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Lecture 13: AI-guided drug design, small-molecule generation, molecule optimization, 
identification and characterization of therapeutic targets, design of chemical and genetic 

perturbations
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Phases of drug discovery from initial stage 
(target-to-hit) to final stage (launch)
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p(TS) – probability of successful transition from one stage to the next; NME – new 
molecular entity; WIP – work in process
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There are 1060 drug-like compounds. 
Scientists have synthesized only a 

fraction of those in the lab and 
transition them into therapies (105) – 

Can advanced computation and AI take 
us where no human has gone before? 

Drug-like chemical space
1060

FDA-approved treatments 
available today

105
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Step 1: Design and 
Discovery

Step 2: Preclinical 
Research

Step 3: Clinical 
Research

Step 4: FDA 
Review

Step 5: Post-Market and
Safety Monitoring
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Step 1: Design and 
Discovery

Step 2: Preclinical 
Research

Step 3: Clinical 
Research

Step 4: FDA 
Review

Step 5: Post-Market and
Safety Monitoring

Support decision-making for a new 
drug in the laboratory

Answer basic questions about safety 
and animal testing

Predict if drug is safe & effective to test 
on people, find new uses for drugs

Automatic document review to make a 
decision to approve the drug or not

Detect adverse and safety issues in 
real time using electronic health data 
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Huang et al., Zero-shot prediction of therapeutic 
use with geometric deep learning and clinician 
centered design, 2023

…Pr
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ic
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No 
effect

Effect

Toxic

?

AI ?

Predictions

What’s the best drug for disease 
with no known treatments?

Examples of success

AlphaFold2

Amino acid sequence

108 molecular graphs

Geometric
deep learning

Halicin, new antibiotic

3D coordinates of
amino acids in the protein

Gysi et al., Network medicine framework for 
identifying drug-repurposing opportunities for 
COVID-19, 2021

Jumper et al., Highly accurate protein structure 
prediction with AlphaFold, 2021

Stokes et al., A Deep Learning Approach to 
Antibiotic Discovery, 2020
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Wang et al., Nature ‘23; Ektefaie et al., Nature Machine Intelligence ‘23; McDermott et al., Nature Machine Intelligence ‘23; 
Li et al., Nature Biomedical Engineering ‘22

Biomedical 
scientists

AI
scientists

Make drug discovery and development more efficient

Global initiative to access and evaluate AI across therapeutic modalities and stages of drug discovery
210,000 active use cases of AI for therapy design / 90,000 users worldwide

Data AI models Scientific hypotheses

https://tdcommons.ai

Identify meaningful 
tasks and datasets

Design
AI/ML methods
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Candidate 
therapeutics

Laboratory and 
clinical evaluation

Better scientific 
hypotheses

Drug discovery 
AI models

Data store for 
large analyses

Optimization for 
safety & efficacy

Therapeutics Commons: 
How it works?

AI and ML
Biomedical 
scientists

Biomedical 
scientists
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AI workflows in drug discovery
TDC supports the development of novel ML 

theory and methods, with a strong bent towards 
developing the mathematical foundations of which 

ML algorithms are most suitable for drug 
discovery applications and why

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022 9
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Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022

What tasks can we address with 
these workflows?

§ Target discovery 
§ Identify candidate drug targets

§ Activity modeling 
§ Screenand generate individual or 

combinatorial therapies with high 
binding activity towards targets

§ Efficacy and safety 
§ Optimize therapeutic signatures 

predictive of safety & efficacy
§ Manufacturing 

§ Synthesis of therapeutics
10
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§ Optimization & generation 
of small molecules

§ Binding of drugs to 
therapeutic targets

§ High-throughput genetic & 
chemical perturbations

Outline for today’s class
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High throughput screening (HTS)
§ Test thousands to hundreds of thousands of 

compounds in one or more assays
§ Biochemical, genetic, and pharmacological assays

§ Integrate with robotics for self-driving lab
§ Goal: Rapidly identify novel modulators of 

biological systems
§ Cellular basis of diseases
§ Therapeutic agents
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Goals of high throughput screening
§ Rapidly screen large collections 

of compounds (chemical libraries)
§ Efficiently identify active 

compounds 
§ Test them in slower, accurate, 

expensive screens
§ Use the data to learn what types 

of compounds tend to be active
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HTS data types
§ Categorical: active/inactive or toxic/nontoxic
§ Continuous: single-point or dose-response
§ Multiple readouts: 

§ Might read at different wavelengths or time points
§ More complex when dealing with images

14

Single-point vs. dose-response readouts Cell painting for phenotypic drug discovery

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI



HTS: Machine learning setup
§ HTS tests the activity of molecules:

§ We need to describe the molecular structure
§ Various discrete or real-valued descriptors
§ Surfaces (3D)
§ Binary fingerprints
§ Learned molecular embeddings
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In-silico screening and optimization 
of molecular structure

16

Use computational models to suggest 
what compounds to screen
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Absorption

Self-supervised learning: Molecules with similar molecular 
structure get embedded close together. Various 

representations: Neural fingerprints, Attentive fingerprints, 
SMILES descriptors, Graphormer, Transformer-M, and others

Molecular property prediction

Chemical
library

Fine-tuned 
predictor

Fine-tuned 
predictor

Fine-tuned 
predictor

Fine-tuned 
predictor

Fine-tuned 
predictor

Distribution

Metabolism

Excretion

Toxicity

ADMET 
endpoints
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What can we use molecular 
representations for?

§ Search 
§ Given a potent active molecule, find similar ones (or 

dissimilar but also potent)
§ Prediction of various endpoints

§ Given a set of active and inactive molecules, build a 
model to predict which members from a chemical 
library will be active

§ Clustering
§ Given a set of molecules, do they cluster into 

structurally different groups?
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Two strategies for producing 
molecular representations
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Fingerprint representations

§ Lots of types of fingerprints
§ Keyed fingerprints indicate the presence or 

absence of a structural feature
§ Length can vary from 166 to 4096 bits or more
§ Fingerprints usually compared to each other using 

the Tanimoto metric
20
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Towards neural fingerprints

21Duvenaud et al., NeurIPS 2015
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Neural fingerprint representations
1) Neural graph fingerprints

§ Generate molecular fingerprints with 
a neural network

§ Update atom features using only 
adjacent atoms

§ Use different weights for node 
degrees

2) Molecular graphs
§ Update atom features by 

convolutional and pooling layers 
using adjacent atoms

22Duvenaud et al., NeurIPS 2015; Altae Tran et al., ACS Central Science 2017
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Graphs vs. 3D structures

The distance on the graph does not necessarily correlate with the 
Euclidean distance between atoms in the 3D structure

Need to consider modifying the definition 
of graph distance

23
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22 datasets with ADMET endpoints
A: Absorption
Caco2 (Cell Permeability)
HIA (Intestinal Absorption)
Pgp (P-glycoprotein)
Bioavailability
Lipophilicity
Solubility

D: Distribution
BBB (Blood-Brain Barrier)
PPBR (Plasma Protein Binding)
VDss (Volume of Distribution)
M: Metabolism
CYP2C9/2D6/3A4 Inhibition
CYP2C9/2D6/3A4 Substrate

E: Excretion
Half Life
Clearance (Hepatocyte)
Clearance (Microsome)

T: Toxicity
LD50 (Acute Toxicity)
hERG blocker
Ames Mutagenicity
Drug Induced Liver Injury

Datasets

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022 24
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Experimental setup

25

§ Demonstrate that fingerprints are interpretable
§ Show substructures which most activate individual features 

in a fingerprint vector
§ Fingerprint features can each only be activated by a single 

fragment of a single radius, except for accidental collisions
§ In contrast, neural fingerprint features can be activated by 

variations of the same structure, making them more 
interpretable, and allowing shorter feature vectors.
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Results: Examining neural fingerprints

26Duvenaud et al., NeurIPS 2015
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Results: Examining neural fingerprints

27Duvenaud et al., NeurIPS 2015
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Results: Molecular property prediction

• No single method performs the best across all scenarios
• Pre-training boost performance
• Pre-trained graph models yield strongest predictors overall 

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022 28
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§ Optimization & generation 
of small molecules

§ Binding of drugs to 
therapeutic targets

§ High-throughput genetic & 
chemical perturbations

Outline for today’s class
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Molecular graph generation

30Details and description of other models at https://zitniklab.hms.harvard.edu/drugml

Generative model
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Generate molecules with high potency

Molecular graph generation
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Modify molecules to increase potency
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Molecular graph generation
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Encoder Decoder

Potency Prediction

Bayesian optimization over 
latent space

Find “best” drugs

Gradient ascent over 
latent space

Make “better” drugs

[1] Gomez-Bombarelli et al.,Automatic chemical design using a data-driven continuous representation of 
molecules, 2016

Molecular variational autoencoder
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N

O

N

O

N S

O

N N
Valid

S
ValidInvalid Invalid Invalid

More 
steps

Node by Node
O O

• Not every graphs is chemically valid

Invalid intermediate states hard to validate

Very long intermediate steps difficult to train (Li et al., 2018)

•

•

[2] Li et al., Learning Deep Generative Models of Graphs, 2018

How to generate graphs?
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Functional Groups

N
N

N

N

NN
O O Cl S 
S

N N 
S

Aromatic rings

Functional groups
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ValidInvalid Invalid Invalid

More 
steps

O

N

O

N
Valid

S
Valid

O

N S
Valid

Node by Node
O O

Group by Group
• Shorter action sequence

• Easy to check validity

How to generate graphs?

36

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI



Molecule Junction tree

N
N

NN

N N
O O
S

Cl SN N 
S

Cluster label 
Vocabulary

…
…

Clusters

• Generate junction tree Generate graph group by group

Vocabulary size: less than 800 given 250K molecules•

Jin et al., ICML 2018

Tree decomposition
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Molecule

Encode

Decode
zG

zT

Ci

Molecular 
Graph G

Junction 
Tree T

Tree 
Decomposition

C j Encode Decode

Clusters

Jin et al., ICML 2018

Approach: Junction-tree variational 
autoencoder

38

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI



Neural Message Passing Network (MPN)

Jin et al., ICML 2018

Graph and tree encoders
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Node feature

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph encoding
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1-hop neighborhood 
graph

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph encoding

41
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2-hop neighborhood graph

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph encoding
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Node feature Edge featureMessages

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

Graph encoding
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hu

[3] Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

𝑢

Graph encoding
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j

m k i

k
m k i

m i j
i

k

To capture long range interactions

Jin et al., ICML 2018

Tree encoding
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zG zT

average-pooling root node

Jin et al., ICML 2018

Graph and tree encoders
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Molecule

Encode

Decode
zG

zT

Ci

Molecular 
Graph G

Junction 
Tree T

Tree 
Decomposition

C j Encode Decode

Clusters

Jin et al., ICML 2018

Approach: Junction-tree variational 
autoencoder
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zT

C

S

Jin et al., ICML 2018

Tree decoder
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1

5

63 4

2

7 8

Label Prediction

[4] Alvarez-Melis & Jaakkola, Tree-structured decoding with doubly-recurrent neural networks

Tree decoder
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1

5

63 4

2

7 8

1. Topological Prediction

2. Label Prediction

Topological Prediction: Whether to expand a child or backtrack?

Label Prediction: What is the label of a node?

S

Message vector

Tree decoder
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1

5

63 4

2

7 8Topological Prediction

Backtrack

Topological Prediction: Whether to expand a node or backtrack?

Label Prediction: What is the label of a node?

Tree decoder
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hk i

hk i
h i j

j

i

k

k

h i j = GRU(xi, {h k i } k 2N t ( i ) \ j ) h i j zT

Feedforward 
NN

Label Prediction

Encodes the entire subtree of current state

Tree decoder
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Predicted Junction Tree Molecular Graph

C

S

Graph decoder
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Enumerated G i

A

S

S

A

S

A

S

Enumerate how clusters 
are merged together

1

Encode each candidate 
graph by graph encoder

i if a (G i ) = hG · zG
3

2

Score each candidate:

subgraphs
Graph encoder

Graph decoder

54

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI



Molecule

Encode

Decode
zG

zT

Ci

Molecular 
Graph G

Junction 
Tree T

Tree 
Decomposition

C j Encode Decode

Clusters

Jin et al., ICML 2018

Recap: Junction-tree variational 
autoencoder
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• Data: 250K compounds from ZINC dataset

• Molecule Generation: How many molecules are valid when 
sampled from Gaussian prior?

• Molecule Optimization

• Global: Find the best molecule in the entire latent space.

• Local: Modify a molecule to increase its potency

Jin et al., ICML 2018

Experiments

56
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SMILES string based:

1. Grammar VAE (GVAE) (Kusner et al., 2017);

2. Syntax-directed VAE (SD-VAE) (Dai et al., 2018)

Graph based:

1. Graph VAE (Simonovsky & Komodakis, 2018)

2. DeepGMG (Li et al., 2018)

[2] Li et al., Learning Deep Generative Models of Graphs, 2018
5 Kusner et al., Grammar Variational Autoencoder, 2017
6 Dai et al., Syntax-directed Variational Autoencoder for structured data, 2018
7 Simonovsky & Komodakis, GraphVAE: Towards generation of small graphs using variational 
autoencoders

Baselines
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0

25

50

75

100

GVAE GraphVAE SD-VAE DeepGMG JT-VAE (w/o 
checking)

JT-VAE

100
93.589.2

43.5

13.5
7.2

Molecule generation (Validity)
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§ Optimization & generation 
of small molecules

§ Binding of drugs to 
therapeutic targets

§ High-throughput genetic & 
chemical perturbations

Outline for today’s class

65

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI



Graph

Binding affinity

Geometric modeling of binding

GNN

GNN

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022 66
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In-Distribution Out-of-Distribution

Figure 1: Heatmap visualization of domain generalization methods performance

across each domain in the TDC DTI-DG benchmark using TDC.BindingDB. We
observe a significant gap between the in-distribution and out-of-distribution performance
and highlight the demand for algorithmic innovation.

Table 2: Leaderboard on TDC DTI-DG

benchmark using TDC.BindingDB. In-Dist.

aggregates the in-split validation set and fol-
lows the same data distribution as the training
set (2013-2018). Out-Dist. aggregates the
testing domains (2019-2021). The goal is to
maximize the test domain performance. Re-
ported results include the average and standard
deviation of Pearson Correlation Coefficient
across five random runs. The best method is
bolded and the second best is underlined.

Method In-Dist. Out-Dist.

ERM 0.703±0.005 0.427±0.012

MMD 0.700±0.002 0.433±0.010

CORAL 0.704±0.003 0.432±0.010
IRM 0.420±0.008 0.284±0.021
GroupDRO 0.681±0.010 0.384±0.006
MTL 0.685±0.009 0.425±0.010
ANDMask 0.436±0.014 0.288±0.019

generalization methods comparison. Following the strategy of "Training-domain validation set"
in [13], from the 2013-2018 DTIs, we randomly set 20% of them as the validation set and use them as
the in-distribution performance calculations as they follow the same as the training set and 2018-2021
are only used during testing, which we called out-of-distribution. For baselines, we use ERM [39],
MMD [25], CORAL [37], IRM [2], GroupDRO [33], MTL [3], ANDMask [28]. Details are located
in Appendix A.

Results. Results are shown in Table 2 and Figure 1. We observe that in-distribution reaches 0.7
PCC and are very stable across the years, suggesting the high predictive power of ML models in the
unrealistic but widely adopted ML settings. However, out-of-distribution performance significantly
degrades from 33.9% to 43.6% across methods, suggesting that domain shift exists and realistic
constraint breaks usual training strategies. Second, although the best performed methods are MMD
and CORAL, the standard training strategy has similar performances as current ML SOTA domain
generalization algorithms, which confirms with the systematic study conducted by [13], highlighting
a demand for robust domain generalization methods that are specialized in biomedical problems.

2.3 Docking Benchmarks for Molecule Generation

Motivation. Drug design aims to generate novel molecular structures with desired pharmaceutical
properties. Current generative modeling focus on optimizing simple heuristic oracles, such as QED
(quantitative estimate of drug-likeness) and LogP (Octanol-water partition coefficient) [21, 45, 46],
while an experimental evaluation, such as a bioassay, or a high-fidelity simulation, is more difficult to
optimize and much more costly in terms of resources. Therefore, we leverage docking simulation [26,
5, 35] that evaluates the affinity between a ligand (a small molecular drug) and a target (a protein
involved in the disease) as an oracle and build up benchmark groups. In addition to the objective
function value, we add a quality filter and a synthetic accessibility score to evaluate the generation
quality within a limited number of oracle calls.

Experimental setup. We leverage TDC.ZINC dataset as the molecule library and TDC.Docking

oracle function as the molecule docking score evaluator against the target DRD3, which is a crucial
disease target for neurology diseases such as tremor and schizophrenia. To imitate a low-data scenario,
we limit the number of oracle callings available to four levels: 100, 500, 1000, 5000. In addition,
we investigate additional metrics that evaluate the quality of generated molecules, including (1)
Top100/Top10/Top1: Average docking score of top-100/10/1 molecules; (2) Diversity: average
pairwise Tanimoto distance of Morgan fingerprints for Top 100 molecules; (3) Novelty: fraction of
molecules that are not in the training set; (4) m1: Synthesizability score of molecules obtained via
molecule.one retrosynthesis model [32]; (5) %pass: Fraction of molecules that successfully pass
through apriori defined quality filters; (6) Top1 %pass: The lowest docking score for molecules
that pass the filter. Each model is run three times with different random seeds. For baselines,
we use Screening [26] (simulated as random sampling), Graph-GA [20], string-based LSTM [34],
GCPN [45], MolDQN [46] and MARS [42]. We also include best-in-data, which choose 100
molecules with the highest docking score from ZINC 250K database as reference.

3

Results: Binding affinity prediction

• ERM is a standard strategy to minimize errors across all domains
• MMD minimizes maximum mean discrepancy across domains
• CORAL matches mean and covariance of features across domains 
• IRM optimizes features using a cross-domain optimized linear classifier
• GroupDRO optimizes ERM and adjusts weights of domains with larger errors 
• Marginal transfer learning augments features with marginal distributions 
• ANDMask masks gradients that have inconsistent signs in the corresponding 

weights across domains

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021
Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022

Modern data 
management Human-AI 
collaboration
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Quick Check
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Words and genes share a correspondence:
their meanings arise from their context.

Gene perturbation measurements across diverse cell contexts
induce semantics for genes

(under the right approach) 

🔑💡

7
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“apple” is a polysemic word…

7
1



… whose particular meaning is resolved via sentence context.

7
2



H2AFX is a pleiotropic gene…

DNA

7
3



… whose particular function is resolved via cell context.

Homologous
Recombination

Olaparib

P

Doxorubicin

End Joining

P

7
4
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Our goal for today
Unsupervised learning of gene pleiotropy with 

applications to therapeutic science
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Data
Use gene perturbation effect measurements for 

inferring biological functions

Why perturbation datasets? Alternative data types: 
• Transcriptomics: gene co-expression is necessary but not sufficient for co-function
• Protein-protein interactions: direct interactions are not necessary for co-function
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Approach: Webster
§ Low-dimensional vector embeddings that satisfy 

three criteria:
§ Sparse
§ Latents are biologically meaningful
§ Account for redundancy between cell contexts
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Approach: Webster
Webster learns a dictionary matrix that sparsely 

approximates gene effects…

1

2

… while preserving 
interpretable relationships 
between genes

… and accounting for 
redundancies between cell 
contexts 
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Overview of Webster
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Its key parameters are dictionary 
size (K) and sparsity on loadings (T)
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Model optimization
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Applications to three screens of 
gene perturbation effects

1) Genotoxic screens

2) Cancer fitness screens

3) Compound sensitivity screens
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Part 1: Genotoxic screens
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Webster approximates the input 
data matrix…
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… as a product between a 
dictionary matrix and a loadings 

matrix

Learned gene-to-function loadings recover 
biological genesets hidden during model training
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Latents inferred by the model 
recapitulate pleiotropy without prior 

knowledge
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Latents are biologically meaningful

H2AFX - End Joining + Fanconi Anemia ≈ RAD51B
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Part 2: Cancer fitness screens
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Pleiotropic genes obey linear 
semantics in the latent space

SHOC2 ≈ Activated KRAS + Activated NRAS +
EGFR Signaling + FGFR Signaling
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Joint embedding space 
of genes and functions

It captures interpretable 
processes in cancer
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Part 3: Compound sensitivity screens 

Modeling compound sensitivity profiles as 
mixtures of functions learned from CRISPR
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Modeling compounds as mixtures 
of latent functions

• Modeling compounds as mixtures of functions learned from CRISPR signatures with 
high similarity represent useful and previously unrecognized connections
• between two proteins operating in the same pathway
• between a small-molecule and its protein target 
• between two small-molecules of similar function but structural dissimilarity

• Such a catalog of connections can serve as a functional look-up table of compounds 
to predict sensitivity and genotoxic profiles and to inform therapeutic use
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Compounds’ mechanisms of action

Compounds are embedded nearby gene functions, 
reflecting their mechanism of action

Modeling compounds as mixtures of functions learned 
from CRISPR signatures with high similarity represent 
useful and previously unrecognized connections
• between two proteins operating in the same pathway
• between a compound and its protein target 
• between two compounds of similar function but 

structural dissimilarity
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Key takeaways
§ Analogously to word semantics, genes can be 

modeled as distributions over latent bio functions
§ Sparse learning is an effective strategy for learning bio 

functions from high-dimensional chemical and genetic 
perturbations 

§ New perturbations can be projected into learned space
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https://depmap.org/webster 
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§ Optimization & generation 
of small molecules

§ Binding of drugs to 
therapeutic targets

§ High-throughput genetic & 
chemical perturbations

Outline for today’s class
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