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Deep graph 
representation learning

Recap of message passing neural 
network (MPNN) strategies 



▪ Encoder: Multiple layers of nonlinear 
transformation of graph structure

…

Graph neural networks
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Convolutional networks

▪ Let’s start with convolutional networks on an image:

▪ Single convolutional network with a 3x3 filter:

▪ Transform information (or messages) from the neighbors and 
combine them: σ𝑖 𝑊𝑖  ℎ𝑖

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)
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(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph
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▪ But what if your graphs look like this?

▪ Examples: 
▪ Biological or medical networks
▪ Social networks
▪ Information networks
▪ Knowledge graphs
▪ Communication networks
▪ Web graphs
▪ …

Disease pathwaysGene interaction network Biomedical knowledge graphs

Real world graphs
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Naïve approach

▪ Join adjacency matrix and features

▪ Feed them into a deep neural network:

▪ Issues with this idea:
▪ 𝑂(𝑁) parameters
▪ Not applicable to graphs of different sizes
▪ Not invariant to node ordering

End-to-end learning on graphs with GCNs Thomas Kipf
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A naïve approach
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• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]
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Graph neural networks

▪ Intuition: 
▪ Each node’s neighborhood defines a computational graph
▪ Generate node embeddings based on local network neighborhoods

▪ Neighborhood aggregation:

▪ Model can be of arbitrary depth
▪ Nodes have embeddings at each layer
▪ Layer 0 embedding of node u is its input features Xu

▪ Basic neighborhood aggregation: Average information from neighbors and apply a 
neural network

Neural networks

Layer 2

Layer 1

Layer 0

XE

XF

XA

XB

XA

XA

XC

?

?

?

?
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…

Average of neighbor’s 

previous layer embeddings

Initial 0-th layer embeddings 

are equal to node features

Embedding after K 

layers of neighborhood 

aggregation 

Non-linearity 

(e.g., ReLU)

Previous layer 

embedding of v

Basic approach
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…

trainable weight matrices 

(i.e., what we learn) 

We can feed these into any loss function and run 

stochastic gradient descent to train the weight parameters

Basic approach
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Polypharmacy modeling 
and antibiotic discovery



▪ Combinatorial explosion
▪ >13 million possible combinations of 2 drugs
▪ >20 billion possible combinations of 3 drugs

▪ Non-linear & non-additive interactions
▪ Different effect than the additive effect of individual drugs

▪ Small subsets of patients
▪ Side effects are interdependent 
▪ No info on drug combinations not yet used in patients

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Application: Drug combinations
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▪ Molecular, drug, and patient data for all US-approved drugs
▪ 4,651,131 drug-drug edges: Patient data from adverse event system, 

tested for confounders [FDA]

▪ 18,596 drug-protein edges 

▪ 719,402 protein-protein edges: Physical, metabolic enzyme-coupled, 
and signaling interactions

▪ Drug and protein features: drugs’ chemical structure, proteins’ 
membership in pathways

▪ This is a multimodal network with over 5 million edges 
separated into 1,000 different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Polypharmacy dataset
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▪ Two main stages:
1. Learn an embedding for every node in polypharmacy network

2. Predict a score for every drug-drug, drug-protein, protein-protein 
pair in the test set based on the embeddings

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Example: How likely will 
Simvastatin and Ciprofloxacin, 
when taken together, break down 
muscle tissue?

Experimental setup
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Approach: Graph Neural Network

Node 𝑢

Input d-dimensional 

embedding space

𝑧𝑢

𝑧𝑣𝑓(𝑣)

𝑓(𝑢)

Node 𝑣

Map nodes to d-dimensional embeddings such that nodes with 

similar network neighborhoods are embedded close together

Decagon AI approach

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 14
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Our method (Decagon)

RESCAL Tensor Factorization [Nickel et al., ICML'11]

Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]

Shallow Network Embedding [Zong et al., Bioinformatics'17]

Results: Polypharmacy side effects

Decagon

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 15



Results: Polypharmacy side effects

Approach:

1) Train deep model on data generated prior to 2012

2) How many predictions have been confirmed after 2012?

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 16



Multimodal AI predicts clinical outcomes of drug 
combinations from preclinical data

▪ Personalized oncology therapy: Predicts 
leukemia drug combination responses using 
patient genomics and xenograft models

▪ Drug safety & transporter interactions: 
Identifies organ-specific toxicities and 
transporter-based risks for early drug 
development

▪ Oncology drug combinations & 
polypharmacy: Assesses PARP inhibitor safety, 
differentiating approved vs. investigational 
regimens

▪ Metabolic disease insights: Ranked 
Resmetirom among the safest candidates for 
MASH, supporting FDA approval

Multimodal AI predicts clinical outcomes of drug combinations from preclinical data, arXiv 2025
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Application: Antibiotic discovery

Natural product mining

Small compound 

screening

18



GNNs to learn molecular structure

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Directed message passing neural network model iteratively (1) learns representations 
of molecules and (2) optimizes the representations for predicting growth inhibition

19



Experimental setup

Input Output

Empirical Validation 

(Broad Repurposing Hub)

Task: Test top 99 predictions & 

prioritize based on similarity to known 

antibiotics or predicted toxicity

Training Dataset

(Human Medicines and Natural Products)

Data: 2,335 molecules (human 

medicines and natural products) 

screened for growth inhibition

Data: 6,111 molecules (at various 

stages of investigation for human 

diseases) in Broad Repurposing Hub

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020. 20



Results

Halicin was developed to be an anti-diabetic drug, but the development was 

discontinued due to poor results in testing.

Halicin against 

E. coli

Halicin against 

M. tuberculosis

Halicin predicted to 

be antibacterial

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020. 21



Results

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Halicin’s efficacy in murine models of infection

Validated against ~6K molecules to identify halicin, a novel candidate antibiotic
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Rare disease diagnosis



Diseases
24
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Rare disease diagnosis

▪ Rare diseases affect between 300-400 
million or 1 in 20 people worldwide, yet 
each disease affects no more than 50 per 
100,000 individuals

▪ Diagnosis is challenging due to the 
heterogeneity of clinical presentations and 
small patient populations
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■ Many patients suffering from rare diseases are 
undiagnosed. It currently takes 4-5 years on average 
for patients to receive a diagnosis.

Diagnosis
Onset of 

Symptoms Extensive medical testing

4-5 years on average to diagnosis

Expensive workups at 

multiple institutions

Can AI help shorten diagnostic odysseys for 

rare disease patients?

Haendel et al. How many rare diseases are there? Nature Review Drug Discovery (2020).

Wakap et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. EJHG (2020). 25

Rare disease diagnosis



Diagnostic odysseys
▪ Over 7,000 rare diseases, each affects < 200,000 patients in the US

▪ Most diseases are phenotypically heterogeneous
▪ Front-line clinicians might lack disease experience, resulting in expensive clinical workups for patients 

across multiple years
▪ Diagnosis often requires a specialist, sub-specialist, or multi-disciplinary referrals

▪ On average, the long search for a rare disease diagnosis takes 5 to 7 years, 4 up to 8 
physicians, and 2 to 3 misdiagnoses

▪ Diagnostic delay is so pervasive that it leads to problems for patients:
▪ Undergoing redundant testing and procedures
▪ Substantial delay in obtaining disease-appropriate management and inappropriate therapies
▪ Irreversible disease progression—time window for intervention can be missed leading to disease 

progression

Can AI help shorten diagnostic odysseys 

for rare disease patients?
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Development and Validation of a Deep 

Learning Algorithm for Detection of 

Diabetic Retinopahty in Retinal Fundus 

Photographs (JAMA)

Dermatologist-level Classification 

of Skin Cancer (Nature)

Evaluation and Accurate 

Diagnoses of Pediatric Diseases 

Using AI (Nature Medicine)

27

AI models for disease diagnosis



Development and Validation of a Deep 

Learning Algorithm for Detection of 

Diabetic Retinopahty in Retinal Fundus 

Photographs (JAMA)

Dermatologist-level Classification 

of Skin Cancer (Nature)

Evaluation and Accurate 

Diagnoses of Pediatric Diseases 

Using AI (Nature Medicine)

28

128,175 retinal images 129,450 clinical images

101.6 million data points from 

1,362,559 pediatric patient visits

AI models for disease diagnosis



Rare disease diagnosis is hard!

▪ Deep learning models trained (via supervised learning) on large 
labeled datasets can achieve near-expert clinical accuracy for 
common diseases

▪ Existing models require labeled datasets with thousands of 
diagnosed patients per disease:
▪ Diabetic retinopathy: deep neural net on 128 K retinal images
▪ Skin lesions: deep neural net on 129 K clinical images of skin cancers
▪ Childhood diseases: deep neural net on 1 M pediatric patient visits

The challenge with rare diseases is fundamental — datasets are three orders 
of magnitude smaller than in other uses of AI for medical diagnosis 
Needed is an entirely new approach to making AI-based rare disease diagnosis 
possible. This is for two primary reasons:
• Rare disease diagnosis cannot simply be solved by recruiting/labeling more patients because of 

high disease heterogeneity and low disease prevalence 
• Rare disease diagnosis cannot be solved by supervised deep learning because the models cannot 

extrapolate to novel genetic diseases and atypical disease presentations

29



1. Need to extrapolate beyond training distribution to never-
before-seen genetic conditions

2. Approaches must be able to learn from limited data given the 
lack of large annotated datasets of patients with rare genetic 
diseases & low prevalence of each disease

Low overlap of phenotypes, causal 

genes, and diseases across patients

Of 465 diagnosed patients in the

UDN, there are 378 unique causal

genes and 299 unique diseases.

Rare disease diagnosis is hard!

30



Phenotypic heterogeneity

% phenotypic overlap in 

patients with the same 

diseases

Of 465 diagnosed patients in the

UDN, there are 378 unique causal

genes and 299 unique diseases.

67% +/- 43%

Novel / atypical conditions

% patient phenotypes with 

known association to causal 

gene

28% +/- 21%
31

Rare disease diagnosis is hard!

1. Need to extrapolate beyond training distribution to never-
before-seen genetic conditions

2. Approaches must be able to learn from limited data given the 
lack of large annotated datasets of patients with rare genetic 
diseases & low prevalence of each disease
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SHEPHERD: KG-based AI for 
rare disease diagnosis
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AI for hard-to-diagnose diseases
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Key features of SHEPHERD



42,680 simulated patients across 2,134 diseases in Orphanet

Train set

(N = 36,224)

Alsentzer et al. Simulation of undiagnosed patients with novel genetic conditions. Nature Communications 2024 35

Validation set

(N = 6,400)

Disease-split training and 

validation to select for 

generalizable models

Training data: Simulated patients



Why simulate patients?
1. Generate meaningful distractor genes

2. Force models to learn to ignore phenotypic 

noise or corrupted phenotypes

36Alsentzer et al. Simulation of undiagnosed patients with novel genetic conditions. Nature Communications 2024

Simulation process



Phenotypes Disease
Two candidate 

gene lists

Causal 

gene
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465 patients who have received a molecular diagnosis

Undiagnosed Disease Network (UDN) cohort



Number of phenotypes and 

candidate genes per patient

Candidate Genes
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Undiagnosed Disease Network (UDN) cohort

465 patients who have received a molecular diagnosis



Gene

DiseasePhenotype

Pathway

Cellular 

Component

Molecular 

Function

Biological 

Process

Protein-Protein 

Interaction

Pathway 

Membership

Functional 

Similarity

Phenotypic 

SimilarityKG # Types Count

Nodes 

Edges

7

15

100,272

2,092,690

KG Modified from zitniklab.hms.harvard.edu/projects/PrimeKG/

Rare disease knowledge graph (KG)
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▪ Step 1: Incorporate knowledge of 
known phenotype, gene, and 
disease relationships via GNN
▪ Knowledge-guided learning is achieved 

by self-supervised pre-training on our 
precision-medicine knowledge graph

▪ Step 2: Pre-trained GNN from Step 
1 is fine-tuned using synthetic 
patients 
▪ Training exclusively on synthetic rare 

disease patients without the use of any 
real-world labeled cases

▪ Synthetic patients used for training are 
created using an adaptive simulation 
approach 

▪ Realistic rare disease patients with 
varying numbers of phenotypes and 
candidate genes 

1 2

Knowledge graph learning

40



41

SHEPHERD’s model



Experimental setup

SHEPHERD’s model training: 

▪ 42K synthetic patients

SHEPHERD’s model evaluation

▪ UDN patient cohort: 465 rare disease 
patients with labeled diagnoses, spanning 
299 diseases
▪ 79% of genes and 83% of diseases are 

represented in only a single patient

▪ MyGene2 patient cohort: 146 rare 
disease patients, spanning 55 diseases

https://undiagnosed.hms.harvard.edu
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Diagnostic tasks

▪ Three diagnostic tasks:
▪ Causal gene discovery: Given a patient's set of phenotypes and a list of 

genes in which the patient has mutations, prioritize genes harboring 
mutations that cause the disease (phenotypes)

▪ Patients-like-me: Given a patient, find other patients with similar genetic 
and phenotypic features suitable for clinical follow-up

▪ Characterization of novel diseases: Given a patient's phenotypes, provide 
an interpretable NLP name for the patient's disease based on its similarity 
to each disease in the KG

43
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Disease 𝑑
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Diagnostic tasks
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Causal gene discovery: Results



Error bars denote 

standard deviation 
over models trained 
with 5 random seeds

†

‡

*

*

# of causal genes 

retrieved in top k 
ranked genes on 
average

LR = logistic regression

Jagadeesh et al. Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization. Genetics in Medicine.

*
†

‡ Peng et al. CADA: phenotype-driven gene prioritization based on a case-enriched knowledge graph. NAR Genom Bioinform. 46

Causal gene discovery: Results



†

‡

**

** ***

*

LR = logistic regression

Jagadeesh et al. Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization. Genetics in Medicine.

*
†

‡ Peng et al. CADA: phenotype-driven gene prioritization based on a case-enriched knowledge graph. NAR Genom Bioinform. 47

** p-value < 0.005

**** p-value < 0.00005

*

*

Causal gene discovery: Results



SHEPHERD generalizes across…

Performance by Clinical Site

48

Performance by Evaluation Year Performance by Primary Symptoms

Causal gene discovery: Results



Patient: UDN-1

Admitted: 2016 Diagnosed: 2019

Causal gene: POLR3A

Disease: POLR3-Related Leukodystrophy

Atypical Phenotypes: – lack of tear

production, premature adrenarche, 

laryngeal cleft, hearing loss, and high 

blood pressure

Legend

Patient phenotype 

Causalgene 

Disease

Relatedphenotype 

Non-causalgene 

Relateddisease

Atypical disease presentation

25

Subset of Rare Disease Knowledge Graph

Only 28.3% of the patient’s 

46 phenotypes are directly 
connected to POLR3A

94% of the 205 phenotypes 

directly connected to 

POLR3A are not associated 

with the patient



Attention

0.037

0.034

0.033

0.032

0.032

0.032

0.031

Phenotype (N = 46) 

Short stature

Failure to thrive 

Central hypotonia 

Microcephaly

Prominent eyelashes 

Respiratory insufficiency

Gastrostomy tube feeding in infancy

0.031 Chronic lung disease

0.028 Ventriculomegaly

0.027 Growth delay

… …

0.014 Alacrima

0.014 Premature loss of primary teeth

0.013 Moderate sensorineural hearing 

impairment

0.013 Pancreatitis

0.012 Abnormal sternum morphology

0.011 T2 hypointense basal ganglia

0.011 Febrile seizure (within the age range of 

3 months to 6 years)

0.009 Chronic pancreatitis

0.006 Laryngeal cleft

0.0003 T2 hypointense brainstem

Expert Curated 

(N = 17)

Variant Filtered 

(N = 86)
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Atypical disease presentation



Results: Patients-like-me

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

UMAP plot of SHEPHERD’s embedding space of all simulated (circle), UDN (up-facing triangle), and 

MyGene2 (down-facing triangle) patients colored by their Orphanet disease category 
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Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Results: New disease naming
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SHEPHERD: KG-based AI for 
rare disease diagnosis



Take-away messages

▪ SHEPHERD overcomes limitations of standard machine learning:
▪ Model inputs as KG subgraphs (i.e., clinic-genetic subgraphs of patients)
▪ Use self-supervised pre-training on biomedical knowledge
▪ Train the model on a large cohort of synthetic patients

▪ SHEPHERD generalizes to novel phenotypes, genes, and diseases:
▪ Performs well on patients whose subgraphs are of varying size
▪ Performs well on diagnosing patients with novel diseases

▪ Implications: 
▪ Implications for generalist models applicable across diagnostic process
▪ New opportunities to shorten the diagnostic odyssey for rare disease
▪ Implications for using deep learning on medical datasets with very few labels 

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

First deep learning approach for individualized diagnosis 
of rare genetic diseases

Graph learning approach is not only helpful but necessary
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Quick check

https://forms.gle/AfRT7pdXGa7MoJxJA 

https://forms.gle/AfRT7pdXGa7MoJxJA


Towards foundation 
models for knowledge 
graphs



Future with AI: From mysteries to therapies

5-7 yrs of clinical workups
 

4-8 medical referrals

2-3 misdiagnoses

SHEPHERD

Diagnostic
odyssey

TxGNN
Over 7,000 diseases

 

Only 5% have any 
FDA-approved drug

Therapeutic
odyssey

?

Knowledge graph models for 

diagnosing rare disease patients

Knowledge graph models for universal 

drug repurposing

SHEPHERD: Deep learning for diagnosing patients with rare genetic diseases, 

medRxiv 2025

TxGNN: A foundation model for clinician-centered drug repurposing, Nature 

Medicine 2024 



Measure phenotype 

and mechanisms

Design therapeutic agents

 or select optimal perturbations

Provide each patient 

with the right

drug, at the right 

dose, at the right time

+

Clinical phenotypes and diseases

17,000 Diseases 

7,000 Rare diseases

5-7% Rare diseases with treatments

No Treatment options for many 
disease subtypes

Medicines and drugs

40-50 New molecules per year

30% Drugs are issued at least one 

post-approval new indication 

Many Drugs have accrued over 10 
drug indications over the years

Precision medicine (treatments)

2



Matching drugs to clinical outcomes
across thousands of diseases

3



Drug repurposing as an effective drug 
development strategy for many diseases 

1. No effective treatments for rare and even many complex diseases: 

▪ Over 7,000 rare diseases affect 300-400 million people worldwide. Only 5% of 

rare diseases have FDA-approved drugs 

▪ Even for diseases with approved treatments, new drugs can offer alternative 

options that cause fewer side effects and replace drugs that are ineffective for 

patient subpopulations

2. Faster translation to the clinic and lower development costs

▪ 30% of drugs approved were issued at least one post-approval new indication. 

Many drugs have accrued over 10 indications over years 

▪ Most repurposed drugs are the results of serendipity (luck is not a strategy!)

1

2

Zero-shot drug repurposing with geometric deep learning and clinician centered design, Nature Medicine (in press) 2024



Phases of drug discovery from initial stage 
(target-to-hit) to final stage (launch)

5

p(TS) – probability of successful transition from one stage to the next; NME – new 

molecular entity; WIP – work in process



All-disease model for drug repurposing

Biomedical data span multiple scales 

and multiple data modalities
Once trained, models are adapted to an 

array of tasks, with no or minimal training

What patient populations will 

respond to treatment?

What candidate therapeutics will have an 

acceptable safety profile for patients with 

metastatic melanoma?

What small-molecule compounds 

will inhibit a kinase?

TxGNN: 

All-disease drug 

repurposing model

Transcriptomics

Physical contacts

Molecular pathways

and patient subtypes

Treatment

information

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 6



All-disease model for drug repurposing

Structure-inducing pre-training, Nature Machine Intelligence 2023; Multimodal learning with graphs, Nature Machine Intelligence 2023; 

Graph Representation Learning in Biomedicine and Healthcare, Nature Biomedical Engineering 2022; Multimodal Learning with Graphs, Nature Machine Intelligence 2023; A foundation 

model for clinician-centered drug repurposing, Nature Medicine 2024

Multimodal knowledge graph 

of 17,080 disease phenotypes

Process therapeutic tasks and predict candidate 

indications and contraindications

”indication”

”contraindication”

”contraindication”

txgnn.org

Semi-automatic KG rebuild when new datasets 

become available

Building a knowledge graph to enable precision 

medicine, Scientific Data  2023
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All-disease model for drug repurposing

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 8
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Building knowledge graphs: Medical data are 
multimodal and scattered across databases

Ayush Noori



includes 1.6M assays 

covering 2.4M compounds

includes 31,467 bulk and 

single-cell RNA-seq libraries

includes 20B interactions 

between 59.3M proteins

includes 6M gene annotations 

derived from 150K publications

includes 2,711 pathways 

manually curated by PhDs

includes 17K FDA-approved 

and experimental drugs

includes annotations for 192K 

human genet ic elements

includes 13K phenotypes and 

156K disease annotations

SIDER

includes 139K adverse 

reactions for marketed drugs

10

Building knowledge graphs: Medical data are 
multimodal and scattered across databases

Ayush Noori



includes 1.6M assays 

covering 2.4M compounds
includes 31,467 bulk and includes 20B interactions

single-cell RNA-seq libraries between 59.3M proteins

includes 6M gene annotations includes 2,711 pathways includes 17K FDA-approved
derived from 150K publications manually curated by PhDs and experimental drugs

SIDER

includes annotations for 192K includes 139K adverse includes 13K phenotypes and 

human genetic elements reactions for marketed drugs 156K disease annotations

Include only drugs approved for market ing 

by the FDA or clinical candidates.1

Machine learning analysis to evaluate clinical 

trials that ended earlier than scheduled.2

Score all drug-disease edges by clinical 

precedence (i.e., Phase 0, I, II, III, IV).3

Down-weight scores for trials that stop early 

due to negative outcomes or safety concerns.4

Construct typed edges in knowledge graph 

based on strength of ChEMBL evidence.5

ChEMBL evidence 

integration pipeline
repeat for all 36 databases

Building knowledge graphs: Medical data are 
multimodal and scattered across databases

11
Ayush Noori



Knowledge graph based TxGNN model enables transfer 
learning across 17,080 disease phenotypes

Disease pooling is a module that identifies diseases similar 
to a query disease and transfers information from related 

diseases to the query disease

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 12



Once trained, TxGNN can perform zero-shot prediction on new diseases without 

additional parameters or fine-tuning on labeled data

Scenario A: Current state-of-the-art 

• Disease with existing treatments

• Easier to predict

Scenario B: Zero-shot prediction

• Diseases with no existing treatments

• Much harder to predict

TxGNN identifies candidate drugs for
diseases with no treatment options

7,000+ rare diseases affect 300-400M globally; 

only 5% have FDA-approved drugs. New drugs 

can offer better, side-effect reduced options for 

specific patients

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 13



Benchmarking TxGNN on challenging 
dataset splits across disease areas

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 14



• TxGNN’s novel predictions are consistent with off-label prescription decisions 

made by clinicians in a large healthcare system 

• TxGNN predicts therapeutic use for recent FDA approvals and informs 

laboratory testing

Evaluating new drug repurposing predictions

…
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No effect

Effect

Toxic

PNAS’21

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 15



Clinician-centered design: txgnn.org

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024

Panels of clinicians, clinical researchers and 

pharmacists test usability of TxGNN:
• Scientific and medical consensus 
• User confidence and trust

• User agreement
• Time used for exploring predictions

Path-based explanations perform 

significantly better than node-based 
explanations and subgraph-based 
explanations across three usability 
metrics: accuracy, confidence, time

16



Clinician-centered design: txgnn.org

• Better accuracy (+46%) and confidence 

(+49%) when explanations provided

• Support scientists in interacting with 

TxGNN and interpreting TxGNN 
predictions

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 17



Open models, open datasets, and evaluations

• Real-world implementation

• Clinical collaborations for 

20+ diseases, including 

neurology, cancer, and rare 

diseases

18
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