## BMI 702: Biomedical Artificial Intelligence

Foundations of Biomedical Informatics II, Spring 2024

Lecture 14: Design of chemical and genetic perturbations, drug repurposing, protein design, emerging uses of generative Al



Marinka Zitnik marinka@hms.harvard.edu

### Outline for today's class

 High-throughput genetic and chemical perturbations

 Drug repurposing, indication and contra-indication prediction

Generative protein design

Generative Al agents



Words and genes share a correspondence: their **meanings** arise from their **context**.

Gene perturbation measurements across diverse cell contexts induce **semantics for genes** 

(under the right approach)

"apple" is a **polysemic** word...



Q grow an apple

Q buy an apple

#### ... whose particular meaning is resolved via sentence context.

Google

- Q grow an apple
- Q grow an apple tree
- Q grow an apple tree from seed
- Q grow an apple tree in a pot
- Q grow an apple tree indoors



- Q buy an apple
- Q buy an apple watch
- Q buy an apple gift card
- Q buy an apple tv



H2AFX is a **pleiotropic** gene...



#### ... whose particular function is resolved via cell context.





While unsupervised learning of word polysemy is **common**...

Data: corpus of sentence contexts

Approach: word embeddings w/ linear semantics

king - man + woman  $\approx$  queen

unsupervised learning of gene pleiotropy is **unsolved** 

Data: ?

Approach: ?

geneA - func1 + func2 ≈ geneB

### Our goal for today

Unsupervised learning of gene pleiotropy with applications to therapeutic science



### Data

### Use gene perturbation effect measurements for inferring biological functions



Why perturbation datasets? Alternative data types:

- Transcriptomics: gene co-expression is necessary but not sufficient for co-function
- Protein-protein interactions: direct interactions are not necessary for co-function

### Approach: Webster

- Low-dimensional vector embeddings that satisfy three criteria:
  - Sparse
  - Latents are biologically meaningful
  - Account for redundancy between cell contexts



### Approach: Webster

### Webster learns a dictionary matrix that **sparsely** approximates gene effects...



Cell context similarity graph

### Overview of Webster



# Its key parameters are dictionary size (K) and sparsity on loadings (T)



### Model optimization



Applications to three screens of gene perturbation effects

1) Genotoxic screens

2) Cancer fitness screens

3) Compound sensitivity screens

### Part 1: Genotoxic screens

Olivieri et al. 2020: fitness effect of gene knockout in presence of genotoxins



# Webster approximates the input data matrix...



*k*=10 *t*=2

# ... as a product between a dictionary matrix and a loadings matrix



Learned gene-to-function loadings recover biological genesets hidden during model training

19

# Latents inferred by the model recapitulate pleiotropy *without prior knowledge*



(hidden during model training!)

### Latents are biologically meaningful

geneA - func1 + func2  $\approx$  geneB

#### H2AFX - End Joining + Fanconi Anemia ≈ RAD51B



= cell context (treatment)

### Part 2: Cancer fitness screens



# Pleiotropic genes obey linear semantics in the latent space

### SHOC2 ≈ Activated KRAS + Activated NRAS + EGFR Signaling + FGFR Signaling





## Joint embedding space of genes and functions



### It captures interpretable processes in cancer



### Part 3: Compound sensitivity screens



Modeling compound sensitivity profiles as mixtures of functions learned from CRISPR

# Modeling compounds as mixtures of latent functions

Reference-query projection



- Modeling compounds as mixtures of functions learned from CRISPR signatures with high similarity represent useful and previously unrecognized connections
  - between two proteins operating in the same pathway
  - between a small-molecule and its protein target
  - between two small-molecules of similar function but structural dissimilarity
- Such a catalog of connections can serve as a functional look-up table of compounds to predict sensitivity and genotoxic profiles and to inform therapeutic use

### Compounds' mechanisms of action

### Compounds are embedded nearby gene functions, reflecting their mechanism of action



### Key takeaways

- Analogously to word semantics, genes can be modeled as distributions over latent bio functions
  - Sparse learning is an effective strategy for learning bio functions from high-dimensional chemical and genetic perturbations
  - New perturbations can be projected into learned space



geneA - func1 + func2  $\approx$  geneB

### https://depmap.org/webster

| → C 🏠 î depmap.org/v    | webster/#/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                |                               | @ û ☆ ় 🕈 🗊 🔲 🌗 (Upda                                                                   |
|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------------------|
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Published Paper at Cell Systems 🎧 Code for paper 🎧 Dictionary le<br>Design write-up                                                                                            | arning code 🛛 🍈 Figshare data |                                                                                         |
|                         | learr<br>Read Th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ore relationships between genes and<br>ed from CRISPR fitness screens usin<br><sup>e Paper:</sup> <u>"Sparse Dictionary Learning Recovers Pleiotropy From F</u><br>t this tool | g Webster.                    |                                                                                         |
| Genotoxic               | + Abo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Search to select a gene or function                                                                                                                                            | - 2d 3d Q Q reset view        | v clear selection                                                                       |
| Select function group   | ~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                |                               |                                                                                         |
| ATRi vulnerability (V3) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Selected function:<br>ATRi vulnerability (V3)                                                                                                                                  |                               | highlighted in plot Gene DHX35 (ec: ### loading, function nome) 1.08 ATR! vulnerability |
| Nedd. resistance (V5)   | - Alian - Alia | Pan UMAP w/                                                                                                                                                                    |                               | (V3)<br>1.00<br>Fork quality control<br>(V9)<br>Approximation<br>quality (Pearson)      |
| Polyamine (V1)          | - La construction - La constru | $ \begin{array}{c} \uparrow \\ \leftarrow & \rightarrow \\ \downarrow \\ \textcircled{Q} \\ \textcircled{Q} \end{array} $                                                      |                               | 0.74                                                                                    |
|                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | • Functions • Genes • Gene positive association • Gene nega                                                                                                                    | tive association              |                                                                                         |

### Outline for today's class

 High-throughput genetic and chemical perturbations

Drug repurposing, indication and contra-indication prediction

Generative protein design

Generative Al agents



Because most repositioned drugs have already passed the early phases of development and clinical testing, they can potentially win approval in less than half the time and at one-quarter of the cost.

~6 years, ~\$300 million

31

12–16 years, ~\$1 billion to \$2 billion

### Therapeutic use prediction

Comprehensive knowledge graph of 17,080 clinically-recognized diseases

Process various therapeutic tasks, such as indication and contraindication prediction, in a unified formulation



### TxGNN: Mechanistic view of drug effects



Li et al., Graph Representation Learning in Biomedicine and Healthcare. Nature Biomedical Engineering, 2022

### TxGNN

To model this mechanistic view, we need to ground the model in known mechanisms of diseases and drug effects



### Dataset: PrimeKG



### Setting: Baseline approach

Random split across known drug-disease pairs



- Test Drug-Disease Pair

- ···· Treatment candidate
- Molecular underpinnings
  - Existing treatments
- Drug
- ents
- Other node types

Target disease



#### Scenario A

- Many known treatments
- Rich molecular underpinnings

# In this setting, existing methods perform well



#### How about other settings?



No treatments = No links between disease and any drug nodes Poorly characterized mechanisms = Sparse local neighborhoods

## Performance in other settings



#### Scenario B

- No existing treatments
- Poorly characterized mechanisms
- Challenging to predict

Need better disease embeddings -- Is there an inductive bias (biological rationale) that can be incorporated into the ML model?

Disease embeddings are less meaningful because so many relationships are unknown



### Approach: TxGNN



# TxGNN: Transfer learning across diseases



(1) identify similar diseases

(2) leverage disease similarities

Once trained, TXGNN can perform zero-shot inference on new diseases • without additional parameters or fine-tuning on ground truth labels





Existing treatments

Molecular underpinnings

····· Treatment candidate, to predict

- Many known treatments
- Known molecular understanding
- "Easy" to predict



Scenario B

- No known treatments
- Poor molecular understanding
- "Hard" to predict



• TxGNN improves over existing methods, with up to 49.2% higher accuracy in indication and 35.1% higher accuracy in contraindication



Zero-Shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design, medRxiv, 2023

• TxGNN's novel predictions are consistent with off-label prescription decisions made by clinicians in a large healthcare system



Zero-Shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design, medRxiv, 2023

• TxGNN can also predict therapeutic use for recent FDA approvals

| Drug name  | Ingredient         | Disease                       | Approval date | Company       | FDA Number | Orphan | Prediction | Percentile |
|------------|--------------------|-------------------------------|---------------|---------------|------------|--------|------------|------------|
| Welireg    | Belzutifan         | von Hippel-Lindau disease     | 08/13/2021    | Merck         | NDA215383  | Yes    | 0.720      | 4.11%      |
| Livtencity | Maribavir          | Cytomegalovirus infection     | 11/23/2021    | Takeda        | NDA215596  | Yes    | 0.033      | 66.37%     |
| Tezspire   | Tezepelumab-Ekko   | Asthma                        | 12/17/2021    | Astrazeneca   | BLA761224  | No     | 0.233      | 32.41%     |
| Leqvio     | Inclisiran Sodium  | Familial hypercholesterolemia | 12/22/2021    | Novartis      | NDA214012  | No     | 0.301      | 19.32%     |
| Adbry      | Tralokinumab       | Atopic dermatitis             | 12/27/2021    | Leo Pharma    | BLA761180  | No     | 0.040      | 50.37%     |
| Vabysmo    | Faricimab-Svoa     | Macular degeneration          | 01/28/2022    | Genentech     | BLA761235  | No     | 0.938      | 2.25%      |
| Vonjo      | Pacritinib Citrate | Myelofibrosis                 | 02/28/2022    | Cti Biopharma | NDA208712  | Yes    | 0.011      | 63.14%     |
| Ztalmy     | Ganaxolone         | CDKL5 disorder                | 03/18/2022    | Marinus       | NDA215904  | Yes    | 0.335      | 18.73%     |
| Mounjaro   | Tirzepatide        | Type 2 diabetes mellitus      | 05/13/2022    | Eli Lilly     | NDA215866  | No     | 0.286      | 12.50%     |
| Vtama      | Tapinarof          | Psoriasis                     | 05/23/2022    | Dermavant     | NDA215272  | No     | 0.261      | 32.70%     |

#### Al-clinician collaboration

"Will clozapine treat unipolar depression? What is the disease treatment mechanism?"



Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods, AISTATS 2022 Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing, IEEE VIS 2022 (Best Paper Award) Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nature Communications 2021

#### Clinician-centered AI design



Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design, medRxiv, 2023 Probing GNN Explainers: A Rigorous Theoretical and Empirical Analysis of GNN Explanation Methods, *AISTATS* 2022 Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing, *IEEE VIS* 2022 (**Best Paper Award**) Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nature Communications 2021

### Usability study with end users

Compared to a no-explanation baseline in terms of user answer accuracy, exploration time, user confidence, and user agreement across a spectrum of usability questions



Zero-Shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design, medRxiv, 2023 Extending the Nested Model for User-Centric XAI: A Design Study on GNN-based Drug Repurposing, *IEEE VIS* 2022 (**Best Paper Award**) 48

#### http://txgnn.org

#### TxGNN Explorer

+

(i) About

① ☆ ◆ 🤍 🗯 🛛 📵 🗄



Zero-Shot Prediction of Therapeutic Use with Geometric Deep Learning and Clinician Centered Design, medRxiv, 2023

## Emerging pathogens

The traditional approach of iterative development, experimental testing, clinical validation, and approval of new drugs are not feasible

A more realistic strategy relies on drug repurposing, requiring us to identify clinically approved drugs that have a therapeutic effect in COVID-19 patients



Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021

#### How to represent COVID-19? Map SARS-CoV2 targets to the human interactome



Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021

#### COVID-19 disease module



Gordon et al., Nature 2020 expressed 26 of the 29 SARS-CoV2 proteins and used AP-MS to identify 332 human proteins to which viral proteins bind

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021



COVID-19 LCC

Density

0.005

0.000

140

160

180

200 LCC

**Full Interactome** 



#### Key Insight: subgraphs



# Idea: Use the paradigm of embeddings to operationalize the concept of closeness in pharmacological space

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021

### Computational setup

- Proxy for ground-truth information:
  - Monitor drugs under clinical trials
  - Capture the medical community's assessment of drugs with potential COVID-19 efficacy



Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021

#### Embedding space



## Results: COVID-19 Repurposing

Individual ROC



We test each pipeline's ability to recover drugs currently in clinical trials for COVID-19

The best individual ROC curves are obtained by the GNN methods

The second-best performance is provided by the proximity P3. Close behind is P1 with AUC = 0.68 and AUC = 0.58

Diffusion methods offer ROC between 0.55-0.56

#### Final Prediction Model – Part #1



## Final Prediction Model – Part #2

#### Methods





Network Diffusion 5 pipelines



Al Prioritization 4 pipelines

#### A COVID-19 treatment can not be derived from the arsenal of therapies approved for specific diseases

- Repurposing strategies focus on drugs previously approved for other pathogens, or on drugs that target the human proteins to which viral proteins bind.
- Most approved drugs do not target directly disease proteins but bind to proteins in their network vicinity
- [Yildirim, Nature Biotech. 2007]
- Identify drug candidates that have the potential to perturb the network vicinity of the COVID-19 disease module.
- Implement 3 Network Repurposing Methods.

#### Final Prediction Model – Part #3

Rank Aggregation Algorithm: Maximize the number of pairwise agreements between the final ranking and each input ranking.

The combined performance of the AI methods is 0.87, the same as A3.

Improvement for proximity pipelines:  $0.70 \rightarrow 0.72$ .

Combined diffusion pipelines have lower performance (0.54 vs 0.56, for D1, D2, and D4).

Combining all 12 pipelines, gives AUROC=0.89, the highest of any individual or combination-based pipelines,

Individual pipelines offer complementary information harnessed by the combined ranking.



#### Combined ROC



### Predicted Drug Candidates

86 drugs selected from the top 10% of the rank list.

Respiratory drugs (e.g., theophylline, montelukast).

Cardiovascular systems (e.g., verapamil, atorvastatin).

Antibiotics used to treat viral (e.g., ribavirin, lopinavir), parasitic (e.g., hydroxychloroquine, ivermectin, praziquantel), bacterial (e.g., rifaximin, sulfanilamide), mycotic (e.g., fluconazole), and mycobacterial (e.g., isoniazid) infections.

Immunomodulating/anti-inflammatory drugs (e.g., interferon- $\beta$ , auranofin, montelukast, colchicine)

Anti-proteasomal drugs (e.g., bortezomib, carfilzomib)

Less obvious choices: aminoglutethimide, melatonin, levothyroxine, calcitriol, selegiline, deferoxamine, mitoxantrone, metformin, nintedanib, cinacalcet, and sildenafil.

|        | Drug               | C-rank | Drug              |
|--------|--------------------|--------|-------------------|
| 20     | Ritonavir          | 1      | Mesalazine        |
|        | Isoniazid          | 2      | Pentamidine       |
|        | Troleandomycin     | 3      | Verapamil         |
| $\sim$ | Cilostazol         | 4      | Melatonin         |
| (76)   | Chloroquine        | 5      | Griseofulvin      |
| $\sim$ | Rifabutin          | 6      | Auranofin         |
|        | Flutamide          | 7      | 1 Atovaquone      |
| 2      | Dexamethasone      | 8      | Montelukast       |
|        | Rifaximin          | 9      | Romidepsin        |
|        | Azelastine         | 10     | 1 Cobicistat      |
|        | Folic Acid         | 16     | (17) Lopinavir    |
|        | Rabeprazole        | 27     | Pomalidomide      |
|        | Methotrexate       | 32     | Sulfinpyrazone    |
|        | Digoxin            | 33     | 1 Levamisole      |
|        | Theophylline       | 34     | Calcitriol        |
|        | Fluconazole        | 41     | 1 Interferon-β-1a |
| _      | Aminoglutethimide  | 42     | Praziquantel      |
| 67)    | Hydroxychloroquine | e 44   | 1 Ascorbic acid   |
| 0      | Methimazole        | 47     | Fluvastatin       |
| 1      | Ribavirin          | 49     | 1 Interferon-β-1b |
| 1      | Omeprazole         | 50     | Selegiline        |
|        | Bortezomib         | 53     | 1 Deferoxamine    |
|        | Leflunomide        | 54     | Ivermectin        |
|        | Dimethylfumarate   | 55     | 1 Atorvastatin    |
| 4      | Colchicine         | 57     | Mitoxantrone      |
|        | Quercetin          | 63     | Glyburide         |
|        |                    |        |                   |

67

(2)

Thalidomide

# of Clinical trials from ClinicalTrials.gov

#### Joseph Loscalzo

C-rank

118 124

131 138

141 146

155

157

161

164

173

176

195 199

203 206

227

235

243 250 259

262

Drug



|   | -3                  |     |
|---|---------------------|-----|
|   | Sulfanilamide       | 265 |
|   | Hydralazine         | 269 |
|   | Gemfibrozil         | 281 |
| 4 | Ruxolitinib         | 284 |
|   | Propranolol         | 297 |
|   | Carbamazepine       | 301 |
|   | Doxorubicin         | 309 |
|   | Levothyroxine       | 329 |
|   | Dactinomycin        | 335 |
|   | Tenofivir           | 338 |
|   | Tadalafil           | 339 |
|   | Doxazosin           | 367 |
|   | Rosiglitazone       | 397 |
|   | Aminolevulinic acid | 398 |
|   | Nitroglycerin       | 418 |
|   | Metformin           | 457 |
| 1 | Nintedanib          | 466 |
|   | Allopurinol         | 471 |
| - | Ponatinib           | 491 |
| 1 | Sildenafil          | 493 |
|   | Dapagliflozin       | 504 |
|   | Nitroprusside       | 515 |
|   | Cinacalcet          | 553 |
|   | Mexiletine          | 559 |
|   | Sitagliptin         | 706 |
|   | Carfilzomib         | 765 |
| 1 | Azithromycin        | 786 |
|   |                     |     |

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021

Mebendazole

# Experimental validation of predictions



National Emerging Infectious Diseases Laboratories (NEIDL)

| CRank | Drug Name      |
|-------|----------------|
| 1     | Ritonavir      |
| 2     | Isoniazid      |
| 3     | Troleandomycin |
| 4     | Cilostazol     |
| 5     | Chloroquine    |
| 6     | Rifabutin      |
| 7     | Flutamide      |
| 8     | Dexamethasone  |
| 9     | Rifaximin      |
| 10    | Azelastine     |
| 11    | Crizotinib     |

| 17 | Celecoxib         |  |
|----|-------------------|--|
| 18 | Betamethasone     |  |
| 19 | Prednisolone      |  |
| 20 | Mifepristone      |  |
| 21 | Budesonide        |  |
| 22 | Prednisone        |  |
| 23 | Oxiconazole       |  |
| 24 | Megestrol acetate |  |
| 25 | Idelalisib        |  |
| 26 | Econazole         |  |
| 07 | Debenrozele       |  |

#### Ranked lists of drugs

New algorithms:

Prioritizing Network Communities, *Nature Communications* 2018 Subgraph Neural Networks, *NeurIPS* 2020 Graph Meta Learning via Local Subgraphs, *NeurIPS* 2020

**Results:** 918 compounds screened for their efficacy against SARS-CoV-2 in VeroE6 cells:

- 37 had a strong effect being active over a broad range of concentrations
- 40 had a weak effect on the virus
- An order of magnitude higher hit rate among top 100 drugs than prior work

Network Medicine Framework for Identifying Drug Repurposing Opportunities for Covid-19, PNAS 2021

#### Results: Network drugs

- 76/77 drugs that successfully reduced viral infection do not bind proteins targeted by SARS-CoV-2:
  - These drugs rely on network-based actions that cannot be identified by docking-based strategies

| Weak  |                       |       |                           |        |                      | Dire |
|-------|-----------------------|-------|---------------------------|--------|----------------------|------|
| CRank | Drug Name             | CRank | Drug Name                 | CRank  | Drug Name            |      |
| 5     | Chloroquine           | 423   | Pitavastatin              | 742    | Mianserin            | dr   |
| 6     | Rifabutin             | 431   | Tenoxicam                 | 755    | Clofazimine          | u    |
| 9     | Rifaximin             | 438   | Quinidine                 | 767    | Chlorpromazine       |      |
| 10    | Azelastine            | 456   | Sertraline                | 772    | Imipramine           |      |
| 16    | Folic acid            | 460   | Ingenol mebutate          | 830    | Promazine            |      |
| 32    | Methotrexate          | 463   | Norelgestromin            | 900    | L-Alanine            |      |
| 33    | Digoxin               | 493   | Sildenafil                | 917    | Moxifloxacin         |      |
| 44    | Hydroxychloroquine    | 499   | Eliglustat                | 933    | Tasimelteon          |      |
| 50    | Omeprazole            | 518   | Ulipristal                | 995    | Vandetanib           |      |
| 113   | Clobetasol propionate | 553   | Cinacalcet                | 1000   | Azilsartan medoxomil |      |
| 118   | Auranofin             | 556   | Perphenazine              | 1020   | Frovatriptan         | 1    |
| 120   | Vinblastine           | 558   | Idarubicin                | 1034   | Zolmitriptan         |      |
| 199   | Fluvastatin           | 564   | Perhexiline               | 1035   | Procarbazine         | ~    |
| 210   | Clomifene             | 569   | Amiodarone                | 1093   | Asenapine            | 4    |
| 233   | Ibuprofen             | 577   | Duloxetine                | 1107   | Dyclonine            |      |
| 235   | Ivermectin            | 585   | Toremifene                | 1140.5 | Clemastine           | 2    |
| 243   | Atorvastatin          | 586   | Afatinib                  | 1194   | Prochlorperazine     |      |
| 253   | Pralatrexate          | 601   | Amitriptyline             | 1222   | Miglustat            |      |
| 263   | Cobimetinib           | 626   | Meclizine                 | 1224   | Prenylamine          | 5    |
| 269   | Hydralazine           | 635   | Valsartan                 | 1276   | Dalfampridine        |      |
| 297   | Propranolol           | 651   | Eletriptan                | 1314   | Cinchocaine          |      |
| 317   | Osimertinib           | 673   | Sotalol                   | 1355   | Methotrimeprazine    |      |
| 348   | Vincristine           | 678   | Thioridazine              | 1396   | Methylthioninium     |      |
| 367   | Doxazosin             | 695   | Chlorcyclizine            | 1403   | Metixene             |      |
| 397   | Rosiglitazone         | 707   | Omacetaxine mepesuccinate | 1443   | Trifluoperazine      |      |
| 398   | Aminolevulinic acid   | 721   | Candesartan               |        |                      |      |

58/77 drugs with positive experimental outcome are among top 750 ranked drugs

Network drugs (D3)

#### L14 Quick Check

#### https://forms.gle/B5PBaa2DCTLZpEqh8

| BMI 702: Biomedical Artificial Intellig                                                                                                                                                                                                                                                                                                                                                                                       | ence                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| Foundations of Biomedical Informatics II, Spring 2024                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Quick check quiz for lecture 14: Design of chemical and genetic perturbations, dr<br>repurposing, protein design, emerging uses of generative AI.                                                                                                                                                                                                                                                                             | ug                    |
| Course website and slides: https://zitniklab.hms.harvard.edu/BMI702                                                                                                                                                                                                                                                                                                                                                           |                       |
| marinka@hms.harvard.edu Switch accounts                                                                                                                                                                                                                                                                                                                                                                                       | Ø                     |
| * Indicates required question                                                                                                                                                                                                                                                                                                                                                                                                 |                       |
| First and last name *                                                                                                                                                                                                                                                                                                                                                                                                         |                       |
| Your answer                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| Harvard email address *                                                                                                                                                                                                                                                                                                                                                                                                       |                       |
| Your answer                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                               |                       |
| Go to <a href="http://txgnn.org">http://txgnn.org</a> and examine predictions for rheumatoid arthritis. Or<br>evaluation will focus on disease-modifying antirheumatic drugs (DMARDs)<br>is a class of drugs indicated for the treatment of several inflammatory arth<br>including rheumatoid arthritis, as well as for the management of other con<br>tissue diseases and some cancers. Answer the following four questions. | ), which<br>nritides, |
| 1) What is the predicted rank of <b>sulfasalazine</b> , a common conventional DM                                                                                                                                                                                                                                                                                                                                              | IARD?                 |
| 2) What is the predicted rank of <b>methotrexate</b> , another common DMARD?                                                                                                                                                                                                                                                                                                                                                  |                       |
| <ol> <li>Give two examples of reasoning paths (meta-paths) used by the algorith<br/>relate rheumatoid arthritis with sulfasalazine. Comment the results.</li> </ol>                                                                                                                                                                                                                                                           | hm to                 |
| 4) Give two examples of reasoning paths (meta-paths) used by the algorith<br>relate rheumatoid arthritis with methotrexate. Comment the results. Exam                                                                                                                                                                                                                                                                         |                       |
| meta-paths that use this template: Disease-Drug-Gene/Protein-Drug.                                                                                                                                                                                                                                                                                                                                                            |                       |

#### Outline for today's class

 High-throughput genetic and chemical perturbations

 Drug repurposing, indication and contra-indication prediction

Generative protein design

Generative Al agents