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3. Motivation for machine learning

4. Roadmap for responsible Al



What will you learn in this course?

= Key data modalities
= Clinical data
= Networks, graphs, and multimodal datasets
» |anguage and text
= |mages

= Cutting-edge algorithmic principles underlying Al
= Self-supervised learning and transfer learning
= |arge-scale pre-training and efficient fine-tuning
= Multimodal learning
= Generative Al

= Broader impacts:

= Model evaluation, benchmarking, and deployment
= Privacy, safety, and copyright issues of Al
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Course staff

= Marinka Zitnik (Instructor)
= Assistant Professor of Biomedical Informatics
= Associate Faculty at Kempner Institute
= Associate Member at the Broad Institute
= Faculty at Harvard Data Science
https://zitniklab.hms.harvard.edu



https://zitniklab.hms.harvard.edu/

Course staff

= Yasha Ektefaie

= 4t year PhD student in BIG program
* vasha ektefaie@qg.harvard.edu

= Varun Ullanat
= 2023 BMI graduate
= vullanat@hms.harvard.edu



mailto:yasha_ektefaie@g.harvard.edu
mailto:vullanat@hms.harvard.edu

Dates, times and format

https://zitniklab.hms.harvard.edu/BMI702
= Thursday, 2:00 PM - 4:00 PM ET

= No class or assignments due: Week of March 11

= L ocation: Countway Library, Classroom 403

= Office hours:
= Tue, 3-4pm, Countway 423/424
= Thu, 4-5 pm, Countway 309
= Fri, 11-12pm, Countway 423/424


https://zitniklab.hms.harvard.edu/BMI702

Course syllabus

= 14 lectures:

= |ntroduction to biomedical Al

= |ectures are divided into six modules
= The first lecture in each module introduces ML concepts in the area
= The following lecture introduces advanced topics in the same area

= Final lecture on broader considerations of biomedical Al

= Modules:
= Module 1: Clinical Al
= Module 2: Trustworthy and Efficient Al
= Module 3: Graph Learning
= Module 4: Language Modeling
= Module 5: Biomedical imaging
= Module 6: Generative Al
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Assignments

= Problem sets:
= 3 problem sets
= Primary form of support are office hours we will host
= Problem sets must be completed individually

» Pre-class quizzes:
= Open at 9am on Friday, due at 2pm on Thursday
= Based on the Required Reading section of each lecture

» Quick checks:
= Short questions embedded into lectures
= Check your understanding of the concepts just introduced
= Your score on them doesn’t matter, you must complete them
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Grading

Grade Components

Component Percent of grade (%)
Problem Set 1 20
Problem Set 2 20
Problem Set 3 20
Class Participation 14 (1 point for Lecture 1-14)
Pre-Class Quizzes 26 (2 points per quiz; there is no quiz for Lecture 1)

We Want You to Succeed!
You are more than welcome to visit our office hours and talk with us. We know
graduate school can be stressful and we want to help you succeed
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Course culture and attendance

= Course culture:

= Students taking this course come from a wide range of
backgrounds

= We hope to foster an inclusive and safe learning
environment based on curiosity and research inquiry

= All members of the course community are expected to
treat each other with courtesy and respect

= Attendance:

= The course will be run in a in-person format

= Students must attend all classes unless they have
explicit permission from the course instructor



Full policies: https://zitniklab.hms.harvard.edu/BMI702/syllabus

Policies

= Collaboration policy
= Unless otherwise specified, all work submitted must reflect
student’s own effort and understanding

= Clearly distinguish your own ideas and knowledge from
information derived from other sources:

= Students must properly cite all submitted work

= Unless noted otherwise, students are expected to complete
assignments, quizzes, and projects individually, not as teams

= Discussion about course content and materials is acceptable, but
sharing solutions is not acceptable

= | ate policy
= Extensions provided in the case of exceptional circumstances
= Email the course instructor to request an extension
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Full policies: https://zitniklab.hms.harvard.edu/BMI702/syllabus

Policies

= We support using LLMs and generative Al:

Responsibility for content: Students who use LLMs and
generative Al tools in their assignments take full responsibility
for the content they submit

Acknowledgment of Al use: Clearly acknowledge any use of
LLMSs, specifying the nature and extent of assistance received
from Al. Make sure to perform critical thinking, analysis, and
synthesis of information

Ethical use and originality: Use these tools ethically, following
the principles of academic honesty. Using Al to plagiarize,
misrepresent original work, or fabricate data is prohibited

Instructor discretion: We may specify assignments where
LLMs and generative Al use is encouraged or prohibited

Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al 12


https://zitniklab.hms.harvard.edu/BMI702/syllabus

Outline for today’s class

J Overview of syllabus

What makes biomedical data unique

3. Motivation for machine learning

4. Roadmap for responsible Al



Al In medicine

CHg
HN/

Geometric ‘™ Self-supervised
learning 8 learning
@rertot
Input AA » >
sequence ¢ SO
3D coordinates of i ¢

amino acids in a protein Ligand-target

binding affinity

Graph

. Parametersin
@ Oxb a Iearnlng \\Q differential operator

ﬁ Antibiotic
250mg

108 molecular Search of new
compounds antibiotics

Variable Al Solver  Function Differential equation

New fundamental results in molecular dynamics

Scientific discovery in the age of

artlﬂCIal Intelllgence’ Nature 2023 Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al 14



Clinical

Physician
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Q: How long does it take for newborn jaundice to go away?

determine the cause and prevent complications.

Med-PaLM: Newborn jaundice is when a newbom baby's skin and eyes look yellow. Itis
caused by a buildup of a substance called bilirubin in the baby's blood. Blirubin is a
byproduct of the normal process of red blood cells breaking down. Newborn jaundice is
common and typically harmless, but it can be a sign of a more serious condition. The
jaundice typically goes away on its own within a few weeks. In some cases, it may last
longer or requie treatment. The time it takes for the jaundice to go away can vary
depending on the cause and the severity of the jaundice. If the jaundice is severe or
lasts longer than a few weeks, the doctor may recommend testing or treatment to

Med-PalM performs encouragingly
on consumer medical question answering

Scientific consensus
No consensus
Opposed to consensus
Aligned with consensus

Inappropriate and/or incorrect content
Yes, great clinical significance

Yes, little clinical significance

No

Missing content

Yes, great clinical significance
Yes, little clinical significance
No

Extent of possible harm
Death or severe harm

Moderate or mild harm
No harm

Likelihood of possible harm
High

Medium

Low

Large language models encode clinical
knowledge, Nature 2023
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Key algorithmic advances
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What makes biomedical data so
different?

= Life or death decisions
= Need robust algorithms
= Checks and balances built into ML deployment
= (Also arises in other applications of Al such as autonomous
driving)
= Need fair and accountable algorithms
= Many guestions are about unsupervised learning

= Discovering disease subtypes, or answering gquestion such
as “characterize the types of people that are highly likely to
be readmitted to the hospital”?

= Many of the questions we want to answer are causal
= Naive use of supervised machine learning is insufficient



What makes biomedical data so
different?

ML models are increasingly deployed in real-world
applications and implemented In clinical settings:

= |t is critical to ensure that these models are behaving
responsibly and are trustworthy Y. B % ‘

Auxiliary criteria are important: High-stakes decisions
= Explainable predictions and interpretable models

» Fair and non-discriminatory predictions
* Privacy-preserving, causal, and robust predictions

Accuracy alone is no longer enough

This broad area is known as trustworthy ML



What makes biomedical data so
different?

= Very little labeled data

» Recent breakthroughs in Al depended on lots of
labeled datal

Large, diverse data ——  Broad generalization
(+ large models)

Figure 1: The Transformer - model architecture.

GPT‘Z Vaswani et al. ‘18

Radford et al. ‘19
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What if you don’t have a large dataset?

medical imaging robotics personalized education,
translation for rare languages recommendations

What if you want a general-purpose Al system in the real world?
Need to continuously adapt and learn on the job.
Learning each thing from scratch won’t cut it.

What if your data has a long tail?

 big data
v
| /

objects encountered

LintAvant e s A A

‘These settings break the superwsed Iearmng paradigm.
o driving scenarios

# of datapoints
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What makes biomedical data so
different?

= Very little labeled data

= Motivates semi-supervised and self-supervised
learning

= Sometimes small numbers of samples (e.g., a rare
disease)

» [ earn as much as possible from other data (e.g.,
from healthy patients)

= Model the problem carefully

= | ots of missing data, varying time intervals,
censored labels



What makes biomedical data so
different?

= Difficulty of de-identifying data:
» Need for data sharing agreements and sensitivity
= Difficulty of deploying ML.:

= Commercial electronic health record software is
difficult to modify

= Data are often in siloes; everyone recognizes need for
interoperability, but slow progress

= Rigorous testing and iteration are needed
= Difficulty of correcting for biases and inequities:
= Consideration of ethical and legal issues

= Health data on which algorithms are trained are likely
to be influenced by many facets of social inequality
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Machine learning
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Training the model
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Diagnosing diabetic retinopathy

= Diabetic retinopathy
affects blood vessels Iin
the retina that lines the
back of the eye

= The most common
cause of vision loss
among people with
diabetes

= | eading cause of vision
Impairment and

Normal Diabetic

blindness among adults Retin Retina

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs, JAMA, 2016
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Diagnosing diabetic retinopathy

= 128,000 retinal fundus photographs
= Fach image was rated by 3-7 ophthalmologists
= “Off the shelf” deep neural network

Views 60,378 | Citations 2 | [asmeuic 23

Original Investigation | Innovations in Health Care Delivery

December 13, 2016

Development and Validation of a Deep Learning Al-
gorithm for Detection of Diabetic Retinopathy in
Retinal Fundus Photographs

Varun Gulshan, PhD'; Lily Peng, MD, PhD'; Marc Coram, PhD'; et al

» Author Affiliations Normal Diabetic
Retina Retina

JAMA. 2016;316(22):2402-2410. doi:10.1001/jama.2016.17216

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs, JAMA, 2016
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We wiill learn about this topic in Module 1: Clinical Al and Module 1: Biomedical Imaging

Diagnosing diabetic retinopathy

Algorithm did better than most individual
ophthalmologists in the study

Large data + machine learning ~ human-level
performance in diagnostic medical imaging
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Sensitivity (TPR): probability of positive test result, conditioned on individual truly being positive

Specificity (TNR): probability of a negative test result, conditioned on individual truly being negative

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal
Fundus Photographs, JAMA, 2016



Pivotal trial of an autonomous
Al-based diagnostic system

Abstract

Artificial Intelligence (Al) has long promised to increase healthcare affordability, quality and
accessibility but FDA, until recently, had never authorized an autonomous Al diagnostic
system. This pivotal trial of an Al system to detect diabetic retinopathy (DR) in people with
diabetes enrolled 900 subjects, with no history of DR at primary care clinics, by comparing to
Wisconsin Fundus Photograph Reading Center (FPRC) widefield stereoscopic photography
and macular Optical Coherence Tomography (OCT), by FPRC certified photographers, and
FPRC grading of Early Treatment Diabetic Retinopathy Study Severity Scale (ETDRS) and
Diabetic Macular Edema (DME). More than mild DR (mtmDR) was defined as ETDRS level 35
or higher, and/or DME, in at least one eye. Al system operators underwent a standardized
training protocol before study start. Median age was 59 years (range, 22-84 years); among
participants, 47.5% of participants were male; 16.1% were Hispanic, 83.3% not Hispanic;
28.6% African American and 63.4% were not; 198 (23.8%) had mtmDR."

Pivotal trial of an autonomous Al-based diagnostic system for detection of diabetic retinopathy in primary care
offices, NPJ Digital Medicine, 2018
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Pivotal trial of an autonomous
Al-based diagnostic system

The Al system exceeded all pre-specified
superiority endpoints at sensitivity of 87.2% 900
(95% ClI, 81.8-91.2%) (>85%), specificity of

90.7% (95% Cl, 88.3-92.7%) (>82.5%), and 892
imageability rate of 96.1% (95% Cl, 94.6-

Enrolled in study

8: withdrawn or failed to complete protocols

Intention to screen (ITS)

97.3%), demonstrating Al’s ability to bring ,
specialty-level diagnostics to primary care
settings. Based on these results, FDA

40: ungradable by FPRC reading center

authorized the system for use by health care
providers to detect more than mild DR and m
diabetic macular edema.

33: Al system insufficient quality or missing output

Analyzable: available for statistical analysis

Reading Center mtmDR negative
621

First FDA authorized
autonomous Al M

diagnostic System in any mtmDR present n=65
field of medicine ERERCRSe

Reading Center mtmDR positive
198

Al system output
mtmDR present n=173
mtmDR absent n=25

Pivotal trial of an autonomous Al-based diagnostic system for detection of diabetic retinopathy in primary care

offices, NPJ Digital Medicine, 2018

Marinka Zitnik - marinka@hms.harvard.edu - BMI 702: Biomedical Al

29




Antibiotic discovery timeline

1953: Glycopeptides, Nitroimidazoles, Streptogramins «¢

1952: Macrolides <«

1950: Pleuromutilins <

1948: Cephalosporins <«

1947: Polymyxins, Phenicols <

1944: Nitrofurans
1945: Tetracyclines «

1943: Aminoglycosides, Bacitracin (topical) <
1932: Sulfonamides <
1928: Penicillins <

P> 1955: Cycloserine, Novobiocin
P 1957: Rifamycins

P 1961: Trimethoprim
P 1962: Quinolones, Lincosamides, Fusidic acid
P> 1949: Fosfomycin

P 1971: Mupirocin
P 1976: Carbapenems
P> 1978: Oxazolidinones
P 1979: Monobactams
P> 1987: Lipopeptides

v DISCOVERY VOID

Natural product mining v

Small compound
screening

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020
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GNN to learn molecular structure
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A Deep Learning Approach to Antibiotic Discovery, Cell, 2020
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Experimental setup

Training Dataset Empirical Validation
(Human Medicines and Natural Products) (Broad Repurposing Hub)
0_
0—— Ji | Il ¥
J 1_ 2 o2l
2 9 0 o 00 10K . .
I — 33288 — (0.7 e
Input B Output

Data: 2,335 molecules (human Data: 6,111 molecules (at various
medicines and natural products) stages of investigation for human
screened for growth inhibition diseases) in the Repurposing Hub

Task: Test top 99 predictions &
prioritize based on similarity to known
antibiotics or predicted toxicity

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020
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Chemical screening results

Halicin, initially developed as anti-diabetic drug (but discontinued due to

poor results in testing), is identified and verified through experiments
as a promising antibiotic

i
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A Deep Learning Approach to Antibiotic Discovery, Cell, 2020
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Chemical screening results

Halicin’s efficacy in murine models of infection
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A Deep Learning Approach to Antibiotic Discovery, Cell, 2020
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Roadmap to develop, validate and
iImplement ML methods

Choosing the
right problems

e clinical relevance?
* appropriate data?
e collaborators?

e definition of success?

Developing a useful solution

e data provenance?
e ground truth?

Rigorous evaluation Considering the ethical implications
and thoughtful (4} « ethicist engagement?

reporting &) e bias correction?

* model use?

B e P
. i ictions? . . .
: :ﬁgfé%a:n%ggl'ggodn:?- ; ,H’H\EAH\P Deploying responsibly
e failure modes? 1= * prospective performance?

e clinical trial?

Making it to market » safety monitoring?

* medical device? , ,(.‘
* model updates? )H\

Do no harm: a roadmap for responsible machine learning for health care, Nature Medicine, 2019
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Key ML elements (1/2)

= Examples:
= Also known as ‘samples’ or ‘observations’, basic units of analysis
= Primary data objects being manipulated by an ML model

= Features:
= Properties of a given example, also known as ‘covariates’

= For example, the gene expression values associated with a gene or
the sequence patterns associated with a genomic window

= |Labels/Outcomes/Target variables:

= Qutcomes are what we want to predict in supervised learning

= For example, the functional class assigned to a gene or the binary

classification of whether a given genomic window contains a
promoter

= |n classification, the outcome is a category, known as ‘label’ or ‘class’
= |n regression, the outcome is a real number

Navigating the pitfalls of applying. machine learning in, genomics, Nature Reviews Genet, 2021



Key ML elements (2/2)

= Training set: Examples and associated outcomes used to fit an ML model
= Positives: Examples with the outcome of interest in a binary classifier
= Negatives: Examples with the alternative outcome in a binary classifier

= Test set: Examples and associated outcomes that are used to evaluate
model performance

= No examples are shared between training and test sets

=  Once we identify the specific ML problem that will be solved, we must train a
model and determine how to properly evaluate its performance

= Performance evaluation is often executed using cross-validation,
whereby examples are iteratively randomized into a training set used to train
a model and a held-out test set used to quantify model performance

= Prediction set:

= Examples whose associated outcomes are truly not known, where a fitted model
is applied to make predictions

= Also known as a prospective set

Navigating the pitfalls of applying. machine learing in,genomics, Nature Reviews Genet, 202



Roadmap for ML development

Stage 1 Stage 2 Stage 3
Data Splits ‘ ‘
Internal Prospective Real world

Data Data Data




Stage 1: Algorithm development

= Stage 1 focuses on
designing and
developing initial models

retrospective data not
originally collected for

Data Splits

devek)ping ML mOdels Train data ‘ Test data
= Most of the data used Internal
as training data and a Data

small part serve as a
held-out test set



The importance of labels

= The labels, or ground-truth diagnoses, are often
very hard, expensive and time consuming to
obtain, but are usually the most important part of
building an ML system

= |n medicine they are often provided by
physicians or other healthcare workers -> time
consuming and noisy: Doctors don’t always
agree!

= The quality of your labels will “upper-bound” the
performance of the system — we cannot be more
accurate than the labels!



Evaluating performance

= |deally, you would like the system to optimize for
something you care about, e.g., outcomes, cost, etc.
but those are only measurable in Stage 2/3

* |nstead, we use proxy metrics during Stage 1, e.g.:
= (Classification accuracy
Sensitivity/Specificity
Precision/Positive predictive value (PPV = #TP / #pos-calls)
Area under the ROC curve (AUROC)
Area under the precision-recall curve (AUPRC)

= There is not usually an objectively good metric
= The choice of a metric is application-dependent



Stage 1: Challenges

= ML models can fail at this stage for various reasons:

* Not enough data and insufficient model capability —
model is not a meaningful advance over current methods

* Model is good but is hard to integrate into biomedical
and clinical workflows

* Model looks good but is subtlety overtit or confounded in
a way that is very hard to detect



Stage 1: Shortcut learning challenge

= Neural network model is trained to
detect COVID-19 using radiographs
from either of the two datasets

= Model is evaluated on both datasets
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for COVID-19 detection
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Al for radiographic COVID-19 detection selects shortcuts over signal, Nature Machine Intelligence, 2021
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Stage 1: Shortcut learning challenge

= Performance Is evaluated

on internal test set e
= New, held-out examples F =S *
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as the training radiographs
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Al for radiographic COVID-19 detection selects shortcuts over signal, Nature Machine Intelligence, 2021
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Stage 1: Shortcut learning challenge

Training data
Dataset | Dataset Il

= Models failed to learn G oSSBT 10
the true underlying
disease pathology

= They used shortcuts: N

Projection
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Models accurately predict both the radiographic projection and patient sex for
both internal and external test data, which supports that these concepts are
easily learned and available to be leveraged as shortcuts
Al for radiographic COVID-19 detection selects shortcuts over signal, Nature Machine Intelligence, 2021
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Stage 1: Shortcut learning challenge

= | essons learned:

= Seemingly high-performance Al systems may derive
the majority of their performance from the exploitation
of undesired shortcuts

= Developers and users of these models need to verify
that Al systems rely on the desired signals

= High data quality is important for robust and useful
models

Al for radiographic COVID-19 detection selects shortcuts over signal, Nature Machine Intelligence, 2021



Quick check: What is the problem
with this data split?
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Quick check: What is the problem
with this data split?

Incorrect Correct
| |

Train Test Prediction Train Test Prediction

eBatch1 ¢Batch2 eBatch3 eBatch4
\

Distributional differences can arise from various sources, such as batch
effects. If training and test sets are a mixture of examples from every batch
(left), performance on the test set will be much higher than on a new batch

To fit a model that will generalize to new batches, training and test sets
should be composed of different batches (right)

Navigating the pitfalls of applying machine learning in genomics, Nature Reviews Genet, 2021
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Quick check: What is the problem

Original
data
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with this ML workflow?
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Quick check: What is the problem
with this ML workflow?

Incorrect Correct
| |

11

Preprocessing steps
(feature selection,

Processed . scaling, imputation, etc.) | Processed
Train data >

train data > | train data
Original _ | Processed Original
data "~ | data data

Preprocessing steps
(feature selection, Processed Test data Processed
test data test data

scaling, imputation, etc.)

Information leakage can happen when information is
leaked from the test set into the training as a result of the
training and test sets being preprocessed together (left)

Instead, the raw data should be split into training and
test sets with preprocessing performed separately (right)

Navigating the pitfalls of applying machine learning in genomics, Nature Reviews Genet, 2021
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Roadmap for ML development

Stage 1 Stage 2 Stage 3
Data Splits ‘ ‘
Internal Prospective Real world

Data Data Data




Stage 2: Prospective validation

= Stage 2 is focused on prospectively

validating the model from Stage
on “live” data coming in under a

controlled setting

= Often follows a trial format with ‘
pre-registered endpoints and set Prospective
for a fixed amount of time Data

= Goal is to show the model
performs well and generalizes to
real-world data



Stage 2: Cardiovascular Al trial

Accurate quantification of cardiac function is necessary for disease
diagnosis, risk stratification and assessment of treatment response
= Left ventricular ejection fraction (LVEF) is routinely used to guide clinical

decisions regarding patient appropriateness for a wide range of medical and
device therapies as well as interventions, including surgeries

Clinical guidelines:

= When assessing LVEF based on echocardiography, the measurements are
performed repeatedly over multiple cardiac cycles to improve precision and
account for arrhythmic or hemodynamic sources of variation

Practice:

= Repeated human measurements are rarely done in practice given logistical
constraints present in most clinical imaging laboratories and single tracings or
a visual estimation of LVEF is often used as a pragmatic alternative

= Such an approach is suboptimal for detection of subtle changes in LVEF,
which is needed for making important therapeutic decisions (for example,
eligibility for continued chemotherapy or defibrillator implantation)

Blinded, randomized trial of sonographer versus Al cardiac function assessment, Nature, 2023



Stage 2: Cardiovascular Al trial

= Many Al models are developed with the goal of automating

assessment of LVEF in real-world patient care settings

= These Al models demonstrated improved precision on
retrospective datasets

= No current cardiovascular Al technologies were validated in

blinded, randomized clinical trials

= |n addition, human-computer interaction and the effect of Al

prompting on clinical interpretations is underexplored in
clinical studies

Conventional AI New AI: Deep Learning
/ + Learn the location of the heart and endocardial borders. \ / - Directly estimate the LVEF without tracking the endocardial borders. \
+ Measure the LVEF with tracking the endocardial borders. Neural Network
LVEF62% LVEF62%

Blinded, randomized trial of sonographer versus Al cardiac function assessment, Nature, 2023
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Stage 2: Cardiovascular Al trial

Blinded, randomized non-inferiority clinical trial to prospectively assess
the effect of initial assessment by Al versus conventional initial
assessment by a sonographer on final cardiologist interpretation of LVEF
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was 6.29% in the Al group and
7.23% in the sonographer group

Blinded, randomized trial of sonographer versus Al cardiac function assessment, Nature, 2023

ClinicalTrials.gov ID: NCT05140642
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Stage 2: Cardiovascular Al trial

o Al-guided workflow saved time for sonographers and cardiologists

9 Cardiologists were not able to distinguish between the initial assessments by Al versus

sonographers

9 For patients undergoing echocardiographic quantification of cardiac function, initial
assessment of LVEF by Al was non-inferior to assessment by sonographers

3,769 Echocardiogram studies
were assessed for eligibility

‘ » 274 Studies were unable to
l be traced by sonographer

3,495 Studies underwent randomization

l l

1,740 Studies assigned 1,755 Studies assigned
to Al guidance to sonographer guidance

l l

1,740 Studies underwent 1,755 Studies underwent
cardiologist evaluation cardiologist evaluation
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Blinded, randomized trial of sonographer versus Al cardiac function assessment, Nature, 2023
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Roadmap for ML development

Stage 1 Stage 2 Stage 3
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Stage 3: Deployment

= Stage 3 has likely been the

ultimate goal
J Deployment

= ML model is implemented in a I
biomedical or clinical settings
and used to guide experiments Real world
in the laboratory or provide Data

decision support



Stage 3: Example challenge

= ML model has been extensively validated anad
shown to be very accurate

= We implement the model and suddenly notice a
huge drop in performance during an audit

10

= What could be going on?

o
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Nestor et al, 2018



Stage 3: Example challenge

= ML model has been extensively validated anad
shown to be very accurate

= We implement the model and suddenly notice a
huge drop In performance during an audit

= \What could be going on”?

10

0.8 1

Answer: Your hospital updated its
EHR to a new version.
Your Al system was completely tied
to the old way the data were
recorded and now no longer works.
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Nestor et al, 2018
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Outline for today’s class

J Overview of syllabus

Wha’t makes biomedical data unique

JMotivation for machine learning

¢4Hoadmap for responsible Al




