Medicine in the age of generative Al

HOW RESEARCHERS USE LARGE LANGUAGE MODELS

Q: What do you use generative Al tools (such as ChatGPT and other large language
models) for? (Choose all that apply.)

For creative fun not related
to my research

To help write code

To brainstorm
research ideas

To help write research
manuscripts

To help do research

To conduct
literature reviews

Within scientific
search engines

To help fill out work-related
administrative e-mails

To help write presentations

To help write grant
applications

To help review research
manuscripts

To help create
graphics or pictures

To help write coursework
or exam questions

Other
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Generative Al is changing the
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Al is used to augment research, providing insights that might
not have been possible using traditional methods alone

Scientific discovery in the age of Al, Nature 2023



The era of Al-generated content

@ You

Please give me some suggestions on a good presentation

ChatGPT

Certainly! Here are some specific suggestions for creating a good presentation:

1. Start with a Strong Opening:
* Begin your presentation with a compelling hook or an intriguing question to grab your
audience's attention from the start.
* Share a relevant quote, anecdote, or surprising fact to pique curiosity.
2. Clearly Define Your Main Message:
* State your key message or takeaway early in your presentation, so your audience knows what
to expect.

€6 Acatandafemale
character in a spaceship
exploring a hidden
galaxy. With detailed
backgrounds, expressive )
characters, including

magical elements,
illustration made by hand. »»

Can we transform drug
discovery with Generative Al?

"Generate drug
candidates for the
SARS-CoV-2 3CL
protease.”
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Generative models for molecules and proteins

« In structure-based drug discovery, molecule/protein data can be represented as graphs
« Graph generative models typically encode graphs into latent vectors for downstream tasks
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Early success of generative Al in drug design

Treatment Organization Description Phase Lead indication

REC-2282 Recursion Small molecule pan-HDAC inhibitor 2/3 Neurofibromatosis type 2

REC-994 Recursion Small molecule superoxide scavenger 2 Cerebral cavernous malformation
REC-4881 Recursion Small molecule inhibitor of MEK1 and MEK?2 2 Familial adenomatous polyposis
INSO18_055 InSilico Medicine Small molecule inhibitor 2 Idiopathic pulmonary fibrosis

BEN-2293 BenevolentAl Topical pan-tyrosine kinase inhibitor 2a Atopic dermatitis

EXS-21546 Exscientia and Evotec A,, receptor antagonist 1b/2 Solid tumors carrying high adenosine signatures.
RLY-4008 Relay Therapeutics Inhibitor of FGFR2 1/2 FGFR2-altered cholangiocarcinoma
EXS-4318 Exscientia PKC-6 inhibitor 1/2 Inflammatory and autoimmune conditions
BEN-8744 BenevolentAl Small molecule PDE10 inhibitor 1 Ulcerative colitis

Undisclosed Recursion Small molecular inhibitor of RBM39, a Pre-clinical HRD-negative ovarian cancer

CDK12-associated protein

Inside the nascent industry of Al-designed drugs, Nature Medicine 2023



Generative Al for protein design

Designing proteins that bind to small molecules is a cornerstone problem in drug
development and bioengineering

Question: How to design protein pockets as areas that are bound by a ligand?

Approach: Learn a generative model that generates both amino acid sequence and full
atom 3D structure from the ligand and the protein scaffold

TI\Protem : Full-atom structure including sidechains

Pocket sequence-
structure co-design

Small
molecule

ligand Pocket residue type sequence: MITREIALE

Full-Atom Protein Pocket Design via Iterative Refinement, NeurlPS 2023; PocketGen: Generating Full-Atom Ligand-Binding Protein Pockets, bioRxiv 2024



Generative sequence-structure models enable atom-level
predictions of ligands binding to biological targets
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Nature Communications 2021; Full-Atom Protein Pocket Design via lterative Refinement, NeurlPS 2023;

PocketGen: Generating Full-Atom Ligand-Binding Protein Pockets, bioRxiv 2024



Sequence-structure co-generation of protein pockets

= Generating high-fidelity protein
pockets —an area where a protein
interacts with a ligand molecule

» Complex interactions between ligand
molecules and proteins

= FHexibility of ligands and AA side
chains

= Complex sequence-structure
dependencies
» PocketGen generates residue
seqguence and full-atom structure
within protein pocket region

Full-Atom Protein Pocket Design via Iterative Refinement, NeurlPS 2023; PocketGen: Generating Full-Atom Ligand-Binding Protein Pockets, bioRxiv 2024



Iterative refinement of both sequence and structure in the protein pocket
to maximize binding affinity with small molecule ligand
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Full-Atom Protein Pocket Design via Iterative Refinement, NeurlPS 2023; PocketGen: Generating Full-Atom Ligand-Binding Protein Pockets, bioRxiv 2024



Iterative refinement of both sequence and structure in the protein pocket
to maximize binding affinity with small molecule ligand
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PocketGen generates protein pockets with higher binding affinity
and structural validity than existing models

| PocketOpt DEPACT dyMEAN FAIR RFDiffusion PocketGen
Top-1 generated protein pocket
Vina score () -9.216 -8.527 -8.540 -8.792 -9.037 -9.655
Success Rate (T) 0.92 0.75 0.76 0.80 0.89 0.97
RMSD () - 1.47 1.44 1.39 1.13 1.21
pLDDT (1) - 82.1 83.3 83.2 84.5 86.7
scTM (T) - 0.901 0.906 0.899 0.924 0.937
Top-3 generated protein pockets
Vina score () -8.878 -8.131 -8.196 -8.321 -8.876 -9.353
RMSD () - 1.45 1.43 1.40 1.18 1.24
pLDDT (7) - 81.9 82.8 83.1 84.6 86.2
scTM (T) - 0.896 0.892 0.897 0.929 0.934
Top-5 generated protein pockets
Vina score () -8.702 -7.786 -71.974 -7.943 -8.510 -9.239
RMSD () - 1.46 1.45 1.42 1.25 1.22
pLDDT (7) - 82.2 82.9 83.3 84.3 86.1
scTM (T) - 0.892 0.903 0.886 0.926 0.935
Top-10 generated protein pockets
Vina score () -8.556 -7.681 -7.690 -7.785 -8.352 -9.065
RMSD (]) - 1.53 1.44 1.41 1.26 1.28
pLDDT (7) - 81.5 82.7 83.0 84.2 85.9
scTM (1) - 0.895 0.896 0.884 0.924 0.931

Improved structural validity, amino

acid sequence recovery, and affinity

with target ligands

Runtime (s)

Model CrossDocked Binding MOAD
Ll AAR (T) RMSD () Vina () AAR (1) RMSD () Vina ()

Test set - - -7.016 - - -8.076
DEPACT 31.52+3.26%  1.59+0.13 -6.632+0.18 35.30+2.19% 1.52+0.12 -7.571+0.15
dyMEAN 38.71+2.16% 1.57+0.09 -6.855+0.06 41.224+1.40% 1.53+0.08 -7.675+0.09

FAIR 40.16+1.17% 1.46+0.04 -7.015+0.12 43.68+0.92% 1.37+0.07 -7.930+0.15
RFDiffusion 46.57+2.07% 1.44+0.07 -6.936+0.07 45.3142.73% 1.45+0.10 -7.942+0.14
PocketGen  63.40+1.64% 1.36+0.05 -7.135+0.08 64.43+2.35% 1.32+0.05 -8.112+0.14
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Full-Atom Protein Pocket Design via Iterative Refinement, NeurlPS 2023; PocketGen: Generating Full-Atom Ligand-Binding Protein Pockets, bioRxiv 2024
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“Al doctors”: Conversational medical Al

optimized for diagnostic dialogue

At the heart of medicine lies the
physician-patient dialogue, where
skillful history-taking paves the way for
accurate diagnosis, effective
management, and enduring trust. Al
systems capable of diagnostic
dialogue could increase accessibility,
consistency, and quality of care.

However, approximating clinicians’
expertise is an outstanding grand

challenge
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“Al scientist” co-pilots

A long-standing ambition for biomedical Al is the development of Al
systems that could eventually make a major discovery with the
potential to be worthy of a Nobel Prize —fulfilling the Nobel Turing

Empowering Biomedical Discovery with Al Agents, arXiv:2404.02831, In review



“Al scientist”
capable of
skeptical
learning and
reasoning

Empowering Biomedical Discovery
with Al Agents arXiv:2404.02831, In
review




Evolving use of data-driven models

Databases and search engines

Interactive and foundation learning models
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Empowering Biomedical Discovery with Al Agents, arXiv:2404.02831, In review



"Al scientists™ as generative Al agents
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Al scientists” as generative Al agents

A long-standing ambition for biomedical Al is the development of d. Reasoning with feedback for alternative experimental
. . . . . approach
Al systems that can make major discoveries with the potential to Design a peptide binder for a diffcult target to
scientist inhibit a protein-protein interaction.

be worthy of a Nobel Prize —fulfilling the Nobel Turing Challenge
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Empowering Biomedical Discovery with Al Agents, arXiv:2404.02831, In review




