rare disease are
children

70% are misdiagnosed
40% more than once

300 million people Patients see an Average diagnosis takes
suffer from arare average of 8 different 8 years
disease physicians

Diagnostic odyssey causes the biggest delay in initiating treatment for rare

disease patients .



CVID is a rare, heterogenous immunodeficiency disorder

recurrent ear
. . . ) chronic sinusitus
e Common Variable Immunodeficiency M _

Disorders (QVID) is broad'ly c;harac;terized by w%’
recurrent viral and bacterial infections, but 77| PR\

pneumonia /
e Occurs 1in 25,000 to 1 in 50,000 people AL
infection/inflamation e
. . . . . f gastrointestinal |

e Genetic basis of CVID is highly variable and [ et %—\
largely unknown R

clinical manifestations are very heterogeneous

| & 1 \
O oAy \'g‘\
\ N V\T\\
\ ) ] ‘\‘\
'~ englarged spleen
» N\

e Majority of cases have an unknown cause and
there are currently no specific mutations
associated with a diagnosis

red blood cells,
platlets



Heterogeneity of clinical
manifestations leads to a
diagnostic delays of 5-15 years

Clinical phenotypes of CVID intersect with
virtually all medical specialties, making it
difficult to pin down the immunogenic
basis of the diagnosis

Guidelines for recognizing CVID are very
broad and limited as no single lab test
can definitively determine a diagnosis

Patients get ‘lost’ in specialty clinics
where only a subset of their symptoms
are treated

Warning Signs

of Primary Immunodeficiency

Primary Immunodeficiency (Pl) causes children and adults to have infections that come back freg ently or
are unusually hard to cure. 1:500 persons are affected by one of the known Primary Immunod

iciencies.

If you or someone you know is affected by two or more of the following Warning Signs, speak
to a physician about the possible presence of an underlying Primary Immunodeficiency.

WCONOGOCULRON=

-l
&

=]
Jn fefoy Model | Gerpa . o

Baxter  CSlBeing  GRIFOLS octaphoma (8 PP

Four or more new ear infections within 1 year.

Two or more serious sinus infections within 1 year.
Two or more months on antibiotics with little effect.
Two or more pneumonias within 1 year.

Failure of an infant o gain weight or grow normally.
Recurrent, deep skin or organ abscesses.

Persistent thrush in mouth or fungal infection on skin.
Need for intravenous antibiofics to clear infections.
Two or more deep-seated infections including sepficemia.

A family history of PI.

Presented as a public service by

art by grant SH7SDP225146-05 from the Urited States Centars.
Yon (G83)

N eart,
o) U ind Blood
2 In NHLBI)

Talecris
Sothwrapie for IS eareeres
Theso warnin signs were dovelopod by the et Modal Foundaion Medical Advicry Board

with Primary Immunod y experts is strongly suggested. © 2009 Jeffre yModHF ndafion
For information or referrals, con! 1av1heJeK yModeII Foundation: 8060NF04-PI infodpi.org



0.01% of patients at UCLA diagnosed with CVID
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Aggregating phenotypes prioritizes patients with CVID

Acute upper respiratory infections |

O O
of multiple or unspecified sites — 'l\m\'l\ﬂ\
All: 13%

Chronic sinusitis — All:
All: 4.45%

Asthma -
All: 10%

Bronchiectasis -
All: 0.6%

— some phenotypes are relatively common in the general patient population, but are even more
highly enriched in the CVID population.



Aggregating phenotypes prioritizes patients with CVID

Acute upper respiratory infections |
of multiple or unspecified sites — 'l\m\'l\ﬂ\
All: 13% (CVID: 24%)
o O
Chronic sinusitis — All: /E“\
All: 4.45% (CVID: 48%)

® 0 O
q
Bronchiectasis - 1

All: 0.6% (CVID: 23%)

Asthma -
All: 10% (CVID: 42%)

— some phenotypes are relatively common in the general patient population, but are even more
highly enriched in the CVID population.



Aggregating phenotypes prioritizes patients with CVID

Combination of all four -
Acute upper respiratory infections

O O )
. o) . o)
of multiple or unspecified sites — 1‘@?? All: 0.02% (CVID: 4%)

All: 13% (CVID: 24%) ii\

[ BN
Chronic sinusitis — All: /l\“\
All: 4.45% (CVID: 48%)

q
Bronchiectasis - 1

All: 0.6% (CVID: 23%)

Asthma -
All: 10% (CVID: 42%)

— some phenotypes are relatively common in the general patient population, but are even more
highly enriched in the CVID population.



EHR-signatures describe key characteristics of a disease and
how it is represented in the EHR

A major bottleneck is identifying a set of EHR-derived features that characterize CVID-- no
one test or feature within the medical data that definitievely describes individuals with CVID

(@ Y93.G3 Activity, cooking and baking
RO05 Cough
D83.9 Common variable immunodeficiency

IgG (1/1/19): 200 mg/dL
IgG (3/14/19): 606 mg/dL

Need to look at the combination of various phenotypes in the medical record,
not just the absence or presence of a single set



Obtaining high-quality labeled cases is challenging and

time-consuming

J—

[ Medical records

Identified medical charts

Medical record numbers
ICD codes
Free-text notes

ICD-10

Contains D80.*
Immunodeficiency with
predominantly antibody

Medications defects
Laboratory tests (N=~3,200
Medical history — )
. Images ] | e
\ ~ { i |
DR i Manual chart review i
| v

{Medical record numbers ]

Confirmed CVID cases
(N=197)

e Initial set of patients with any type of immunodeficiency are selected and then are
manually reviewed to determine the diagnosis

e Extreme case data imbalance: 197 cases, 1 million controls

e Akey concern is overfitting, where the model can simply ‘memorize’ the cases
because there are so few of them and so many features in the EHR -



Feature selection to identify a set of features to accurately predict CVID

OMIM clinical description

# 607594

IMMUNODEFICIENCY, COMMON VARIABLE, 1; CVID1

INHERITANCE RESPIRATORY
- Autosomal recessive Airways
HEAD & NECK - Bronchiectasis
Head - Bronchitis, recurrent
- Sinusitis, recurrent Lung

Ears - Pneumonia, recurrent

- Otitis media, recurrent
Eyes
- Conjunctivitis

e Utilize existing clinical databases that act as a proxy for learned information regarding
CVID phenotype patterns



Feature selection to identify a set of features to accurately predict CVID

OMIM clinical description

# 607594

IMMUNODEFICIENCY, COMMON VARIABLE, 1; CVID1

HP:0002090
INHERITANCE RESPIRATORY
- Autosomal recessive Airways

HEAD & NECK - Bronchiectasis

He: - Bronchitis, recurrent
Lu

- Sinusitis, recurrent

- Pneumonia, recurrent

- Otitis media, recurrent
Eyes

- Conjunctivitis
HP:0000246

e Utilize existing clinical databases that act as a proxy for learned information regarding
CVID phenotype patterns

e Clinical descriptions are annotated with HPO terms which is mapped to diagnosis codes
listed in the EHR



Feature selection to identify a set of features to accurately predict CVID

OMIM clinical description

# 607594
IMMUNODEFICIENCY, COMMON VARIABLE, 1; CVID1

INHERITANCE
- Autosomal recessive

RESPIRATORY
Airways

HEAD & NECK - Bronchiectasis
He, - Bronchitis, recurrent

Lu

- Sinusitis, recurrent

- Pneumonia, recurrent

- Otitis media, recurrent

Eyes
- Conjunctivitis

HP:0000246

HP:0002090

—

Diagnosis codes

4 eHypothyroidism (244.0)

e Adrenal hypofunction (255.2)
eOther arthropathies (716.0)
ePsoriasis (696.4)

e Acquired hemolytic anemias (283.0)

J

. 34 EHR
features

/

(Bastarache et al. Science 2018)

e Utilize existing clinical databases that act as a proxy for learned information regarding

CVID phenotype patterns

e Clinical descriptions are annotated with HPO terms which is mapped to diagnosis codes

listed in the EHR

e The OMIM database provides 34 EHR-derived features without ever looking at the

training data
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UCLA-specific data capture unique phenotyping patterns

34 EHR
features

(Bastarache et al. Science 2018)
\

1. Chronic sinusitis (All: 4.45%, CVID: 48%)
2. Asthma (All: 10%, CVID: 42%)

>+1 0 EHR
‘ e features

10. Bronchiectasis (All: 0.6%, CVID: 23%)

[ ]
T
[
T
I[e ¥\ Health
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PheNet scores reflect how closely patients’ EHR matches patterns
of CVID

Score weights are inferred by performing a marginal regression for each feature

[ XlBSinuSitiS ¥ XZB Pneumonia+ XBl} Asthma T oess T XNB IgG: 0.9 J

OO
No sy(r:n ptoms :H\:H\. :H\:H\. I\gsrrr]\};)t(c:)\r;lg
of CVID /H\ /H\ /H\ /H\ /H\ /H\ /
IR VYV SRV Y M



PheNet model maintains interpretability of the results

Clinical predictions require a lot of trust and transparency for both clinicians and patients

XIB Sinusitis + XZB Pneumonia+ X3l} Asthma

+...+X

NBI ¢~ 0.99

| Patient follow-up

B N
™~ M

AR
T™7TT ’H"H‘:’H"H‘

Dear Provider,

XXXX XXX XX XX X XXXX X
XX XX XX XX X XX:

- Sinusitis

- Low IgG

XX XX XX XX X XXX XXXX

XX
4




PheNet outperforms previous state-of-the art methods

A B

(@)

== PheNet (UCLA): 0.83
1.00 1.00 — PheRS-CVID (VU): 0.48 1.00
= CMA-score (VU): 0.28 %
<
2]
o

0.75 £075

) 0.75 ®

5 g 8

- 9 ©

% 0.50 2 $0.50
g 2 %

& a 0.50 S

= o

}...

0.25 = PheNet (UCLA): 0.95 ,5025 <+ PheNet (UCLA)
= PheRS-CVID (VU): 0.79 =~ < PheRS-CVID (VU)
= CMA-score (VU): 0.66 =4 < CMA-score (VU)

0.25 9]
o
0.00 0.00
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.0 0.1 0.2 0.3 0.4 0.5
False positive rate Recall Proportion of individuals above threshold

e PheNet performs 17%-31% better when comparing AUC-ROC and 42%-66% better
when comparing AUC-PR

e Top 10% of individuals with the highest PheNet score captures 60% of CVID
cases whereas previous methods only captures 24%-45% of cases.



Retrospective study shows PheNet can identify CVID patients
before their formal clinical diagnosis

Patients with > 1 yr data before diagnosis (N=56)

e PheNet would have identified 64%
of individuals with CVID before
their original diagnosis L8

e Average gap between the date of
diagnosis and the date identified by
PheNet 244 days (SD: 374).

Identified by PheNet ]
prior to original $
clinical diagnosis P




Example patient shows patterns of CVID months before

diagnosis

Diagnosis codes

Antibody
laboratory tests

Phenotype risk
score percentile

PheNet percentile

Phecodes
136.0
496.0A Other infectious and 41.0 )
Chronic parasitic diseases Bacterial
airway infection NOS
obstruction 475.0 4.0
709.7 Chronic sinusitis Othgr alveolar an
3 480.0
Unspecified diffuse I pariekoalveolar ST gsﬁ.ti )
connective tissue pneumopathy 'soriasis
‘ disease I ir l
I 2014 I 2015 I I ;:0 2017 I I?e‘g 2019
495.0 \ 502.0 686.0
289.4 Asthma ;95'3” téisi Post inflammatory 497.0 " Other local
Lymphadenitis ronchiegtasis pulmonary fibrosis Bronchitis infections of skin
and subcutaneous
Immunodeficiency tissue
ICD
Immunoglobulin G
1200 A A A
g O =\ Ak S~ - =
1000 A A A----- & _____ A
’
—E‘ 800 /’I
- —— - — —— —— —— —— —— —— —— - S S —— — — — — ——— -
o 600 ™ —k"
o
400
200
0
PheNet
o, a PY
100.00% 20000000000%%"
!
90.00% !
!
80.00% ¢
70.00%
60.00%
50.00%
114 5/15 1016 2/18 719
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Example patient shows patterns of CVID months before
diagnosis

Phecodes
136.0
496.0 1 Other infectious and 41.0
Chronic parasitic diseases Bacterial
airway infection NOS
obstruction 475.0 4.0
709.7 Chronic sinusitis Othgr alveolar an
. . Unspecified diffuse I paridkoalveolar ;srg:monia 696.4
D|ag nosis codes connective tissue pneumopathy Reonasls
‘ disease I T l
I 2014 I 2015 I | ?:o 2017 I I?m 2019
495.0 496.3 \ 502.0 686.0
289.4 Asthma - . Post inflammatory 497.0 Other local
Lymphadenitis Bronchiectasis pulmonary fibrosis Bronchitis infections of skin
:g[r)nunodeficiency agguiubculaneous
Immunoglobulin G
1200 A A A
Antibody 1000 K i, < h----- Ay - A
4
= VA
laboratory tests g s® Yy )
D -1 e L. e e e T R
K=
400
200 ~
0 1\
I | PheNet
- 100.00% aed® ®
Phenotype risk ° Y i i
. £ 90.00% !
[] ]
score percentile g 80.00% v/
Q 4
@ 70.00%
3
< 60.00%
o
50.00%

114 5/15 1016 2/18 719



Top ranked PheNet patients have probable CVID according
to an immune specialist blinded chart review

Random 100 || Top 100

e Top 100 PheNet patients and
random 100 patients were given to pefinite cvio I
an immunologist for a blind chart

review Likely CVID

e From the top 100 ranked Possibly CVID
individuals, 73% highly probable
(scores 1-5) as having CVID and Urikeycvib

8% positively diagnosed (score
5) with CVID = [ |
0 20 40 60 0 2

Number of individuals

0 40 60



PheNet identifies prospective CVID patients across 5 UC institutions

through a $5 million grant m National Institute of
Allergy and
Infectious Diseases

Collaborative multi-site project to speed the identification and
management of rare genetic immune diseases
Butte, Manish J. Pasaniuc, Bogdan

University of California Los Angeles, Los Angeles, CA, United States

UC Davis i Sacramento

@ © UC Berkeley

—— UGS G ® |JC Merced

UC Santa Cruz @

UCsr Health [ Health

UC Santa Barbara @

UCI Health /UCLA' W UC San Diego Health
ea C San Diego




Coordinating a multi-site collaboration

Run in Python in Azure VM

4 UCLA Data Discovery )
Repository (de-identified)

Health

Tsi SQL for model
o features
prediction (UCLA data

model vocab)




Coordinating a multi-site collaboration

Run in Python in Azure VM

4 UCLA Data Discovery )
Repository (de-identified)

Health

Train SQL for model
. . features
prediction (UCLA data
model vocab)
Convert to OMAP
L format
SQL to pull model
Frozen model features
weights (.csv) (OMAP data
vocab)

|

UC Data Warehouse (identified)
Health  UCSanDiego Health

UCI Health YGsrHealth

HEALTH

Run in Python in Databricks environment




Coordinating a multi-site collaboration

Run in Python in Azure VM

4 UCLA Data Discovery )
Repository (de-identified)

Health

Train SQL for model
. . features
prediction (UCLA data
model vocab)
Convert to OMAP
L format
SQL to pull model
Frozen model features
weights (.csv) (OMAP data
vocab)

|

UC Data Warehouse (identified)

Health  UCSanDiego Health UC-wide honest
broker
| 'CSF Top 100 Top 100 patients
HEALTH UCI Health Health patients per site ]—b per site 1
(identified) (de-identified)

Run in Python in Databricks environment



Coordinating a multi-site collaboration

Run in Python in Azure VM

4 UCLA Data Discovery )

Repository (de-identified) Ve ~
I[6¥'Y Health HEALTH
Full clinical workup by
Train Sl e enls] [ immunologist ]
. L. features
prediction (UCLA data
model ) [ Clinician contacts ]
patients’ PCP
Convert to OMAP
L format T
SQL to pull model Medical charts
Frozen model features (identified site-specific IDs)
weights (.csv) (OMAP data \
vocab)
l l UCD honest broker
UC Data Warehouse (identified)
Health  UCSanDiego Health UC-wide honest
Top 100 broker Top 100 patient
UCSF op op patients
HEALTH UCI Health Health patients per site per site
(identified) (de-identified)

Run in Python in Databricks environment



Coordinating a multi-site collaboration

Run in Python in Azure VM

-

UCLA Data Discovery
Repository (de-identified)

Health

~

Train SQL for model
. . features
prediction (UCLA data
model vocab)
Convert to OMAP
L format
SQL to pull model
Frozen model features
weights (.csv) (OMAP data
vocab)

|

UC Data Warehouse (identified)
Health  UCSanDiego Health

HEALTH

UCI Health YGsrHealth

Run in Python in Databricks environment

[ Exome sequencing ]

L

-

HEALTH

[

Full clinical workup by
immunologist

)

T

Clinician contacts
patients’ PCP

)

!

Medical charts
(identified site-specific IDs)

]/\

UC San Diego Health

Full clinical workup by
immunologist

T

[ Clinician contacts ]

!

Medical charts
(identified site-specific IDs)

patients’ PCP
] J

UCD honest broker

UCSD honest

broker

UC-wide honest

Top 100

broker
patients per site
(identified)

per site

Top 100 patients
(de-identified)

BN

o

UCsr Health

Full clinical workup by
immunologist

)

T

Clinician contacts
patients’ PCP

!

Medical charts
(identified site-specific IDs)

)

\§
UCSF honest broker




PheNet identifies prospective CVID patients across 5 UC institutions
through a $5 million grant

Health

10

Patients that have g
visited for a full
immunological -
evaluation 6

UCSanDiegoHealth* = = = = = = = = = = = = = = — Year 1 goal

'HEALTH  UCI Health  usericaitn

UCLA UCSD UCD UCI UCSF



Conclusions

*EHR-signatures leverage common patterns

of phenotypes to prioritize patients with rare  Electronic health record signatures
identify undiagnosed patients with

disorders
Common Variable Immunodeficiency
*64% of CVID patients could have been Disease
identified by PheNet more than 8 months Ruth Johnson,Alexis V. Stephens, Sergey Knyazev,
earlier than they had been Cllnlca”y Lisa A. Kohn, Malika K. Freund, Leroy Bondhus, Brian L. Hill,
. Tommer Schwarz, Noah Zaitlen, ‘2’ Valerie A.Arboleda,
dlagnosed Manish |. Butte, Bogdan Pasaniuc

*PheNet is validated across 5 additional UC
health systems to identify new CVID patients
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Questions, Comments, Concerns?

ruth_johnson@hms.harvard.edu



A brief recap of genomics since the Human Genome Project...

UCLA ATLAS

. . . Community >700 Biobanking .
First population-scale GWAS with >100K |~ oo e publicationsin  GWAS with >5.4

genetic study (GWAS) samples for Height started 2018 million samples

I+

UL

2010 2018
2003 2009 2012 2018 2019
The Human 500 GWAS Human UK Biobank with  $1,000 Genome
Genome Project publications genome costs  >500K samples
completed in 2009 $10,000 and 1000+

phenotypes



-~ -
// “Environmental”
J— factors

Inside genes Outside of genes
Large effects Small effects
Affects one gene Affects many genes
Rare Common
L C T |
| 1 1 1
1 I 1 I
e
Mendelian phenotypes Complex phenotypes
(e.g. Cystic Fibrosis and sickle cell (e.g. heart disease, type 2 diabetes)

anemia)



Hundreds of thousands of genetic risk regions have been identified
through GWAS
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NHGRI-EBI GWAS Catalog 2011



Hundreds of thousands of genetic risk regions have been identified

through GWAS

NHGRI-EBI GWAS Catalog 2018



PCA is extremely computationally intensive
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