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Deep graph
representation learning

Recap of message passing neural

network (MPNN) strategies




Graph neural networks

" Encoder: Multiple layers of nonlinear
transformation of graph structure

Graph Regularization, Graph

convolutions e.g., dropout convolutions
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Convolutional networks

= Let’s start with convolutional networks on an image:

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

= Single convolutional network with a 3x3 filter:

$k

Image Graph

" Transform information (or messages) from the neighbors and
combine them: };; W; h;
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Real world graphs

= But what if your graphs look like this?
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Biomedical knowledge graphs

= Examples:
= Biological or medical networks
= Social networks
* Information networks
= Knowledge graphs
= Communication networks
= Web graphs



Naive approach

" Join adjacency matrix and features
" Feed them into a deep neural network:

hidden layer 1  hidden layer 2 hidden layer 3

input layer
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" |ssues with this idea:
= O(N) parameters
" Not applicable to graphs of different sizes
" Not invariant to node ordering



Graph neural networks

= |ntuition:
Each node’s neighborhood defines a computational graph
Generate node embeddings based on local network neighborhoods

= Neighborhood aggregation:

Neural networks — X,
TARGET NODE \ .4‘ XC
l . Xa
. @ Xg
<« 7 o] ‘ 33: ..........
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Layer2 . Xe
o<
INPUTGRAPH T e . XA
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Model can be of arbitrary depth
= Nodes have embeddings at each layer
= lLayer 0 embedding of node u is its input features X,

= Basic neighborhood aggregation: Average information from neighbors and apply a
neural network
7



Basic approach

Graph Regularization, Graph
Joiatens . | e.g., dropout convolutions
R

\;o

| Activation
function

Initial O-th layer embeddings _
Previous layer

embedding of v

Y

\Average of neighbor’s

previous layer embeddings

\ Embedding after K Non-linearity
layers of neighborhood  (e.g., ReLU)

aggregation 8



Basic approach

hO

Zy

Graph Regularization, Graph
convolutions e.g., dropout convolutions

Activation
function

/

trainable weight matrices
— x, (| e., what we learn)

kl\
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\ We can feed these into any loss function and run
stochastic gradient descent to train the weight parameters



Polypharmacy modeling
and antibiotic discovery




Application: Drug combinations

=  Combinatorial explosion ’
>13 million possible combinations of 2 drugs Y re
>20 billion possible combinations of 3 drugs TS o

= Non-linear & non-additive interactions o/ N o
Different effect than the additive effect of individual drugs

= Small subsets of patients O n ’ i 99

Side effects are interdependent
No info on drug combinations not yet used in patients

E.g., Specific type of drug-
drug interaction (r;)

1; Edgetypei

T
Mode 1 3 Z : OA Node types
e.g.,
drugs E.g., drug-target interaction (r,)
Mode 2
protems E.g., protein-protein interaction (rs)

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 11



Polypharmacy dataset

A Drug @ Protein
r1 Gastrointestinal bleed side effect A—@ Drug-protein interaction
2 Bradycardia side effect ©—O Protein-protein interaction

= Molecular, drug, and patient data for all US-approved drugs

4,651,131 drug-drug edges: Patient data from adverse event system,
tested for confounders [FDA]

18,596 drug-protein edges

719,402 protein-protein edges: Physical, metabolic enzyme-coupled,
and signaling interactions

Drug and protein features: drugs’ chemical structure, proteins’
membership in pathways

= This is a multimodal network with over 5 million edges
separated into 1,000 different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 12



Experimental setup

A Drug @ Protein
r1 Gastrointestinal bleed side effect A—@ Drug-protein interaction

2 Bradycardia side effect ©—O Protein-protein interaction

= Two main stages:
Learn an embedding for every node in polypharmacy network

Predict a score for every drug-drug, drug-protein, protein-protein
pair in the test set based on the embeddings

3~ /\ . .
/S\Simvastatin
T f'2 (breakdown of muscle tissue) . .
Example: How likely will
Civroflowadin Simvastatin and Ciprofloxacin,
P when taken together, break down

muscle tissue?

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 13



Approach: Graph Neural Network

Node v

d-dimensional
embedding space

Input 4

Decagon Al approach

Map nodes to d-dimensional embeddings such that nodes with
similar network neighborhoods are embedded close together

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 14



Results: Polypharmacy side effects

0.9 0.834
0.693 0.705 0.725 0.731

0.643

0.567

0.476

AUROC AP@50

B Decagon

B RESCAL Tensor Factorization [Nickel et al., ICML'11]

E Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]
O Shallow Network Embedding [Zong et al., Bioinformatics'17]

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 15



Results: Polypharmacy side effects

Approach:
1) Train deep model on data generated prior to 2012
2) How many predictions have been confirmed after 20127

Rank|Drug Drug Side effect Evidence found
1 |Pyrimethamine Aliskiren Sarcoma, T
2 |Tigecycline Bimatoprost ~ Autonomic 1
3 |Telangiectases Omeprazole Dacarbazine / \

4 |Tolcapone Pyrimethamine Blood brain

Case Report padache

Severe Rhabdomyolysis due to Presumed Drug Interactions .

between Atorvastatin with Amlodipine and Ticagrelor ular acidosis
[Anag~___— Azelaic acid Cerebral thrombosis

8 |Atorvastatin  Amlodipine Muscle inflammation

9 |Aliskiren Tioconazole Breast inflammation

10 |Estradiol Nadolol Endometriosis

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018 16



Multimodal Al predicts clinical outcomes of drug
combinations from preclinical data

Personalized oncology therapy: Predicts
leukemia drug combination responses using
patient genomics and xenograft models

Drug safety & transporter interactions:
Identifies organ-specific toxicities and
transporter-based risks for early drug
development

Oncology drug combinations &
polypharmacy: Assesses PARP inhibitor safety,
differentiating approved vs. investigational
regimens

Metabolic disease insights: Ranked
Resmetirom among the safest candidates for

MASH, supporting FDA approval

Ex vivo studies Clinical trials Pharmacovigilance

Primary cell models  Anti-cancer drug Drug labels and
and patient-derived combinations and  adverse event

Preclinical studies

Preclinical studies
from scientific

literature xenografts metabolic disorders reporting system
encorafenib + binimetinib

¢ 1.00 BKM120 + encorafenib
o v 300

5 0.75 !E;

2 0.50 — 200

5 wn

> 0.25 =

o . 100

R I il

Time after treatment a “““"““
PDX model

—— Predicted patient responders s SD+ m= PD

—— Predicted patient nonresponders

Multimodal Al predicts clinical outcomes of drug combinations from preclinical data, arXiv 2025
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Application: Antibiotic discovery

1953: Glycopeptides, Nitroimidazoles, Streptogramins < P 1955: Cycloserine, Novobiocin

1952: Macrolides < P 1957 Rifamycins
1950: Pleuromutilins 1 ; P 1961: Trimethoprim
1948: Cephalosporins < i P 1942: Quinolones, Lincosamides, Fusidic acid
1947: Polymyxins, Phenicols < : P 1949: Fosfomycin

1944 Nitrofurans < i - P 1971: Mupirocin

1945: Tetracyclines < P 1976: Carbapenems

1943: Aminoglycosides, Bacitracin (topical) < ! P 1978: Oxazolidinones
1932: Sulfonamides < ; P 1979: Monobactams

1928: Penicillins <« : ; P 1987: Lipopeptides

v DISCOVERY VOID
Natural product mining v

Small compound
screening

¢ Cell

ARTICLE | VOLUME 180, ISSUE 4, P688-702.E13, FEBRUARY 20, 2020

A Deep Learning Approach to Antibiotic Discovery

(0] 10

Jonathan M. Stokes  Kevin Yang ' « Kyle Swanson ... Tommi S. Jaakkola » Regina Barzilay 2

James J. Collins 2 '’ Show all authors ® Show footnotes
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GNNs to learn molecular structure

Chemical landscape

arge scale prediction
(upper limit 108 +)

' : v

Directed message L
passing neural network

Conventional small

molecule screening
4 o&g ™ e L
Tzaining 2oL Iterative Chemical screening
(10 molecules) model (upper limit 10° - 10°)
l re-training

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

' \ k /] —— | identification
bond 2-1
\_

[antibiotic] & optimization
J L v,

Growth

<

.

Directed message passing neural network model iteratively (1) learns representations
of molecules and (2) optimizes the representations for predicting growth inhibition

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020. 19



Experimental setup

Training Dataset Empirical Validation
(Human Medicines and Natural Products) (Broad Repurposing Hub)
Ho” | Né 0 o 1.2 1
At 1 — 2 . 024 -
2 3 8 6 0 20 40 1 ’ 0 500 10 1500 ‘.\Pbﬁ»
Input S Output
Data: 2,335 molecules (human Data: 6,111 molecules (at various
medicines and natural products) stages of investigation for human
screened for growth inhibition diseases) in Broad Repurposing Hub

Task: Test top 99 predictions &
prioritize based on similarity to known
antibiotics or predicted toxicity

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020. 20



Results

Halicin was developed to be an anti-diabetic drug, but the development was

discontinued due to poor results in testing.

Halicin predicted to
be antibacterial

Halicin against
E. coli

Halicin against
M. tuberculosis

training set

Broad library

halicin
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A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020. 21



Results

QD (600nm)

QD (600nm)

Halicin's efficacy in murine models of infection

B C
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Validated against ~“6K molecules to identify halicin, a novel candidate antibiotic

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020. 22



Rare disease diagnosis




Rare disease diagnosis

= Rare diseases affect between 300-400
million or 1 in 20 people worldwide, yet
each disease affects no more than 50 per
100,000 individuals

= Diagnosis is challenging due to the
heterogeneity of clinical presentations and
small patient populations

Prevalence

Diseases



Rare disease diagnosis

m Many patients suffering from rare diseases are
undiagnosed. It currently takes 4-5 years on average
for patients to receive a diagnosis.

Expensive workups at
multiple institutions
4«

i i & i
2
Eﬂ [33 | Diagnosis
Onset of ~_

Symptoms Extensive medical testing

4-5years on average to diagnosis

Can Al help shorten diagnostic odysseys for

rare disease patients?

Haendel et al. How many rare diseases are there? Nature Review Drug Discovery (2020).

Wakap et al. Estimating cumulative point prevalence of rare diseases: analysis of the Orphanet database. EJHG (2020). 25 ,



Diagnostic odysseys

= Qver 7,000 rare diseases, each affects < 200,000 patients in the US
= Most diseases are phenotypically heterogeneous

= Front-line clinicians might lack disease experience, resulting in expensive clinical workups for patients
across multiple years

= Diagnosis often requires a specialist, sub-specialist, or multi-disciplinary referrals

= On average, the long search for a rare disease diagnosis takes 5 to 7 years, 4 up to 8
physicians, and 2 to 3 misdiagnoses

= Diagnostic delay is so pervasive that it leads to problems for patients:
= Undergoing redundant testing and procedures
= Substantial delay in obtaining disease-appropriate management and inappropriate therapies

= Irreversible disease progression—time window for intervention can be missed leading to disease
progression

Can Al help shorten diagnostic odysseys

for rare disease patients?

26



Al models for disease diagnosis

Development and Validation of a Deep
Learning Algorithm for Detection of
Diabetic Retinopahty in Retinal Fundus
Photographs (JAMA)

Dermatologist-level Classification
of Skin Cancer (Nature)

Epidermal lesions
S 7, S

RS 35
bla Misd NPOR mm M.I

:
_

Evaluation and Accurate
Diagnoses of Pediatric Diseases
Using Al (Nature Medicine)

Acuts upper rospeatry bection

Acute ocumet siustis

Gassoirtossnal dsonses

27



Al models for disease diagnosis

Development and Validation of a Deep
Learning Algorithm for Detection of
Diabetic Retinopahty in Retinal Fundus

Photographs (JAMA)

Dermatologist-level Classification
of Skin Cancer (Nature)

Epidermal lesions

35 A
Misd NPOR mumn M‘I

I-I-I

128,175 retinal |mages

| 129,450 clinical images

Evaluation and Accurate
Diagnoses of Pediatric Diseases
Using Al (Nature Medicine)

Systemc generazed sueases

atory ueases

101.6 million data points from
1,362,559 pediatric patient visits

———

28



Rare disease diagnosis is hard!

= Deep learning models trained (via supervised learning) on large
labeled datasets can achieve near-expert clinical accuracy for
common diseases

= Existing models require labeled datasets with thousands of
diagnosed patients per disease:

= Diabetic retinopathy: deep neural net on 128 K retinal images
= Skin lesions: deep neural net on 129 K clinical images of skin cancers
* Childhood diseases: deep neural net on 1 M pediatric patient visits

The challenge with rare diseases is fundamental — datasets are three orders
of magnitude smaller than in other uses of Al for medical diagnosis
Needed is an entirely new approach to making Al-based rare disease diagnosis

possible. This is for two primary reasons:

* Rare disease diagnosis cannot simply be solved by recruiting/labeling more patients because of
high disease heterogeneity and low disease prevalence

* Rare disease diagnosis cannot be solved by supervised deep learning because the models cannot
extrapolate to novel genetic diseases and atypical disease presentations

29



Rare disease diagnosis is hard!

1. Need to extrapolate beyond training distribution to never-
before-seen genetic conditions

2. Approaches must be able to learn from limited data given the
lack of large annotated datasets of patients with rare genetic
diseases & low prevalence of each disease

Low overlap of phenotypes, causal
genes, and diseases across patients

1000
UDNdiagnosed
0
Of 465 diagnosed patients in the
UDN, there are 3/8 unique causal l

genes and 299 unique diseases.

200

# genes  # phenotypes

200

# diseases

1 2 3 4 5 6 >6

# patients with the phenotype, gene, or disease

30



Rare disease diagnosis is hard!

1. Need to extrapolate beyond training distribution to never-
before-seen genetic conditions

2. Approaches must be able to learn from limited data given the
lack of large annotated datasets of patients with rare genetic
diseases & low prevalence of each disease

Phenotypic heterogeneity

% phenotypic overlap in
patients with the same
diseases
UL ranssed
Of 465 diagnosed patients in the

UDN, there are 3/8 unique causal
genes and 299 unique diseases. Novel / atypical conditions

% patient phenotypes with
known association to causal
gene

28% +/- 21%

67% +/- 43%

31



SHEPHERD: KG-based Al for
rare disease diagnosis

Causal gene
discovery

Given a patient’s set of
Knowledge phenotypes and a list of
graph candidate genes, which
® , gene(s) are most likely to

e © ® explain the patient's
presenting symptoms?
® pai O —— Patients like me ——
atient g B i
ﬁ phenotypes ol i Given a patient’s set of

phenotypes and a cohort

v

/"SHEPHERD Qe | iR

P e P patients with similar
) L= ® genetic conditions?
Candidates @ g : > i
T
@@ —— Novel disease
characterization Given a patient’s set of

phenotypes and a set of

. @ known diseases, can we

characterize the clinical

R.! presentation based on our
2] *

current knowledge of rare
diseases?

32



Al for hard-to-diagnose diseases

SHEPHERD

® ®

i 7
| Molecular

& A

& """ c """ & [%J diagnosis
> Clinical Genetic sequencing Experimental or
3‘ ﬁ 3& workup & analysis Case review cohort validation
A 4 N 4 o Causal gene Disease

m
- oA
.

Phenotypes Variant filtered Expert curated
candidate genes candidate genes

33



Key features of SHEPHERD

Train Dataset

a5 2m Simulated
S é e = ~ ~ _Patients
- //” \\\\ S N
T 2 Z \\ Ny ~
= c s, NN B~
o .9 7 I S Y -
2B o’ o,7 TR
so| £ .,.’B° VN N
o Q9 & 5 \ \ \
T o L= \
~—— I \
UDN Clinical Sites 1_ \
[ b=

Train on simulated patients,
evaluate on UDN patients

Model patients as subgraphs
in knowledge graph

——
-
&

e disease x
o ° o7
B :
.
([ ]
genea ? e mm— .
-
. ; o tient j
i ’ patient j
— O € _
patient k e T/ ~
~ ),
-7 /
. g
—”
E T . i disease z
b d-dimensional embedding
gene

space

Perform label-efficient
model training
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Training data: Simulated patients

42,680 simulated patients across 2,134 diseases in Orphanet

Train set
(N = 36,224)
3.'_‘.’-;&
Disease-split training and
T validation to select for
generalizable models

Validation set
(N = 6,400)

o ° ( 1) ® o0 ° [ 4
.-.‘-....
®e_00_0o
[ 4 @
.-....

Alsentzer et al. Simulation of undiagnosed patients with novel genetic conditions. Nature Communications 2024 35



Simulation process

a Patient Simulation Process b Distractor Gene Modules
simulated patient step gene causing disease
: ith overlapping ) .
causal gene causing true w gene causing disease
gene Vencein @ 4 . disease of interest phenotypes with no overlapping
0 0 @ disease & ‘ .\- phenotypes
phenotype ’® = gene with similar = -
0 s -‘ tissue expression as * -~ ¢ *
true disease gene* ’ I ¢ ——
V'S 7 o I / ~
O I o ® 1 1 ®
@ . ! I o/

Why simulate patients?

o 1. Generate meaningful distractor genes
454 2. Force models to learn to ignore phenotypic
i noise or corrupted phenotypes
o
O O O gene causing l...L 4 / NS /l- -
® -syndromi O "o/ b
O® O T o 8 O
¢ 0 é ,_ false positive gene
@ commonly prioritized by
@o o computational pipelines*

*Not all distractor gene modules are based on phenotype.

Alsentzer et al. Simulation of undiagnosed patients with novel genetic conditions. Nature Communications 2024 36



Undiagnosed Disease Network (UDN) cohort

465 patients who have received a molecular diagnosis

Two candidate Causal :
Phenotypes : Disease
gene lists gene

@)
® @



Undiagnosed Disease Network (UDN) cohort

465 patients who have received a molecular diagnosis

Number of phenotypes and
candidate genes per patient

' >0 ' 800 T
100 ¢
Q ’
- 40 {
g 80 : 600
© 30
> 60| i —
Q . 400
S 40
3
O 200
20 10
1
0 — 0 0
Phenotypes Expert curated Variant filtered

Candidate Genes
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Rare disease knowledge graph (KG)

Biological Cellular
Process KD /) Component
Protein-Protein C@ STRING

C\ \ / /) Interaction

TRANSFAC 2.0

Molecular Pathway

: reactome
Pathway Function Membership ¥
Fqngtional GENEONTOLOGY
_ Similarity Uik
Phenotype Disease
hHmaP
Phenotypic P)oienolpe orphanet
KG # Types Count Similarity MIM DisGeNET 'goe*
Nodes 7 100,272
Edges 15 2,092,690

KG Modified from zitniklab.hms.harvard .edu/projects/PrimeKG/ 39



Knowledge graph learning
2 oo

Embed Biomedical
Knowledge

Sample biomedical
knowledge nodes

(unrelated to patients)

Input candidate
gene or disease

KG | #Types | count

Embed knowledge
graph entities

X
phenotype > B

g CE < disease

e

gene > Bo

Input a set of
patient phenotypes

Self-supervised learning
via link prediction on the
rest of knowledge graph.

d-dimensional
embedding space

O ® o
m =
105,220
1,678,274
Embed candidate Embed & aggregate
gene or disease patient phenotypes
Fj & disease x
iy B € phenotype
patienti > B
Ea” "“um-
genea> B 9
patient i Somm T g E
° disease x
. “e
e
.
genea ppm—— —
. _____________ i ]
i — patient j
patient k e T 5
E ——————————— disease z

Embed patient closer to the correct gene, disease, or patients
with the same gene/disease, and farther from the incorrect
gene, disease, or patients with a different gene/disease.

Step 1: Incorporate knowledge of

known phenotype, gene, an

disease relationships via GNN

= Knowledge-guided learning is achieved
by self-supervised pre-training on our
precision-medicine knowledge graph

Step 2: Pre-trained GNN from Step
1 is fine-tuned using synthetic
patients

= Training exclusively on synthetic rare
disease patients without the use of any
real-world labeled cases

= Synthetic patients used for training are
created using an adaptive simulation
approach

= Realistic rare disease patients with

varying numbers of phenotypes and
candidate genes

40



Embed Biomedical
Knowledge

Embed Rare Disease
Patient Information

o
[ =

SHEPHERD’s model

Sample nodes in
external knowledge
graph

Input a set of
patient phenotypes

|
g B
Input candidate

genes or diseases
or patients

0 %o él.!;:

— Edge exists
""" Edge does not exist

Embed biomedical knowledge

< S

=] \Q/ : (
E‘g 2 &g
\ v J Self-supervised learning via link prediction
Multi-layer Graph Attention Network on the knowledge graph
Embed candidate Embed patient Align embedding space
gene or disease phenotypes P B
patient / % e )
et -~ disease x
&E E - [
gene a 4 T ——— .
oy f i
B . _____ 4 o patient j

. r N
[, B ol B B o i -
o d-dimensional disease z
embedding space

Embed patient closer to the correct gene, disease, or
N J patients with the same gene/disease, and farther
from the incorrect gene, disease, or patients with a
different gene/disease.

v
Multi-layer Graph Attention Network

41



Experimental setup

https://undiagnosed.hms.harvard.edu

SHEPHERD’s model training: L' Undiagnosed

Diseases Network

= 42K synthetic patients ——
[ Simulated Patients ]
:..\{..-
"\ e __---"" >~
) . « ﬁ - ’z:// \\\\\\\" ~
SHEPHERD’s model evaluation % SRS AN B
Eg - ’/,/ T N ~ ~ O
. . ke ] P ,’ s \ 3 o ﬂ
= UDN patient cohort: 465 rare disease Y £ r NN,

. . . . = - \ N
patients with labeled diagnoses, spanning |3 7 N
299 diseases 35 ! N

g I \
= 79% of genes and 83% of diseases are - I .
represented in only a single patient [ =
u MyGenez patient COhort: 146 rare Patient dataset ‘ Train cohort Validation cohort Test cohort
disease patients, spanning 55 diseases S e
MyGene2 - - N =146
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Diagnostic tasks

" Three diagnostic tasks:

= Causal gene discovery: Given a patient's set of phenotypes and a list of
genes in which the patient has mutations, prioritize genes harboring
mutations that cause the disease (phenotypes)

= Patients-like-me: Given a patient, find other patients with similar genetic
and phenotypic features suitable for clinical follow-up

= Characterization of novel diseases: Given a patient's phenotypes, provide
an interpretable NLP name for the patient's disease based on its similarity
to each disease in the KG

SHEPHERD

0%
N B Molecular
&ED é& Genetic sequencing Experimental or diagnosis
a2 ﬁ -2 & analysis cohort validation
A 4 v v Causal gene Disease
N
| ¥
=

Phenotypes Variant filtered Expert curated
candidate genes candidate genes
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Legend

Diagnostic tasks

Zp Zg
Causal Gene ® . . N =

el L similarity( _ o Yo d( =, )

& é zPi sz

. . . . . T | | E

2 = ® ' ; oC 5
Patients-like-me ;.Q similarity( am’ mB ) d(g )
- -

-

Novel disease @ @

characterization é @ Similarity( :: ’ @ )OC d(

,g)

0T =
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L :

= . Patient phenotypes P
Gene g

@ Disease d
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Causal gene discovery: Results

Causalgene
discovery
Given a patient’s set of
Knowledge phenotypes and a list of
graph candidate genes, which
@@ gene(s) are mo_st I|I|<ely to
N explain the patient's
presenting symptoms?
®  patient 0 - H )
@ phenotypes ] g

— /"SHEPHERD

Candidates >

45



Causal gene discovery: Results

Causal gene
discovery

SHEPHERD 0.69 MW 0.85 W £ O\

Error bars denote
standard deviation
over models trained
with 5 random seeds

Top k
B k=1
k =
k =

# of causal genes

0.0 0.2 0.4 0.6 0.8 1.0 retrievedin top k
Average Recall at k ranked genes on

v\_/ average

* LR = logistic regression
T Jagadeesh et al. Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization. Genetics in Medicine.
+ Peng et al. CADA: phenotype-driven gene prioritization based on a case-enriched knowledge graph. NAR Genom Bioinform. 6



Causal gene discovery: Results

Causal gene
discovery

**  p-value < 0.005
**** p-value < 0.00005

® -
@ 20
oo® g

SHEPHERD 0.69 W 085 w —
tfiInformation Theoretic 0.65 0.81 ]* N
Network Science 0.63 0.77 )
tShallow Embedding 0.51 _
«LR (PCA) 0.35 0.54
Top k
«LR (Embed) 0.35 0.55 k-1
Random [N 027 k=  0.50 b= <
0.0 0.2 0.4 0.6 0.8 1.0

Average Recall at k

* LR = logistic regression
T Jagadeesh et al. Phrank measures phenotype sets similarity to greatly improve Mendelian diagnostic disease prioritization. Genetics in Medicine.
+ Peng et al. CADA: phenotype-driven gene prioritization based on a case-enriched knowledge graph. NAR Genom Bioinform. -



Causal gene discovery: Results

Causal gene
discovery

Performance by Clinical Site

Site A (n=47) —]——{ . N .

Site B (n=41) :I——( o te ©

Site € (n=38) ——] ¢ e

Site D (n=41) _:I——{ vve

Site E (n=37) E [ 3 )

Site F (n=44) !—{ »
-

Site G (n=40)

0 5 10 15 20 25 30 35
Rank of Causal Gene

Performance by Evaluation Year

2015 (n=19)

2016 (n=59)

2017 (n=87)

2018 (n=82)

2019 (n=29)

2020 (n=7)

2021 (n=5)

15 20 25
Rank of Causal Gene

SHEPHERD generalizes across...

Allergies / Immunology (n=8)

Cardiology (n=9)

Endocrinology (n=7)

Gastroenterology (n=11)

Musculoskeletal (n=48)

Neurology (n=148)

Ophthalmology (n=5)

Other (n=49)

30 35

L]
ly
T

Al

-
-
-
i

LKA ° ®

b0 00

° te0 o0 °

10 15 20 25 30
Rank of Causal Gene
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Performance by Primary Symptoms
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Atypical disease presentation

Patient: UDN-1
Legend

Admitted: 2016  Diagnosed: 2019 @ Patient pherotype
Causal gene: POLR3A Causalgene
Disease: POLR3-Related Leukodystrophy Disease
Atypical Phenotypes: — lack of tear Loaredprenoupe
production, premature adrenarche, P Remeddisgase

laryngeal cleft, hearing loss, and high
blood pressure

Subset of Rare Disease Knowledge Graph

Og © O
: ®¢ o hy = .‘: ®9 ®
Only 283% Of the patlent’s ‘ ‘ ‘ Delayeder‘onofteeth . O
46 phenotypes are directly ® PS o 800,&9‘ O o ® O OO
Con neCted to POL R3A O. . Hypoplasia of tl‘orpué callosum Prematur‘s gl joet? . ‘ O
O O O Dy.nia :; Shor‘ture . ‘
‘ ‘ ‘ Developme‘ regression O O O . O
94% of the 205 phenotypes | et O orcil@icits 00®
. . O O Hy ;‘nia Hydro‘hal_us r‘ S ‘
directly connected to oy O @y | @i ®
PO LR3A are n_ot aSSOC|ated ‘ Leukoencephalopathy-ataxia-hntia-hypomyelination syndrome . O O
with the patient @0 ® -

@ 0 O O
O. ® O

25



Atypical disease presentation

Expert Curated
(N=17)

KAT6A
POLR3A
ORC4
WDFY4
ZFYVE26
GMPPA
NCOR2
APC
NDUFAF5
ANO3
INSL3
DST
TYMP
TOPORS
SLK
DYNAP
PIWIL3

Genes

Variant Filtered

(N = 86)

UBE3A

GAGE12]
ANKRD36C

Score

Top 10
phenotype

S

Bottom 10
phenotype

S

Attention

0.037
0.034
0.033
0.032
0.032
0.032
0.031

0.031
0.028
0.027
0.014
0.014

i? 0.013

0.013
0.012
0.011
0.011

0.009
i? 0.006

0.0003

Phenotype (N = 46)

Short stature

Failure to thrive

Central hypotonia

Microcephaly

Prominent eyelashes

Respiratory insufficiency
Gastrostomy tube feeding in infancy

Chronic lung disease
Ventriculomegaly
Growth delay

Alacrima
Premature loss of primary teeth

Moderate sensorineural hearing
impairment

Pancreatitis

Abnormal sternum morphology

T2 hypointense basal ganglia

Febrile seizure (within the age range of
3 months to 6 years)

Chronic pancreatitis

Laryngeal cleft

T2 hypointense brainstem
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Results: Patients-like-me el

a Patient: UDN-P3 Patient Card

Causal gene: RPS6KA3
Disease: Coffin-Lowry syndrome

Patient Gene Disease
Rank
1 GRIA3 X-linked intellectual disability
due to GRIA3 anomalies
2 RPS6KA3 Coffin-Lowry syndrome
3 THOC2 X-linked intellectual disability-
short stature-overweight

syndrome
4 AP1S52 Fried syndrome
5 SMS Syndromic X-linked intellectual

disability Snyder type

Patient: UDN-P4 Patient Card
Causal gene: CAPN1

Disease: autosomal recessive spastic
paraplegia type 76

Patient Gene Disease
Rank

1 REEP1 hereditary spastic paraplegia 31

KIFIA hereditary spastic paraplegia 30

DDHD1 hereditary spastic paraplegia 28

CAPN1 autosomal recessive spastic
paraplegia type 76

5 MTPAP hereditary spastic paraplegia 3A

A wN

Patients-like-me

N

UMAP plot of SHEPHERD'’s embedding space of all simulated (circle), UDN (up-facing triangle), and
MyGene2 (down-facing triangle) patients colored by their Orphanet disease category

&
* =] ’ga
b °
L 8 o
s Y L
2 L
v o
o
~psa

Patient: UDN-P5 Patient Card
Causal gene: NLRP12, RAPGEFL1
Disease: Atypical presentation of familial cold
autoinflammatory syndrome
Patient Rank Gene Disease
1 NLRP3 Familial cold-induced
autoinflammatory syndrome 1
2 NLRP12 Familial cold-induced
autoinflammatory syndrome 2
3 FAS autoimmune lymphoproliferative
syndrome type 1
4 IL6ST GP130-deficient hyper-IgE syndrome
5 FLG atopic dermatitis 2

Patient: UDN-P6 Patient Card
Causal gene: GATAD2B
Disease: GATAD2B-associated syndrome

Patient Rank Gene Disease
1 SMARCC2 Coffin-Siris syndrome 8
2 GATAD2B GATAD2B-associated syndrome
3 NACC1 neurodevelopmental disorder
with epilepsy, cataracts, feeding
difficulties, and delayed brain
myelination syndrome

4 GRIN2B  intellectual disability, autosomal
dominant 6
5 KMT2C Kleefstra syndrome

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022 51



Results: New disease naming

a Rank Disease
1 ARlimb-girdle muscular
dystrophy type 2B
GNE myopathy

3 MYH7-related late-onset
scapuloperoneal muscular
dystrophy

4  Emery-Dreifuss muscular
dystrophy 2, AD

5 AR limb-girdle muscular
dystrophy type 2G

Patient: UDN-P7
Causal gene: SGCA

Disease: AR limb-girdle muscular atrophy type 2D
Top 5 phenotypes: Toe walking, Calf muscle

-
N

Percent Similarity

(=
(=}

S N & O o™

pseudohypertrophy, Elevated serum creatine
kinase, Proximal muscle weakness, Generalized

muscle weakness

Rank Disease

1 Combined oxidative
phosphorylation
deficiency 39

2 Hypomyelinating
leukodystropy-20

3 Pyruvate dehydrogenase
E3-binding protein
deficiency

4 Intellectual disability-
epilepsy-extrapyramidal
syndrome

5 Combined oxidative
phosphorylation defect
type 27

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Percent Similarity

Patient: UDN-P8
Causal gene: ATP5PO
Disease: ATP5PO-related Leigh syndrome

Top 5 phenotypes: Profound global developmental
delay, cerebral hypomyelination, limb hypertonia,
hypoplasia of the corpus callosum, infantile spasms

20

=
w

(=
o

5 I <
Hnlinnil

Patient Card

[
(=}

Percent Similarity

(=]

E

N

0

Patient Card

Percent Similarity

-
w

[
(=]

w

0

Novel disease

characterization
(-3

;

£ @

¢ o

Rank Disease

1

2
3
I 4
5

Patient: UDN-P2
Causal gene: GLYR1

Methylmalonic aciduria &
homocystinuria type cblF
Neonatal
hemochromatosis
Homozygous 11P15-p14
deletion syndrome
ALG8-CDG

Congenital anemia
Patient Card

Disease: Novel syndrome - pancreatic insufficiency & malabsorption

€

Patient: UDN-P9
Causal gene: RPL13

Top 5 phenotypes: Failure to thrive in infancy, Global developmental
i duelgx, Gastroparesis, Abnormality of vision, Duodenal atresia
- LY r §

Patient Card

Disease: Spondyloepimetaphyseal dysplasia, Isidor-Toutain type
Top 5 phenotypes: Spondylometaphyseal dysplasia, Genu
varum, Short femoral neck, Flat glenoid fossa, Platyspondyly

Rank Disease

1

2

3

4

|I|.,,|i|||| il 1

Multiple epiphyseal
dysplasia type 1
Progressive
pseudorheumatoid
arthropathy of childhood
Multiple epiphyseal
dysplasia type 5
Metaphyseal
chondrodysplasia, Spahr
type

Multiple epiphyseal
dysplasia
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SHEPHERD: KG-based Al for
rare disease diagnosis

Causal gene
discovery

Given a patient’s set of
Knowledge phenotypes and a list of
graph candidate genes, which
® , gene(s) are most likely to

e © ® explain the patient's
presenting symptoms?
® pai O —— Patients like me ——
atient g B i
ﬁ phenotypes ol i Given a patient’s set of

phenotypes and a cohort

v

/"SHEPHERD Qe | iR

P e P patients with similar
) L= ® genetic conditions?
Candidates @ g : > i
T
@@ —— Novel disease
characterization Given a patient’s set of

phenotypes and a set of

. @ known diseases, can we

characterize the clinical

R.! presentation based on our
2] *

current knowledge of rare
diseases?
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Take-away messages

= SHEPHERD overcomes limitations of standard machine learning:
= Model inputs as KG subgraphs (i.e., clinic-genetic subgraphs of patients)
= Use self-supervised pre-training on biomedical knowledge
= Train the model on a large cohort of synthetic patients

= SHEPHERD generalizes to novel phenotypes, genes, and diseases:
= Performs well on patients whose subgraphs are of varying size
= Performs well on diagnosing patients with novel diseases

= |mplications:
= Implications for generalist models applicable across diagnostic process
= New opportunities to shorten the diagnostic odyssey for rare disease
= |mplications for using deep learning on medical datasets with very few labels

First deep learning approach for individualized diagnosis
of rare genetic diseases

Graph learning approach is not only helpful but necessary

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022 54



Quick check

https://forms.gle/AfRT7pdXGa7MolxJA

AIM 2: Artificial Intelligence in Medicine

Artificial Intelligence in Medicine I, Spring 2025

Lecture 9: Knowledge graph learning, Building multimodal knowledge graphs, Structure-
inducing pre-training, Knowledge-based foundation models

Course website and slides: https://zitniklab.hms.harvard.edu/AIM2

* Indicates required question

First and last name *

Your answer

Harvard email address *

Your answer

SHEPHERD model was evaluated on three diagnostic tasks: causal gene *
discovery, patient-like-me retrieval, and characterization of new diseases. Suggest
another use case (application) for SHEPHERD for rare diseases.

Your answer

List two reasons why the SHEPHERD model was trained on a dataset of *
simulated patients.

Your answer


https://forms.gle/AfRT7pdXGa7MoJxJA

Towards foundation
models for knowledge
graphs




Future with Al: From mysteries to therapies

' b4 K
‘A Ed LA

Diagnostic
odyssey
KnOWI ed ge g rap h mOde IS for 5-7 yrs of clinical workups
diagnosing rare disease patients 4-8 medical referrals
SHEPHERD: Deep learning for diagnosing patients with rare genetic diseases, 2-3 misdiagnoses

medRxiv 2025

Therapeutic
odyssey

Knowledge graph models for universal Over 7,000 diseases

Only 5% have any

drug repurposing FDA-approved drug
TXGNN: A foundation model for clinician-centered drug repurposing, Nature |
Medicine 2024 l

?




Precision medicine (treatments)

Measure phenotype Design therapeutic agents
and mechanisms or select optimal perturbations

?

- ‘ Provide each patient
+ ) with the right

l‘ ' ‘ drug, at the right

Jl J‘- 1 .6 dose, at the right time

o

Clinical phenotypes and diseases Medicines and drugs

17,000 Diseases 40-50 New molecules per year
7,000 Rare diseases 30% Drugs are issued at least one
5-7%  Rare diseases with treatments post-approval new indication
No Treatment options for many Many  Drugs have accrued over 10

disease subtypes drug indications over the years






Drug repurposing as an effective drug
development strategy for many diseases

a No effective treatments for rare and even many complex diseases:

= Qver 7,000 rare diseases affect 300-400 million people worldwide. Only 5% of
rare diseases have FDA-approved drugs

= Even for diseases with approved treatments, new drugs can offer alternative
options that cause fewer side effects and replace drugs that are ineffective for

patient subpopulations
Faster translation to the clinic and lower development costs

= 30% of drugs approved were issued at least one post-approval new indication.
Many drugs have accrued over 10 indications over years

= Most repurposed drugs are the results of serendipity (luck is not a strategy!)

Zero-shot drug repurposing with geometric deep learning and clinician centered design, Nature Medicine (in press) 2024



Phases of drug discovery from initial stage
(target-to-hit) to final stage (launch)

Target-to-hit
: Hit-to-lead Lead

Preclinical .
Phase | Phase || Phase Il Submission

to launch

"D"D"D"D

p(TS)
WIP needed for 1 launch

Cost per WIP per Phase - - -

Cycle time (years) - - - -

Cost per launch (out of pocket) $128 S185 $235 $44 $873
15% 21% 27% 5%

% Total cost per NME

Cost of capital

$273 $319 $314 948

Cost per launch (capitalized)

[] Discovery [ Development

p(TS) — probability of successful transition from one stage to the next; NME — new
molecular entity; WIP —work in process .



All-disease model for drug repurposing

Biomedical data span multiple scales
and multiple data modalities

&

g
O

Transcriptomics

Physical contacts

Molecular pathways
and patient subtypes TxGNN:

All-disease drug
repurposing model

Treatment
information

Once trained, models are adapted to an
array of tasks, with no or minimal training

What patient populations will
respond to treatment?

Q)

o

What candidate therapeutics will have an
acceptable safety profile for patients with
metastatic melanoma?

@

What small-molecule compounds
will inhibit a kinase?

&
O

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024



All-disease model for drug repurposing

Multimodal knowledge graph Process therapeutic tasks and predict candidate
of 17,080 disease phenotypes indications and contraindications

- ST C )
Of Q-8B vosarr
-— -
. TxGNN
\@ . @ LV (Q)—0He) womandeaton
..-- 000 TxGNN \_8_ ° Q%) "contraindication

txgnn.org

J

Explainer
Semi-automatic KG rebuild when new datasets

become available T
Building a knowledge graph to enable precision K g F _ Q
medicine, Scientific Data 2023 }

Mechanistic path from drug to disease

Structure-inducing pre-training, Nature Machine Intelligence 2023; Multimodal learning with graphs, Nature Machine Intelligence 2023;
Graph Representation Learning in Biomedicine and Healthcare, Nature Biomedical Engineering 2022; Multimodal Learning with Graphs, Nature Machine Intelligence 2023; A foundation

model for clinician-centered drug repurposing, Nature Medicine 2024 .,



All-disease model for drug repurposing

g | Likelihood of
‘ —> > Indication

TxGNN
Predictor ikelihood f@
— > - ikelihood o
@ Contraindication

- 8
TxGNN
Explainer

& @ H® _

Multi-hop interpretable
path from a drug to a disease

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024



Building knowledge graphs: Medical data are
multimodal and scattered across databases

VAST CURATED
UNORGANIZED KNOWLEDGE

KNOWLEDGE GRAPH
Ayush Noori



Building knowledge graphs: Medical data are
multimodal and scattered across databases

L o

ChEMBL & &

iIncludes 1.6M assays
covering 2.4M compounds

GENEONTOLOGY
Unifying Biology

includes 6M gene annotations
derived from 150K publications

m National Library of Medicine

National Center for Biotechnology Information

includes annotations for 192K
human genetic elements

Ayush Noori

includes 31,467 bulk and
single-cell RNA-seq libraries

'(reoctome

includes 2,711 pathways
manually curated by PhDs

: SIDER

Includes 139K adverse
reactions for marketed drugs

5> STRING

iIncludes 20B interactions
between 59.3M proteins

@O RUGBANK

includes 17K FDA-approved
and experimental drugs

human
(@) phenotype
I ontolody

includes 13K phenotypes and
156K disease annotations



Building knowledge graphs: Medical data are
multimodal and scattered across databases

e
*® o%y

ChEMBL ::

Include only drugs approved for marketing
by the FDA or clinical candidates.

includes 1.6M assays
covering 2.4M compounds

Machine learning analysis to evaluate clinical
trials that ended earlier than scheduled.

ChEMBL evidence _ —
: : : : 3 Score all drug-disease edges by clinical
Integration plpellne precedence (i.e., Phase 0, I, II, lll, V).

repeat for all'36 databases

Down-weight scores for trials that stop early
due to negative outcomes or safety concerns.

Construct typed edges in knowledge graph
based on strength of ChEMBL evidence.

Ayush Noori



Knowledge graph based TXGNN model enables transfer
learning across 17,080 disease phenotypes

Disease pooling is a module that identifies diseases similar
to a query disease and transfers information from related
diseases to the query disease

Query Knowledge Graph Message Passing f" % Disease
Disease @ Embeddlng
o & g
& - Disease
Pooling
@ —p Prediction
Query Drug
brug Embedding
s > » (QOF -
~ Query Que Other
Disease @ Drugry - Eii{?edical E Embedding — Relation —&, Message
ntities

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 -



TXGNN identifies candidate drugs for
diseases with no treatment options

Once trained, TXGNN can perform zero-shot prediction on new diseases without

additional parameters or fine-tuning on labeled data
GNN | ¢| TXGNN

© ® @ Scenario A: Current state-of-the-art
@)/ L @ e« Disease with existing treatments ;gg
\ L & * Basier to predict 0:90- P I Jraon
Existing approved ~ Well-understood 0.85+1 °
treatments mechanism
Q 0.8041
1
Available/associated % 0.751 +49.2%
< 0.70- +46.5%
N & @ Scenario B: Zero-shot prediction 0.651
@ = v o - Diseaseswith no existing treatments g: b
m O * Much harder to predict 0504
ero approved  Limited mechanism . Standard Systematic Cell Proliferation
“reatments . umaorstanang 7,000+ rare diseases affect 300-400M globally;  amotstes . . .

Treatments?

only 5% have FDA-approved drugs. New drugs S
can offer better, side-effect reduced options for ~ knowedger Yes Yes No
specific patients | o

i Not available/associated

Scenario A Scenario B

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024



Benchmarking TXGNN on challenging
dataset splits across disease areas

Held-out folds contain diseases ...

p
... with zero approved drugs ... from distinct disease areas ... with limited molecular data
Training Testing Training Testing /ﬁ’
®©®® _ ®
) \
|
- ~
. 5 [X]~ S o
Diverse Diseases from an @ (%)
disease areas unseen area =
Held-out folds contain 105 . 107 1.0 . 1.0
cancer diseases 081 08+ : Held-out folds contain 08 | 081
o 2 o anemia-related diseases . -
L
@ 081 . . ’ @ 081 . . N R o6 i S 2 06 .
N . . . L] o »
Diseases in this area include: 2041 = = ¢ 5 | y : - = £o.
+  Leydig cell tumor Diseases in this area include: < 04 i
+  Neurofibroma 02 . 0271 ,11.8% over the st t baseli = Thalassemia 02 02 _
- Acute myeloid leukemia +10.2% over the strongest basaline B overThe stongest baseThe . Aplastic anemia +42.3% over the strongest baseline +13.7% over the strongest baseline
O B s ah R -+ Hemoglobin C disease 0t 0
LR Y- R P AU AT W B S A T S ; A \ T B e AT\ S G
o ?‘0%«‘ PRSI S ?)‘0@6 pic o ?‘0*\«“?\@ Ve @oge pC W 030?‘0&\\\; o v\‘*:o%e“,\ @\“ & P ?@N‘gﬁo ARG 6‘066?\( Vo)
Held-out folds contain 1.04 104 Zero-shot indication prediction Zero-shot contraindication prediction
cardiovascular diseases ; 1.0 . 1.04
081 0.81 . Held-out folds contain : '
“
Q g6 : & o Q 064 s adrenal gland diseases 0.8 0.8 -
Diseases in this area include: g L a o« ¢ & )
2 0.6 ] O d
»  Mitral valve stenosis < 047 * <04 ) o ) g s @ t T 06 & a $
«  Congestive heart failure . 0o Diseases in this area include: 2 041 H 2 041 .
+ Long QT syndrome Comparable performance +14.5% over the strongest baseline * Hypgraldo.steromsm 024 -
0.0-1— % T T '9 ” ,‘.\ " < 0.0 T T T T P P - * édtdIS(?n dlSﬁ?Se g +59.3% over the strongest baseline | +17.8% over the strongest baseline
& B P N « N R s B e e I . ctopic cushing syndrome , .
e W W e T W o p g sy 00 00

: ———————————
9 DR Rt R W“@oq,e%e\*‘“

L R SO ARANIC I SN
@© o ?‘om QoY WO W %\&(f, pC

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 "



Evaluating new drug repurposing predictions

« TXGNN'’s novel predictions are consistent with off-label prescription decisions
made by clinicians in a large healthcare system

3.0 FDA-approved indications
A TIa F rar . . . . . . 0.5 J— indicati
Medication information in Inclusion Calculation of Log-ORs for Evaluation against FDA- Evaluation against { FDA-approved indications
electronic medical records criteria all drug-disease pairs approved indications Log-ORs Contraindications 5 5
0.4 = Al drug-disease pairs
2.0+ |
Medical > x
TXGNN , 2037 o} +107%
records .» 478 diseases o ? £ 1.5
® L with =1 patients < Jo73) == ast e = indicati :
Patlent I0: - a2 M FDA-approved indications 0.24 Contraindications
[T] All drug-disease pairs =3 |045| —>|2.14 1.04
@3 1,290 drugs S A
e with =10 patients Yes Mo g oot == Juas 0.1+ 054
— 9" 3 h]ﬂ“.., =
ﬁ’@ 1,272,085 patients No Lo OR et 0.0 Y a— . .
with at least 1 dI’LIg o9 Predictions Log-ORs } Top 1 Top 5 Top 5% Bottom 50%
& at least 1 disease Log-OR drug drugs drugs drugs

Predictions for 478 diseases

« TXGNN predicts therapeutic use for recent FDA approvals and informs

laboratory testing PNAS2'

Drug name  Ingredient Disease Approval date  Company FDA& Mumber  Orphan | Prediction  Percentile N (0] effe Ct

Welireg Belzutifan von Hippel-Lindau disease 0871372021 Merck NDA215383  Yes 0,720 4.11% n

Livtencity  Maribavir Cytomegalovirus infection 1172312021 Takeda NDAZIS59 Yes 0033 66.37% c

Tezspire Tezepelumab-Ekko  Asthma 121772021 Asirazeneca BLATH1224 No 0,233 32.41% (o) Effe Ct

Legvio Inclisiran Sodium ~ Familial hypercholesterolemia | 122272021 Movartis NDA214012 No 0301 19.31% pras)

Adbry Tralokinumab Atopic dermatitis 122772021 Leo Pharma BLAT&11IB0 No 0040 50.37% 2 ) —) " y :
Vabysmo  Faricimab-Svoa Macular degeneration 01282022 Genentech BLATGI235  No 0938 1.25% o —
Vonjo Pacritinib Citrate Myelofibrosis OX2R2022 Cri Bic ma NDAZ0ETI2  Yes ool 63, 14% 8 .

Zaalmy Granaxolone CDELS disorder N3M182022 Marinus NDAZIFOM  Yes 0335 18, 73% o TOX|C

Mounjare  Tirzepatide Type 2 diabetes mellitus 051372022 Eli Lilly NDAZISEGS No 0286 12.50%

Viama Tapinasol Paoriasis 052372022 Dermavant NDA215272 Neo 0,261 32, T0%

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024 -



Clinician-centered design: txgnn.org

TxGNN( (‘e),(®)) = Yes

¢ Why?

TxGNN Explainer
o}

Sparse interpretable subgraph
that explains TXGNN'’s prediction

\ .
X x x

| S
:

Visualization

Q-@--@

Multi-hop interpretable paths
from drugs to diseases

¢
&,

Human makes decision

Control panel

Disease:
unipolar depression
Drug:
Clozapinescore: 0.988

Fluoxetine
Mirtazapine
Clozapine
Clomipramine
Isocarboxazid

Edge Threshold:

Node Types:

o
E
3
g
3

° Select disease

Clomipraminescore: 0.988 x |

score: 0.988

score: 0.988
k) score: 0.984
0.0
y e Select drugs

Drug embedding
X

score: 0.994

score: 0.991

e
L)
Ne ,

Select drugs
through lasso

Al

Structure

Path explanation

More details about
adrug on query :

@ORUGBANK online

Gene/protein Molecular_function Geng
cellular_component
disease} Gene/protein Drug x ;! =
R Associated | | Targets | }
[exposure] B Associated Targets External 105
»( Disease Gene/protein Pathway Gene/protein Drug )*
T T T
The meta-matrix provides [
ean overview of all predicted Users can hide (%), unhide (v), collapse (») or expand ()
drugs in terms of meta-paths a group of explanation paths based on the meta-path
Participant 12
[ LJ
' 0
A S\ Participant 1 .
) (\(?/ 5 clinicians
" TXGNN - 5 clinical researchers
predicts 0.89 of - ey —, " Answeraccuracy 2 pharmacists
ibdication : msdiide = Confidence (1-5)
5 = Time c
4 o e
N L]
% (5% Task 16 i i
& (9/ Evaluation of Semi-
TXGNN = Answer accuracy TxGNN and structured
predicts 0.16 of No explanation . = Confidence (1-5) baseline interview
indication = Time
L
) ~65 min for each participant -
12 x 16 = 192 trials P P 12 participants

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024

Panels of clinicians, clinical researchers and
pharmacists test usability of TXGNN:

» Scientific and medical consensus
» User confidence and trust
* User agreement

Time used for exploring predictions

Path-based explanations perform
significantly better than node-based
explanations and subgraph-based
explanations across three usability
metrics: accuracy, confidence, time

16



Clinician-centered design: txgnn.org

—

£

./ TXGNN, what drug can be potentially
repurposed for disease A?

TxGNN, why is drug B predicted as a good
repurposing candidate for disease A?

Repurposing ~————————————————— Multi-hop interpretable paths —— —————
prediction = : = = -
TXGNN  — [ i) TxGNN D T 0 g L Y - frepny Q.
Predictor @ Drug B T . — Explainer § : : .
TXGNN rank

%edical evidence for the repurposing prediction

TXGNN, for Kleefstra's syndrome, can Why is zolpidem predicted as a repurposing
you make a repurposing prediction?

candidate for Kleefstra's syndrome?

-Q TxGNN Explainer

~ )

(8) Zolpidem . —— - p— S
' — — (__ Disease ) Gene/protein (_Anatomy ) Gene/protein (___ brug )
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Medical reasoning

Kleefstra's syndrome is a rare genetic disorder caused by mutations in the EHMT1 gene and marked by intellectual disability, delayed speech and autism. Zolpidem,
a sedative primarily used for treating insomnia, has shown surprising neurostimulating effects in various medical case studies of neurodevelopmental disorders. This

paradoxical activity of zolpidem can lead to temporary improvements in speech, motor skills and alertness, offering a potential therapeutic avenue for this syndrome.

TxGNN, what drug can be potentially
repurposed for Ehlers-Danlos syndrome?

Why is tretinoin predicted as a
repurposing candidate for this syndrome?
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Medical reasoning

Ehlers-Danlos syndrome is a rare connective tissue disorder caused by mutations in collagen-coding genes (COLTA1/COL1A2) that lead to poor wound healing
and abnormal scars. Tretinoin, a Vitamin A derivative, carried by albumin (ALB) and acting on ALDH1A2, may help improve these symptoms by promoting
collagen production in the skin. In ClinVar, Ehlers-Danlos subtypes are linked to ALB mutations associated with ALDHTAI.

A foundation model for clinician-centered drug repurposing, Nature Medicine 2024
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» Better accuracy (+46%) and confidence
(+49%) when explanations provided

« Support scientists in interacting with
TXGNN and interpreting TXGNN
predictions
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Using Al to repurpose
existing drugs for
treatment of rare
diseases

Identifies possible therapies for thousands of
diseases, including ones with no current
treatments
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A groundbreaking drug-repurposing Al model could bring new hope to doctors and patients trying to treat diseases with

limited or no existing treatment options. Called TXGNN, this zero-shot tool helps doctors find new uses for existing drugs

for conditions that might otherwise go untreated

The study, recently published in Nature Medicine and led by scientists from Harvard University, could reduce the time and

cost for drug development—delivering effective treatment to patients much more quickly.
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Al Tool Speeds Drug Repurposing: And Is Free

By Greg Licholai MD, Contributor. Greg Licholai writes and teaches about... v
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With TxGNN, Kempner Researchers
Introduce an Al “Dr. House"” to Find
Treatments for Rare Diseases

By Yohan J. John, Ph.D. | September 30, 2024
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Kempner scientists are using
powerful Al technology to identify
potential drug-disease pairings that
could help advance treatment for
rare diseases.
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