# BMI 702: Biomedical Artificial Intelligence

Foundations of Biomedical Informatics II, Spring 2024

Lecture 13: Al-guided drug design, small-molecule generation, molecule optimization, identification and characterization of therapeutic targets, design of chemical and genetic perturbations



Marinka Zitnik marinka@hms.harvard.edu

# Phases of drug discovery from initial stage (target-to-hit) to final stage (launch)



p(TS) – probability of successful transition from one stage to the next; NME – new molecular entity; WIP – work in process

#### Drug-like chemical space 10<sup>60</sup>

#### FDA-approved treatments available today

**10**<sup>5</sup>

There are 10<sup>60</sup> drug-like compounds. Scientists have synthesized only a fraction of those in the lab and transition them into therapies (10<sup>5</sup>) – Can advanced computation and AI take us where no human has gone before?





### Examples of success



Predictions

Huang et al., Zero-shot prediction of therapeutic use with geometric deep learning and clinician centered design, 2023



Antibiotic Discovery, 2020

Stokes et al., A Deep Learning Approach to



AlphaFold2



Halicin, new antibiotic









Amino acid sequence



3D coordinates of amino acids in the protein

Jumper et al., Highly accurate protein structure prediction with AlphaFold, 2021



Li et al., Nature Biomedical Engineering '22

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI

#### https://tdcommons.ai

# Therapeutics Commons: How it works?

| 888                       |              |                                  | AI and ML                   |                                       |                                    |  |
|---------------------------|--------------|----------------------------------|-----------------------------|---------------------------------------|------------------------------------|--|
| Biomedical<br>scientists  |              |                                  |                             |                                       | Biomedical<br>scientists           |  |
|                           |              |                                  |                             |                                       |                                    |  |
| Candidate<br>therapeutics | DATA COMMONS | Data store for<br>large analyses | Drug discovery<br>Al models | Optimization for<br>safety & efficacy | Better scientific<br>hypotheses    |  |
|                           |              |                                  |                             |                                       |                                    |  |
|                           |              |                                  |                             |                                       | Laboratory and clinical evaluation |  |

# Al workflows in drug discovery



#### https://tdcommons.ai What tasks can we address with these workflows?

#### Target discovery

Identify candidate drug targets

#### Activity modeling

 Screenand generate individual or combinatorial therapies with high binding activity towards targets

#### Efficacy and safety

 Optimize therapeutic signatures predictive of safety & efficacy

#### Manufacturing

Synthesis of therapeutics

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021 Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022



10

## Outline for today's class

- Optimization & generation
  of small molecules
  - Binding of drugs to therapeutic targets





 High-throughput genetic & chemical perturbations



# High throughput screening (HTS)

- Test thousands to hundreds of thousands of compounds in one or more assays
  - Biochemical, genetic, and pharmacological assays
- Integrate with robotics for self-driving lab
- Goal: Rapidly identify novel modulators of biological systems
  - Cellular basis of diseases
  - Therapeutic agents



# Goals of high throughput screening

- Rapidly screen large collections of compounds (chemical libraries)
- Efficiently identify active compounds
  - Test them in slower, accurate, expensive screens
- Use the data to learn what types of compounds tend to be active

| n | 300K            |
|---|-----------------|
|   | HTS             |
|   | 1000            |
|   | Cherry<br>Picks |
|   | 300             |

Number of Molecules

## HTS data types

- Categorical: active/inactive or toxic/nontoxic
- Continuous: single-point or dose-response
- Multiple readouts:
  - Might read at different wavelengths or time points
  - More complex when dealing with images



Single-point vs. dose-response readouts

PhenoVue PhenoVue PhenoVue PhenoVue PhenoVue PhenoVue Fluor 488 -641 Mitochondrial Hoechst 33342 512 Nucleic Fluor 555 -Fluor 568 acid stain WGA Phalloidin stain nuclear stain Concanavalin A Control Ca 074Me Cytochalasin D Treated

Cell painting for phenotypic drug discovery

## HTS: Machine learning setup

• HTS tests the activity of molecules:

$$Activity = f(Structure)$$

- We need to describe the molecular structure
  - Various discrete or real-valued descriptors
  - Surfaces (3D)
  - Binary fingerprints
  - Learned molecular embeddings

# In-silico screening and optimization of molecular structure



----> Exploration route

★ Objective

## Molecular property prediction



# What can we use molecular representations for?

#### Search

- Given a potent active molecule, find similar ones (or dissimilar but also potent)
- Prediction of various endpoints
  - Given a set of active and inactive molecules, build a model to predict which members from a chemical library will be active

#### Clustering

 Given a set of molecules, do they cluster into structurally different groups?

# Two strategies for producing molecular representations





- Lots of types of fingerprints
- Keyed fingerprints indicate the presence or absence of a structural feature
- Length can vary from 166 to 4096 bits or more
- Fingerprints usually compared to each other using the Tanimoto metric

#### Towards neural fingerprints

| Algorithm 1 Circular fingerprints                                                                                | Algorithm 2 Neural graph fingerprints                                                                         |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| : Input: molecule, radius $R$ , fingerprint 1: Input: molecule, radius $R$ , hidden weights                      |                                                                                                               |  |  |  |  |  |  |
| length S                                                                                                         | $H_1^1 \dots H_R^5$ , output weights $W_1 \dots W_R$                                                          |  |  |  |  |  |  |
| 2: Initialize: fingerprint vector $\mathbf{f} \leftarrow 0_S$                                                    | 2: Initialize: fingerprint vector $\mathbf{f} \leftarrow 0_S$                                                 |  |  |  |  |  |  |
| 3: for each atom $a$ in molecule                                                                                 | 3: for each atom a in molecule                                                                                |  |  |  |  |  |  |
| 4: $\mathbf{r}_a \leftarrow g(a)$ $\triangleright$ lookup atom feature                                           | s 4: $\mathbf{r}_a \leftarrow g(a)$ $\triangleright$ lookup atom features                                     |  |  |  |  |  |  |
| 5: for $L = 1$ to $R$ $\triangleright$ for each laye                                                             | r 5: for $L = 1$ to $R$ $\triangleright$ for each layer                                                       |  |  |  |  |  |  |
| 6: <b>for</b> each atom <i>a</i> in molecule                                                                     | 6: <b>for</b> each atom $a$ in molecule                                                                       |  |  |  |  |  |  |
| 7: $\mathbf{r}_1 \dots \mathbf{r}_N = \text{neighbors}(a)$                                                       | 7: $\mathbf{r}_1 \dots \mathbf{r}_N = \text{neighbors}(a)$                                                    |  |  |  |  |  |  |
| 8: $\mathbf{v} \leftarrow [\mathbf{r}_a, \mathbf{r}_1, \dots, \mathbf{r}_N] \triangleright \text{concatenation}$ | e 8: $\mathbf{v} \leftarrow \mathbf{r}_a + \sum_{i=1}^N \mathbf{r}_i$ $\triangleright$ sum                    |  |  |  |  |  |  |
| 9: $\mathbf{r}_a \leftarrow \operatorname{hash}(\mathbf{v}) > \operatorname{hash} \operatorname{function}$       | a 9: $\mathbf{r}_a \leftarrow \sigma(\mathbf{v} H_L^N) \triangleright \text{smooth function}$                 |  |  |  |  |  |  |
| 10: $i \leftarrow \operatorname{mod}(r_a, S) \triangleright \operatorname{convert}$ to index                     | <b>i</b> $\leftarrow$ softmax $(\mathbf{r}_a W_L)$ $\triangleright$ sparsify                                  |  |  |  |  |  |  |
| 11: $\mathbf{f}_i \leftarrow 1$ $\triangleright$ Write 1 at index                                                | <b>x</b> 11: $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{i} \qquad \triangleright \text{ add to fingerprint}$ |  |  |  |  |  |  |
| 12: Return: binary vector f                                                                                      | 12: Return: real-valued vector f                                                                              |  |  |  |  |  |  |

Figure 2: Pseudocode of circular fingerprints (*left*) and neural graph fingerprints (*right*). Differences are highlighted in blue. Every non-differentiable operation is replaced with a differentiable analog.

# Neural fingerprint representations

#### 1) Neural graph fingerprints

- Generate molecular fingerprints with a neural network
- Update atom features using only adjacent atoms
- Use different weights for node degrees
- 2) Molecular graphs
  - Update atom features by convolutional and pooling layers using adjacent atoms





#### They did not consider property of edges (bonds) They did not consider atoms other than 1-neighbor

Duvenaud et al., NeurIPS 2015; Altae Tran et al., ACS Central Science 2017

#### Graphs vs. 3D structures



The distance on the graph does not necessarily correlate with the Euclidean distance between atoms in the 3D structure

Need to consider modifying the definition of graph distance

#### Datasets

#### 22 datasets with ADMET endpoints



A: Absorption Caco2 (Cell Permeability) HIA (Intestinal Absorption) Pgp (P-glycoprotein) Bioavailability Lipophilicity Solubility

BBB (Blood-Brain Barrier)

#### **D:** Distribution

E: Excretion

Half Life Clearance (Hepatocyte) Clearance (Microsome)

T: Toxicity

LD50 (Acute Toxicity) hERG blocker PPBR (Plasma Protein Binding) Ames Mutagenicity Drug Induced Liver Injury

M: Metabolism CYP2C9/2D6/3A4 Inhibition CYP2C9/2D6/3A4 Substrate

VDss (Volume of Distribution)

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021 Artificial Intelligence Foundation for Therapeutic Science, Nature Chemical Biology, 2022

24

#### Experimental setup



- Demonstrate that fingerprints are interpretable
  - Show substructures which most activate individual features in a fingerprint vector
  - Fingerprint features can each only be activated by a single fragment of a single radius, except for accidental collisions
  - In contrast, neural fingerprint features can be activated by variations of the same structure, making them more interpretable, and allowing shorter feature vectors.

#### Results: Examining neural fingerprints



Figure 4: Examining fingerprints optimized for predicting solubility. Shown here are representative examples of molecular fragments (highlighted in blue) which most activate different features of the fingerprint. *Top row:* The feature most predictive of solubility. *Bottom row:* The feature most predictive of solubility.

Duvenaud et al., NeurIPS 2015

### Results: Examining neural fingerprints



Figure 5: Visualizing fingerprints optimized for predicting toxicity. Shown here are representative samples of molecular fragments (highlighted in red) which most activate the feature most predictive of toxicity. *Top row:* the most predictive feature identifies groups containing a sulphur atom attached to an aromatic ring. *Bottom row:* the most predictive feature identifies fused aromatic rings, also known as polycyclic aromatic hydrocarbons, a well-known carcinogen.

#### Results: Molecular property prediction

| Raw Feature Type        |           | Expert-Curated Methods |                     | SMILES              | Molecular Graph-Based Methods (state-of-the-Art in ML) |                     |                     |                                       | rt in ML)           |
|-------------------------|-----------|------------------------|---------------------|---------------------|--------------------------------------------------------|---------------------|---------------------|---------------------------------------|---------------------|
| Dataset                 | Metric    | Morgan                 | RDKit2D             | CNN                 | NeuralFP                                               | GCN                 | AttentiveFP         | AttrMasking                           | ContextPred         |
|                         | # Params. | 1477K                  | 633K                | 227K                | 480K                                                   | 192K                | 301K                | 2067K                                 | 2067K               |
| TDC.Caco2 (↓)           | MAE       | 0.908±0.060            | <b>0.393</b> ±0.024 | 0.446±0.036         | 0.530±0.102                                            | <b>0.599</b> ±0.104 | 0.401±0.032         | 0.546±0.052                           | 0.502±0.036         |
| <b>TDC.HLA</b> (†)      | AUROC     | 0.807±0.072            | 0.972±0.008         | 0.869±0.026         | <b>0.943</b> ±0.014                                    | 0.936±0.024         | 0.974±0.007         | 0.978±0.006                           | 0.975±0.004         |
| <b>TDC.Pgp</b> (↑)      | AUROC     | 0.880±0.006            | 0.918±0.007         | 0.908±0.012         | 0.902±0.020                                            | 0.895±0.021         | 0.892±0.012         | <b>0.929</b> ±0.006                   | 0.923±0.005         |
| TDC.Bioav (†)           | AUROC     | 0.581±0.086            | 0.672±0.021         | 0.613±0.013         | 0.632±0.036                                            | 0.566±0.115         | 0.632±0.039         | 0.577±0.087                           | 0.671±0.026         |
| TDC.Lipo (↓)            | MAE       | 0.701±0.009            | <b>0.574</b> ±0.017 | <b>0.743</b> ±0.020 | 0.563±0.023                                            | 0.541±0.011         | 0.572±0.007         | 0.547±0.024                           | <b>0.535</b> ±0.012 |
| TDC.AqSol (↓)           | MAE       | 1.203±0.019            | 0.827±0.047         | 1.023±0.023         | 0.947±0.016                                            | <b>0.907</b> ±0.020 | 0.776±0.008         | 1.026±0.020                           | 1.040±0.045         |
| <b>TDC.BBB</b> (↑)      | AUROC     | 0.823±0.015            | 0.889±0.016         | 0.781±0.030         | 0.836±0.009                                            | 0.842±0.016         | 0.855±0.011         | 0.892±0.012                           | 0.897±0.004         |
| <b>TDC.PPBR</b> (↓)     | MAE       | 12.848±0.362           | 9.994±0.319         | 11.106±0.358        | <b>9.292</b> ±0.384                                    | 10.194±0.373        | 9.373±0.335         | 10.075±0.202                          | 9.445±0.224         |
| <b>TDC.VD</b> (†)       | Spearman  | <b>0.493</b> ±0.011    | <b>0.561</b> ±0.025 | 0.226±0.114         | 0.258±0.162                                            | 0.457±0.050         | 0.241±0.145         | 0.559±0.019                           | 0.485±0.092         |
| <b>TDC.CYP2D6-I</b> (†) | AUPRC     | 0.587±0.011            | 0.616±0.007         | 0.544±0.053         | 0.627±0.009                                            | 0.616±0.020         | 0.646±0.014         | 0.721±0.009                           | <b>0.739</b> ±0.005 |
| <b>TDC.CYP3A4-I</b> (†) | AUPRC     | 0.827±0.009            | 0.829±0.007         | 0.821±0.003         | 0.849±0.004                                            | 0.840±0.010         | 0.851±0.006         | 0.902±0.002                           | <b>0.904</b> ±0.002 |
| <b>TDC.CYP2C9-I</b> (†) | AUPRC     | 0.715±0.004            | 0.742±0.006         | <b>0.713</b> ±0.006 | 0.739±0.010                                            | <b>0.735</b> ±0.004 | <b>0.749</b> ±0.004 | 0.829±0.003                           | 0.839±0.003         |
| <b>TDC.CYP2D6-S</b> (†) | AUPRC     | 0.671±0.066            | 0.677±0.047         | 0.485±0.037         | 0.572±0.062                                            | 0.617±0.039         | <b>0.574</b> ±0.030 | 0.704±0.028                           | 0.736±0.024         |
| <b>TDC.CYP3A4-S</b> (†) | AUROC     | 0.633±0.013            | 0.639±0.012         | 0.662±0.031         | 0.578±0.020                                            | 0.590±0.023         | 0.576±0.025         | 0.582±0.021                           | 0.609±0.025         |
| <b>TDC.CYP2C9-S</b> (†) | AUPRC     | 0.380±0.015            | 0.360±0.040         | 0.367±0.059         | 0.359±0.059                                            | <b>0.344</b> ±0.051 | 0.375±0.032         | $\underline{\text{0.381}{\pm 0.045}}$ | <b>0.392</b> ±0.026 |
| TDC.Half_Life (†)       | Spearman  | 0.329±0.083            | 0.184±0.111         | 0.038±0.138         | 0.177±0.165                                            | 0.239±0.100         | 0.085±0.068         | 0.151±0.068                           | 0.129±0.114         |
| TDC.CL-Micro (†)        | Spearman  | 0.492±0.020            | 0.586±0.014         | 0.252±0.116         | 0.529±0.015                                            | 0.532±0.033         | 0.365±0.055         | 0.585±0.034                           | 0.578±0.007         |
| TDC.CL-Hepa (†)         | Spearman  | 0.272±0.068            | 0.382±0.007         | 0.235±0.021         | 0.401±0.037                                            | 0.366±0.063         | 0.289±0.022         | 0.413±0.028                           | <b>0.439</b> ±0.026 |
| TDC.hERG (†)            | AUROC     | 0.736±0.023            | <b>0.841</b> ±0.020 | 0.754±0.037         | 0.722±0.034                                            | 0.738±0.038         | 0.825±0.007         | 0.778±0.046                           | 0.756±0.023         |
| TDC.AMES (†)            | AUROC     | <b>0.794</b> ±0.008    | 0.823±0.011         | 0.776±0.015         | 0.823±0.006                                            | 0.818±0.010         | 0.814±0.008         | 0.842±0.008                           | 0.837±0.009         |
| TDC.DILI (†)            | AUROC     | 0.832±0.021            | 0.875±0.019         | 0.792±0.016         | 0.851±0.026                                            | 0.859±0.033         | 0.886±0.015         | <b>0.919</b> ±0.008                   | 0.861±0.018         |
| <b>TDC.LD</b> 50 (↓)    | MAE       | 0.649±0.019            | 0.678±0.003         | 0.675±0.011         | 0.667±0.020                                            | 0.649±0.026         | 0.678±0.012         | 0.685±0.025                           | 0.669±0.030         |

- No single method performs the best across all scenarios
- Pre-training boost performance
- Pre-trained graph models yield strongest predictors overall

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021 Artificial Intelligence Foundation for Therapeutic Science, *Nature Chemical Biology*, 2022

## Outline for today's class

- Optimization & generation
  of small molecules
  - Binding of drugs to therapeutic targets





 High-throughput genetic & chemical perturbations



### Molecular graph generation



Details and description of other models at https://zitniklab.hms.harvard.edu/drugml

### Molecular graph generation









4.45

5.30



4.42



prov

4.37



4.30







4.17



4.08

4.07







4.03

#### Generate molecules with high potency

### Molecular graph generation















#### Modify molecules to increase potency

### Molecular variational autoencoder



<sup>[1]</sup> Gomez-Bombarelli et al., Automatic chemical design using a data-driven continuous representation of molecules, 2016

# How to generate graphs?



- Not every graphs is chemically valid
- Invalid intermediate states  $\rightarrow$  hard to validate
- Very long intermediate steps  $\rightarrow$  difficult to train (Li et al., 2018)

<sup>[2]</sup> Li et al., Learning Deep Generative Models of Graphs, 2018

#### Functional groups



# How to generate graphs?





- Shorter action sequence
- Easy to check validity

•

•
### Tree decomposition



- Generate junction tree 

  Generate graph group by group
- Vocabulary size: less than 800 given 250K molecules

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI

# Approach: Junction-tree variational autoencoder



## Graph and tree encoders



Neural Message Passing Network (MPN)

Jin et al., ICML 2018



<sup>[3]</sup> Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



<sup>[3]</sup> Dai et al., Discriminative embeddings of latent variable models for structured data, 2016



<sup>[3]</sup> Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

## Graph encoding



$$\boldsymbol{\nu}_{uv}^{(t)} = \tau (\mathbf{W}_1^g \mathbf{x}_u + \mathbf{W}_2^g \mathbf{x}_{uv} + \mathbf{W}_3^g \sum_{w \in N(u) \setminus v} \boldsymbol{\nu}_{wu}^{(t-1)})$$
  
Messages Node feature Edge feature  $w \in N(u) \setminus v$ 

<sup>[3]</sup> Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

## Graph encoding



$$\mathbf{h}_u = \tau (\mathbf{U}_1^g \mathbf{x}_u + \sum_{v \in N(u)} \mathbf{U}_2^g \boldsymbol{\nu}_{vu}^{(T)})$$

<sup>[3]</sup> Dai et al., Discriminative embeddings of latent variable models for structured data, 2016

## Tree encoding



To capture long range interactions

## Graph and tree encoders



Jin et al., ICML 2018

Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI

# Approach: Junction-tree variational autoencoder





#### Tree decoder



<sup>[4]</sup> Alvarez-Melis & Jaakkola, Tree-structured decoding with doubly-recurrent neural networks

#### Tree decoder



**Topological Prediction**: Whether to expand a child or backtrack?

Label Prediction: What is the label of a node?



**Topological Prediction**: Whether to expand a node or backtrack? **Label Prediction**: What is the label of a node?

#### Tree decoder







**Predicted Junction Tree** 

Molecular Graph

## Graph decoder



Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI

# Recap: Junction-tree variational autoencoder



#### Experiments

- **Data**: 250K compounds from ZINC dataset
- Molecule Generation: How many molecules are valid when sampled from Gaussian prior?
  - Molecule Optimization
    - Global: Find the best molecule in the entire latent space.
    - Local: Modify a molecule to increase its potency

٠

#### Baselines

#### SMILES string based:

- 1. Grammar VAE (GVAE) (Kusner et al., 2017);
- 2. Syntax-directed VAE (SD-VAE) (Dai et al., 2018)

#### Graph based:

- 1. Graph VAE (Simonovsky & Komodakis, 2018)
- 2. DeepGMG (Li et al., 2018)

<sup>[2]</sup> Li et al., Learning Deep Generative Models of Graphs, 2018

<sup>5</sup> Kusner et al., Grammar Variational Autoencoder, 2017

<sup>6</sup> Dai et al., Syntax-directed Variational Autoencoder for structured data, 2018

<sup>7</sup> Simonovsky & Komodakis, GraphVAE: Towards generation of small graphs using variational autoencoders

# Molecule generation (Validity)



Marinka Zitnik - marinka@hms.havard.edu., BMI 702: Biomedical A XX Sampled molecules ron f 30 and the off the one +02 ~~~~ 52 oct 62 room for \$2 S. QP5 By and Bar and and the 0210 onto any an fro the and 200 53 Add and onto and and got ondo **,**200 on to go ago afo the rozb 05 ord when only only the approxime the 500 the the one of the the -oper and a o 3.0 man from **₹**, ₽ 9.2-2 3005 inca only AD BE - The tog ra Off v

# Molecule optimization (Global)



Property: Solubility + Ease of Synthesis

Jin et al., ICML 2018

# Molecule optimization (Global)



Property: Solubility + Ease of Synthesis

Jin et al., ICML 2018

# Molecule optimization (Local)





Preservation of the original structure

# Molecule optimization (Local)





Preservation of the original structure

# Molecule optimization (Local)





Preservation  $\approx 0.4$ 



Preservation of the original structure

# Outline for today's class

- Optimization & generation of small molecules
- Binding of drugs to therapeutic targets





 High-throughput genetic & chemical perturbations



# Geometric modeling of binding



Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021 Artificial Intelligence Foundation for Therapeutic Science, *Nature Chemical Biology*, 2022

-0.7

# Results: Binding affinity prediction

| ERM      | 0.747           | 0.711 | 0.727 | 0.718               | 0.675 | 0.677 | 0.415 | 0.538 | 0.0609 |
|----------|-----------------|-------|-------|---------------------|-------|-------|-------|-------|--------|
| MMD      | 0.745           | 0.705 | 0.725 | 0.714               | 0.674 | 0.673 | 0.423 | 0.525 | -0.05  |
| CORAL    | 0.749           | 0.711 | 0.726 | 0.719               | 0.676 | 0.678 | 0.42  | 0.543 | 0.0701 |
| IRM      | 0.309           | 0.457 | 0.459 | 0.523               | 0.399 | 0.377 | 0.303 | 0.157 | 0.0491 |
| GroupDRO | 0.683           | 0.717 | 0.732 | 0.722               | 0.529 | 0.729 | 0.376 | 0.472 | 0.0134 |
| MTL      | 0.729           | 0.691 | 0.714 | 0.703               | 0.661 | 0.649 | 0.414 | 0.527 | 0.0262 |
| ANDMask  | 0.367           | 0.466 | 0.463 | 0.524               | 0.431 | 0.361 | 0.308 | 0.158 | 0.0538 |
|          | 2013            | 2014  | 2015  | 2016                | 2017  | 2018  | 2019  | 2020  | 2021   |
|          |                 |       | ,     | (                   |       | ]     |       | γ     | ]      |
|          | In-Distribution |       |       | Out-of-Distribution |       |       |       |       |        |

- ERM is a standard strategy to minimize errors across all domains
- MMD minimizes maximum mean discrepancy across domains
- CORAL matches mean and covariance of features across domains
- IRM optimizes features using a cross-domain optimized linear classifier
- GroupDRO optimizes ERM and adjusts weights of domains with larger errors
- Marginal transfer learning augments features with marginal distributions
- ANDMask masks gradients that have inconsistent signs in the corresponding weights across domains

AMINO ACID SEQUENCE

mevrpresnnhadfurceddesvdgrpsvnadeevggdicrvcgdkatgyhfnvmtcgckgfprankradlrcdffreger traker Qcqacrlrkclesgmkkenimsdeaveerralikrkksertgydlgvgditegrmnirelmdagmktfdttfshfknflfgulsgcel Psijqafsrebarkngvradlcslkvsjjrgdesgvmtkfpadsgcreifsllfhadnstynfrgiisfavisyfrdifedies



BINDING AFFINITY (IC50)

624.84 nM BINDING AFFINITY (PIC50)

6.20

| PREDICTED | ADMET | PROPERTY |  |
|-----------|-------|----------|--|

| REDICTED ADMET PROPERTY         |                  |
|---------------------------------|------------------|
| roperty                         | Value            |
| olubility                       | -4.07 log mol/L  |
| ipophilicity                    | 2.62 (log-ratio) |
| Absorption) Caco-2              | -5.05 cm/s       |
| Absorption) HIA                 | 86.09 %          |
| Absorption) Pgp                 | 20.73 %          |
| Absorption) Bioavailability F20 | 75.41 %          |
| Distribution) BBB               | 41.67 %          |
| Distribution) PPBR              | 50.20 %          |
| Metabolism) CYP2C19             | 74.68 %          |
| Metabolism) CYP2D6              | 44.95 %          |
| Metabolism) CYP3A4              | 86.54 %          |
| Metabolism) CYP1A2              | 11.20 %          |

#### Modern data management Human-Al collaboration

Therapeutics Data Commons: Machine Learning Datasets and Tasks for Therapeutics, NeurIPS, 2021 Artificial Intelligence Foundation for Therapeutic Science, *Nature Chemical Biology*, 2022

## Quick Check

#### https://forms.gle/4DJYidWsL4KkDau57

| BMI 702: Biomedical Artificial Intelligence                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Foundations of Biomedical Informatics II, Spring 2024                                                                                                                                                              |
| Quick check quiz for lecture 13: Al-guided drug design, small-molecule generation, molecule optimization, identification and characterization of therapeutic targets, design of chemical and genetic perturbations |
| Course website and slides: https://zitniklab.hms.harvard.edu/BMI702                                                                                                                                                |
| Sign in to Google to save your progress. Learn more                                                                                                                                                                |
| * Indicates required question                                                                                                                                                                                      |
|                                                                                                                                                                                                                    |
| First and last name *                                                                                                                                                                                              |
| Your answer                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    |
| Harvard email address *                                                                                                                                                                                            |
|                                                                                                                                                                                                                    |
| Your answer                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    |
| Describe two challenges that models for generating molecular graphs need to * address.                                                                                                                             |
| Your answer                                                                                                                                                                                                        |
|                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                    |

What is the difference between traditional vs. neural fingerprint representations? \*

Your answer

# Outline for today's class

 Optimization & generation of small molecules

 Binding of drugs to therapeutic targets





 High-throughput genetic & Chemical perturbations





Words and genes share a correspondence: their **meanings** arise from their **context**.

Gene perturbation measurements across diverse cell contexts induce **semantics for genes** 

(under the right approach)

"apple" is a **polysemic** word...

Google

Q grow an apple

Q buy an apple

#### ... whose particular meaning is resolved via sentence context.

Google

- Q grow an apple
- Q grow an apple **tree**
- Q grow an apple tree from seed
- Q grow an apple **tree in a pot**
- Q grow an apple tree indoors



- Q buy an apple
- Q buy an apple **watch**
- Q buy an apple gift card
- Q buy an apple tv


H2AFX is a **pleiotropic** gene...



#### ... whose particular function is resolved via cell context.





| While unsupervised learning of word polysemy is <b>common</b> | unsupervised learning of gene pleiotropy is <b>unsolved</b> |  |
|---------------------------------------------------------------|-------------------------------------------------------------|--|
| Data: corpus<br>of sentence contexts                          | Data: ?                                                     |  |
| <b>Approach:</b> word embeddings<br>w/ linear semantics       | Approach: ?                                                 |  |
| king - man + woman ≈ queen                                    | geneA - func1 + func2 ≈ geneB                               |  |

# Our goal for today

Unsupervised learning of gene pleiotropy with applications to therapeutic science

| Data:           | ?               |
|-----------------|-----------------|
|                 |                 |
| Approach:       | ?               |
|                 |                 |
|                 |                 |
| geneA - func1 - | + func2 ≈ geneB |

### Data

# Use gene perturbation effect measurements for inferring biological functions



Why perturbation datasets? Alternative data types:

- Transcriptomics: gene co-expression is necessary but not sufficient for co-function
- Protein-protein interactions: direct interactions are not necessary for co-function

# Approach: Webster

- Low-dimensional vector embeddings that satisfy three criteria:
  - Sparse
  - Latents are biologically meaningful
  - Account for redundancy between cell contexts



# Approach: Webster

Webster learns a dictionary matrix that **sparsely** approximates gene effects...



Cell context similarity graph

## Overview of Webster



# Its key parameters are dictionary size (K) and sparsity on loadings (T)



# Model optimization



# Applications to three screens of gene perturbation effects 1) Genotoxic screens

### 2) Cancer fitness screens

### 3) Compound sensitivity screens

# Part 1: Genotoxic screens

Olivieri et al. 2020: fitness effect of gene knockout in presence of genotoxins



Marinka Zitnik - marinka@hms.harvard.edu -- BMI 702: Biomedical AI

# Webster approximates the input data matrix...



k=10 t=2

# ... as a product between a dictionary matrix and a loadings matrix



Learned gene-to-function loadings recover biological genesets hidden during model training

86

# Latents inferred by the model recapitulate pleiotropy without prior knowledge



(hidden during model training!)

## Latents are biologically meaningful

geneA - func1 + func2 ≈ geneB

#### H2AFX - End Joining + Fanconi Anemia ≈ RAD51B



= cell context (treatment)

## Part 2: Cancer fitness screens



# Pleiotropic genes obey linear semantics in the latent space

#### SHOC2 ≈ Activated KRAS + Activated NRAS + EGFR Signaling + FGFR Signaling





# Joint embedding space of genes and functions



# It captures interpretable processes in cancer



### Part 3: Compound sensitivity screens



Modeling compound sensitivity profiles as mixtures of functions learned from CRISPR

# Modeling compounds as mixtures of latent functions

#### Reference-query projection



- Modeling compounds as mixtures of functions learned from CRISPR signatures with high similarity represent useful and previously unrecognized connections
  - between two proteins operating in the same pathway
  - between a small-molecule and its protein target
  - between two small-molecules of similar function but structural dissimilarity
- Such a catalog of connections can serve as a functional look-up table of compounds to predict sensitivity and genotoxic profiles and to inform therapeutic use

### Compounds' mechanisms of action

# Compounds are embedded nearby gene functions, reflecting their mechanism of action



# Key takeaways

- Analogously to word semantics, genes can be modeled as distributions over latent bio functions
  - Sparse learning is an effective strategy for learning bio functions from high-dimensional chemical and genetic perturbations
  - New perturbations can be projected into learned space



geneA - func1 + func2  $\approx$  geneB

# https://depmap.org/webster

| ••• Webster × +                 |                                                                                                                                                                                                                                                                                | ~                                                                                        |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| ← → C ☆ ( depmap.org/webster/#/ | Q (b)                                                                                                                                                                                                                                                                          | ☆ 🕈 🔍 🛊 🗊 🔲 🚯 Update 🗄                                                                   |
|                                 | <ul> <li>Published Paper at Cell Systems</li> <li>Code for paper</li> <li>Dictionary learning code</li> <li>Figshare data</li> <li>H Design write-up</li> </ul>                                                                                                                |                                                                                          |
|                                 | Explore relationships between genes and biological functions<br>learned from CRISPR fitness screens using Webster.<br>Read The Paper: <u>"Sparse Dictionary Learning Recovers Pleiotropy From Human Cell Fitness Screens</u> " <u>Pror More Details</u> .<br>+ About this tool |                                                                                          |
| Genotoxic 🗸                     | Search to select a gene or function - 2d 3d Q Q reset view clear selection                                                                                                                                                                                                     | n                                                                                        |
| ATRi vulnerability (V3)         | Selected function:<br>ATRi vulnerability (V3)                                                                                                                                                                                                                                  | highlighted in plot Gene DHX35  (ex ### loading, function nome)  1.08 ATRi vulnerability |
| Nedd. resistance (V5)           | Pan UMAP w/                                                                                                                                                                                                                                                                    | 1.00<br>Fork quality control<br>(V9)<br>Approximation<br>quality (Pearson)               |
| Polyamine (V1)                  |                                                                                                                                                                                                                                                                                | 0:74                                                                                     |
|                                 | <ul> <li>● Functions</li> <li>● Gene positive association</li> <li>● Gene negative association</li> <li>Native mouse controls: &lt;&gt;= pan right left</li> <li>→&lt;= zoom</li> </ul>                                                                                        |                                                                                          |

# Outline for today's class

- Optimization & generation of small molecules
- Binding of drugs to therapeutic targets





 High-throughput genetic & chemical perturbations

