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Outline for today’s class

▪ Foundations of network biology and medicine
▪ Foundations of graph AI

▪ Node classification, link prediction, graph classification 
▪ Semi-supervised learning and label diffusion

▪ Graph representation learning
▪ Shallow graph embeddings
▪ Introduction to graph neural networks (GNNs)
▪ Neural message-passing models

▪ Applications
▪ Gene function prediction: What does my gene do? 
▪ Medical diagnosis: Patients-like-me retrieval and diagnosis
▪ Drug combination modeling: polypharmacy
▪ Antibiotic discovery: Finding new candidate antibiotics
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Foundations of network 
biology and medicine

What are networks/graphs? 
Predictive modeling using graphs



Why networks?
Networks are a general 

language for describing 

and modeling complex 

systems
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Network!

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Peter Mary

Albert

Tom

co-worker

friendbrothers

friend

Protein 1 Protein 2

Protein 5

Protein 9

|N|=4

|E|=4

transfer
transfer

transfer
transfer

General Mathematical Language
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Why Networks? Why Now?

Image from: Goh et al. 2007. The human disease network. PNAS.

▪ Question: How are diseases and disease 
genes related to each other?

▪ Findings: Disease genes likely to interact and 
have similar expression
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Why Networks? Why Now?

Image from: Ma et al. 2018. Using deep learning to model the hierarchical structure 

and function of a cell. Nature Methods.

▪ Question: How to simulate an eukaryotic cell?

▪ Findings: Simulations reveal molecular 
mechanisms of cell growth, drug resistance 
and synthetic life
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Why Networks? Why Now?

Image from: Wang et al. 2014. Similarity network fusion for aggregating data types 

on a genomic scale. Nature Methods.

▪ Question: How to model cancer heterogeneity?

▪ Findings: New cancer subtypes with distinct 
patient survival
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Why Networks? Why Now?

Image from: Pilosof et al. 2017. The multilayer nature of ecological networks. 

Nature Ecology and Evolution.

▪ Question: How to study ecological systems?

▪ Findings: Pollinators interact with flowers in 
one season but not in another, and the same 
flower species interact with both pollinators 
and herbivores
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Why Networks? Why Now?

Image from: Nilforoshan et al. 2023. Human mobility networks reveal increased 

segregation in large cities. Nature.

▪ Question: Do large, dense, and cosmopolitan 
areas support socioeconomic mixing and 
exposure among diverse individuals?

▪ Findings: Contrary to expectations, residents of 
large cosmopolitan areas have less exposure to a 
socioeconomically diverse range of individuals
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Why Networks? Why Now?

Image from: Richiardi et al. 2015. Correlated gene expression supports 

synchronous activity in brain networks. Science.
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https://science.sciencemag.org/content/348/6240/1241/
http://science.sciencemag.org/content/357/6353/802
http://science.sciencemag.org/content/357/6353/802


Hierarchies of cell systemsPatient networks

Cell-cell similarity 

networks
Biomedical knowledge

graphs

Disease pathways

Gene interaction

networks

Many Data are Networks

Evolution of Resilience in Protein Interactomes Across the Tree of Life, PNAS, 2019; MARS: Discovering Novel Cell Types across 

Heterogeneous Single-Cell Experiments, Nat Methods, 2020; Leveraging the Cell Ontology to Classify Unseen Cell Types, Nat Commun, 

2021; Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nat Commun, 2021; Network Medicine 

Framework for Identifying Drug Repurposing Opportunities for COVID-19, PNAS, 2021; Population-Scale Patient Safety Data Reveal 

Inequalities in Adverse Events Before and During COVID-19 Pandemic, Nat Comput Science, 2021
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Predictive and Generative Modeling

▪ Predict a type of a given node
▪ Node classification

▪ Predict whether two nodes are linked
▪ Link prediction

▪ Identify densely linked clusters of nodes
▪ Community detection, module detection

▪ How similar are two nodes/networks 
▪ Network similarity

▪ Design graphs with desirable properties
▪ Generative modeling and molecular design

This topic will be covered in M6: Generative AI
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? ?

?
?

?

Machine Learning

Node Classification
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Node Classification: Example

Classifying the 

function of proteins 

in the interactome!

Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel 

protein–protein interactions. Nature.
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Machine 

Learning

?

?

?

x

Link Prediction
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Predicting which 

diseases a new 

molecule might 

treat!

Link Prediction: Example

Image from: Zitnik et al. 2020. Network-based discovery of drug indications.
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Community Detection

? ?

?
?

?

Machine 

Learning?

? ?

?
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Image from: Menche et al. 2015. Uncovering disease-disease relationships 

through the incomplete interactome. Science.

Identifying 

disease proteins 

in the 

interactome!

Community Detection: Example
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Graph Classification

?
?

?

?

? ?

?

?

?

Machine 

Learning
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Graph Classification: Example

Designing new 

small molecule 

compounds to 

treat a disease!

Image from: Jin et al. 2018. Junction Tree Variational Autoencoder for Molecular Graph Generation. ICML.
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Generative Modeling and Design

Geometric deep learning underlies several 
breakthroughs, including AlphaFold for 

protein structure prediction 

Geometric deep learning is receiving increasing interest in 

biology, chemistry, and medical sciences as a new tool for 

molecular design and optimization

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021

Geometric deep

learning model
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▪ What drives accurate protein structure 
prediction?
▪ Novel neural architecture based on the evolutionary, 

physical and geometric constraints of protein 
structures

▪ Input:
▪ Primary AA sequence of a given protein
▪ Aligned sequences of homologues

▪ Output:
▪ Predicted 3D coordinates of all heavy             

atoms in a protein

AlphaFold Network

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021
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What does my gene do? Give me 
more genes like these

Genes-like-me



Recommender Systems

Consider user x: Find set S of other users whose 
ratings are “similar” to x’s ratings; Estimate x’s 
preference based on ratings in S 
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Recommender Systems in Biology

“Give me more 
proteins like

this one”

“Give me more 
movies like
this one”
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Biological Rationales

▪ Local hypothesis: Proteins involved in the 
same disease have an increased tendency to 
interact with each other

▪ Disease module hypothesis: Cellular 
components associated with disease tend to 
cluster in the same network neighborhood

Barabasi et al., Network medicine: a network-based approach to human disease, Nature Reviews Genetics 2011
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▪ “What does my gene do?”

▪ Goals: Determine a gene’s function based on who it 
interacts with – “guilty-by-association” principle

▪ “Give me more genes like these”

▪ Goals: 

▪ Find more multiple sclerosis genes

▪ Find new ciliary genes

▪ Find members of a proteasome complex, etc.

Mostafavi, Morris, Proteomics 2012

Recommender Systems in Biology
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Networks

Query gene

TP53

Find set N of other genes 
whose interactions are 

“similar” to TP53’s 
interactions

Prediction using guilty-by-association principle: Estimate TP53’s 
function in the cell based on functions of genes in N 

“What Does My Gene Do?”

TP53
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Networks

Query genes

Gene recommender 
system

“Give Me More Genes Like These”
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▪ Predict gene functions using guilty-by-association:

▪ What other genes participate in “protein 
folding”?

MCA1

CDC48

CPR3

TDH2

Finding “Guilty Associates”

Red: Genes involved in protein folding
White: Genes with unknown functionProtein folding
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▪ Let 𝑾 be a 𝑛 × 𝑛 (weighted) adjacency matrix 
over 𝑛 genes 

▪ Let 𝒚 = −1, 0, 1 𝑛 be a vector of labels:

▪  1: positive gene, known to be involved in a gene 
function/biological process

▪ -1: negative gene

▪  0: unlabeled gene

▪ Goal: Predict which unlabeled genes are likely 
positive

“Guilty Associates” Problem
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▪ Approach: Learn a vector of discriminant 
scores 𝒇, where 𝒇𝑖  is likelihood that node 𝑖 is 
positive

▪ Example:

𝒚 = [1, 1, 1, 1, 0,0,0,0,0,0,0,0,0,0]

𝒇 = ?

𝑾 = (weighted) adjacency matrix

“Guilty Associates” Approach

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GC
GE

GF
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Approach 1: Neighbor Scoring

▪ Node score 𝒇𝑖  is weighted sum of the labels 
of 𝑖’s direct neighbors:

▪ Example:

Red: Positive nodes
White: 𝒇𝑖 = 0

𝒇𝑖 = ෍

𝑗=1

𝑛

𝑾𝑖𝑗𝒚𝑗

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GC
GE

GF

𝒇GA = 𝑾GA,MCA1 ∙ 𝒚MCA1

𝒇GB = 𝑾GB,CDC48 ∙ 𝒚CDC48 + 𝑾GB,TDH2 ∙ 𝒚CDC48

𝒇GC = 𝑾GC,TDH2 ∙ 𝒚TDH2
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Approach 1: Neighbor Scoring

▪ Node score 𝒇𝑖  is weighted sum of the labels 
of 𝑖’s direct neighbors:

▪ Example:
𝒇GA = 𝑾GA,MCA1 ∙ 𝒚MCA1

𝒇GB = 𝑾GB,CDC48 ∙ 𝒚CDC48 + 𝑾GB,TDH2 ∙ 𝒚CDC48

𝒇GC = 𝑾GC,TDH2 ∙ 𝒚TDH2

𝒇𝑖 = ෍

𝑗=1

𝑛

𝑾𝑖𝑗𝒚𝑗

▪ One half of GC’s neighbors are positives
▪ One third of GA’s neighbors are positives
▪ But: 𝒇GC = 𝒇GA (if 𝑾 is binary)

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GC
GE

GF
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Weighted Neighbors

▪ Normalize matrix 𝑾 by node degrees:

▪ Example:

𝒇𝑖 =
1

𝒅𝑖
෍

𝑗=1

𝑛

𝑾𝑖𝑗𝒚𝑗 , 𝒅𝒊 = ෍
𝑗

𝑾𝑖𝑗

𝒇𝑖 = 𝑫−1𝑾𝒚

𝑫 = 𝑑𝑖𝑎𝑔(𝒅)

Matrix notation:

𝒇GA =
1

3
𝑾GA,MCA1 ∙ 𝒚MCA1 

𝒇GB =
1

3
(𝑾GB,CDC48 ∙ 𝒚CDC48 + 𝑾GB,TDH2 ∙ 𝒚TDH2)

𝒇GC =
1

2
𝑾GC,TDH2 ∙ 𝒚TDH2

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GC
GE

GF
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▪ Matrix 𝑷 = 𝑫−1𝑾 is known as Markov 
transition matrix

▪ 𝑫 is a diagonal matrix with diagonal elements 𝒅𝑖

▪ 𝑷 is a row stochastic matrix, σ𝑗 𝑷𝑖𝑗 = 1

▪ Row 𝑖 is a probability distribution over random 
walks starting at node 𝑖

▪ 𝑷𝑖𝑗  is probability of a random walker 
following a link from node 𝒊 to node 𝒋

𝑖 𝑗
𝑷𝑖𝑗

Random Walks
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[𝑷
2

]𝑖𝑗 = ෍

𝑘=1

𝑛

𝑷𝑖𝑘𝑷𝑘𝑗 𝑷𝑖𝑘

𝑷𝑘𝑗

𝑖

𝑗

𝑘

Indirect Neighbor Scoring

 Use random walks to include indirect 
neighbors in computations

 Idea: Extend direct neighbor scoring formula 
𝒇 =  𝑫−1𝑾𝒚 = 𝑷𝒚 to include 2-hop 
neighbors

 Probability of a random walk of length two 
between node 𝑖 and node 𝑗 is:
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Approach 2: 2-Hop Neighbors

▪ Consider 2-hop neighbors when calculating 
node score 𝒇𝑖  as:

𝑷𝑖𝑘

𝑷𝑘𝑗

𝑖

𝑗

𝑘

𝒇𝑖 = ෍

𝑗=1

𝑛

𝑷𝑖𝑗𝒚𝑗 + ෍

𝑗=1

𝑛

[𝑷2]𝑖𝑗 𝒚𝑗

Direct 
neighbors

2-hop
neighbors
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Example: 2-Hop Neighbors

𝒇𝑖 =  ෍

𝑗=1

𝑛

𝑷𝑖𝑗𝒚𝑗 + ෍

𝑗=1

𝑛

[𝑷2]𝑖𝑗 𝒚𝑗

Direct 
neighbors

2-hop
neighbors

GD

GB

GA

MCA1

CDC48

CPR3

TDH2

GC
GE

GF

Red: Positive genes
White: 𝒇𝑖 = 0

Direct neighbor of a positive gene

2-hop neighbor of a positive gene

𝒇GE = 𝑷GE,MCA1
2 ∙ 𝒚MCA1 + 𝑷GE,TDH2

2 ∙ 𝒚TDH2

+ 𝑷GE,CDC48
2 ∙ 𝒚CDC48

𝑷 = 𝑫−1𝑾 

𝒇GA = 𝑷GA,MCA1 ∙ 𝒚MCA1

[𝑷2]𝑖𝑗> 0 if there is a walk of length 2 between 𝑖 and 𝑗
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▪ This approach can be extended to include nodes at 
distance 𝒓 (usually 𝑟 < 4):

▪ [𝑷𝒓]𝑖𝑗 = Probability of a walk from 𝑖 to 𝑗 in 𝒓 steps

▪ Increasing 𝑟 beyond 2 sometimes results in 
degradation of prediction performance 

▪ [Chua et al., Bioinformatics 2006; Myers et al., Genome 
Biology 2005, Cowen et al., Nature Reviews 2017]

▪ Next: Use random walks propagate labels 
throughput the network 

Beyond 2-Hop Neighbors
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▪ Label propagation generalizes neighborhood-
based approaches by considering random walks 
of all possible lengths

▪ The algorithm can be derived as:

1. Iterative diffusion process [Zhou et al., NIPS 2004]

2. Solution to a specific convex optimization task 
[Zhou et al., NIPS 2004, Zhu et al., ICML 2003]

3. Maximum a posteriori (MAP) estimation in Gaussian 
Markov Random Fields [Rue and Held, Chapman & 
Hall, 2005]

▪ Next: Derivation based on diffusion

Beyond 2-Hops: Label Propagation
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Intuition: Diffuse labels through edges of the network

Red: positive nodes
White: unlabeled nodes

Score

high

low

Label Propagation: Intuition

Red: positive nodes
Pink: 𝒇𝑖 > 0

White: 𝒇𝑖 = 0
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▪ Diffusion is defined as an iterative process [Zhou et 
al., NIPS 2004]

▪ Diffuse labels through network edges:

▪ Start with initial label information, 𝒇𝑖
(0)

= 𝒚𝒊

▪ In each iteration, node 𝑖 receives label information 
from its neighbors and also retains some of its initial 
label

▪ 𝜆 specifies relative amount of label information from 𝑖’s 
neighbors and its initial label

▪ Finally: Label for each unlabeled node is set to be 
the class (-1 or 1) of which it has received most 
information

Diffusion Process: Idea
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▪ Diffusion process is defined as iteration:

▪ At iteration 𝑟 = 0, define 𝒇𝑖
(0)

← 𝒚𝒊

▪ At iteration 𝑟 + 1, the score for node 𝑖 is 
weighted average of the scores for 𝑖’s neighbors 
in iteration 𝑟, and 𝑖’s initial label:

𝒇𝑖
(𝑟+1)

← 1 − 𝜆 𝒚𝑖 + 𝜆 ෍

𝑗=1

𝑛

𝑾𝑖𝑗𝒇𝑗
(𝑟)

0 < 𝜆 < 1 is model parameter

Diffusion Process: Formally
DetailsMarinka Zitnik - AIM II - marinka@hms.harvard.edu



Score

high

low

𝒇(2) = 𝜆𝑾𝒇(1) + 1 − 𝜆 𝒚

𝒇(1) = 𝜆𝑾𝒚 + 1 − 𝜆 𝒚

All nodes within 2 hops are 
assigned a non-zero value

Diffusion Process: Example

𝒇(0) = 𝒚

Red: positive nodes
Pink: 𝒇𝑖 > 0
White: 𝒇𝑖 = 0

Question: How many iterations?

DetailsMarinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ If all eigenvalues of 𝑾 are in range −1, 1 , 
then the sequence 𝒇(𝑟) converges to:

▪ [𝑾𝑟]𝑖𝑗> 0 if a walk of length 𝑟 between 𝑖 and 𝑗

▪ Weight 𝜆𝑟  decreases with increasing distance

𝒇 = (1 − 𝜆) ෍

𝑟=0

∞

𝜆𝑾 𝑟𝒚

Convergence Condition

 ⇒ Discriminant scores 𝒇 are weighted sum of 
walks of all lengths between nodes

 ⇒ High value 𝒇𝑖: 𝑖 is connected to positively 
labeled nodes with many short walks

Zhou et al., NIPS 2004DetailsMarinka Zitnik - AIM II - marinka@hms.harvard.edu



Score

high

low

𝒇(2) = 𝜆𝑾𝒇(1) + 1 − 𝜆 𝒚

𝒇(1) = 𝜆𝑾𝒚 + 1 − 𝜆 𝒚

Diffusion Process: Example

𝒇(0) = 𝒚

𝒇 = (1 − 𝜆) ෍

𝑟=0

∞

𝜆𝑾 𝑟𝒚

Red: positive nodes
Pink: 𝒇𝑖 > 0
White: 𝒇𝑖 = 0

All nodes within 2 hops are 
assigned a non-zero value
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▪ Problem: The infinite sum converges only if all 
eigenvalues of 𝑾 are in −1, 1 , i.e., 𝜌 𝑾 ≤ 1

▪ Solution: Normalize 𝑾 before diffusion:

▪ Symmetric normalization:

▪ Signal is spread in a breadth-first search manner

▪ Asymmetric normalization:

𝑺 =  𝑫−1/2𝑾𝑫−1/2

𝑷 =  𝑫−1𝑾

Does the Process Always Converge?

𝑫 = 𝑑𝑖𝑎𝑔(𝒅)

DetailsMarinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ If 𝜌 𝑾 ≤ 1, use Taylor expansion to compute 
exact solution for label propagation:

𝒇 = (1 − 𝜆)(𝑰 − 𝜆𝑺)−1𝒚

(𝐼 − 𝑨)−1= ෍
𝑟=0

∞

𝑨𝑟

Taylor expansion, sum 
of geometric series:

Exact Solution at Convergence

𝒇 = (1 − 𝜆) ෍

𝑟=0

∞

𝜆𝑺 𝑟𝒚

⇒

DetailsMarinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ Multi-label node classification: Node (gene) has 0+ 
labels (functions):

1. For each label learn a separate vector 𝒇:

▪ High value of 𝒇𝑖: 𝑖 is connected to many labeled 
nodes through many short walks → 𝒊 likely has 
the label 

2. Train: Observe a fraction of nodes and their labels

3. Test: Predict functions for the remaining nodes

▪ Select optimal value for 𝜆 using cross-validation

Function Prediction: Setup
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Label propagation outperforms neighborhood scoring 
methods

[Mostafavi et al., Genome Biology 2008]

Function Prediction: Results
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[Cowen et al., Nature Reviews 2017]

Function Prediction: Results

Network propagation variants outperform their frequency-based counterparts (compare the blue curve to the green 
curve, and the red curve to the black curve)
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MRE11A
RAD51
MLH1
MSH2
DMC1
RAD51AP1
RAD50
MSH6
XRCC3
PCNA
XRCC2

Query list:

GeneMANIA Tool (genemania.org)
Marinka Zitnik - AIM II - marinka@hms.harvard.edu
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Quick Check

https://forms.gle/iwjeypcTrCBrkDcm7 

Marinka Zitnik - AIM II - marinka@hms.harvard.edu
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Introduction to graph neural networks, 
and neural message passing models

Graph representation 
learning



(Supervised) Machine Learning Lifecycle: This 
feature, that feature. Every single time!

Raw 

Data

Structured 

Data

Learning 

Algorithm  
Model

Downstream 

prediction task

Feature 

Engineering

Automatically 
learn the features

Predictive Modeling Lifecycle
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Goal: Efficient task-independent feature 
learning for machine learning in networks!

vecnode

𝑓: 𝑢 → ℝ𝑑

ℝ𝑑

Feature representation, 

embedding

u

Feature Learning in Graphs
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



f (    ) =
OutputInput

Disease similarity

network 

2-dimensional node

embeddings

How to learn mapping function 𝒇?

Embedding Nodes

Intuition: Map nodes to embeddings such that similar 

nodes in the graph are embedded close together

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Setup

▪ Assume we have a graph G:
▪ V is the vertex set
▪ A is the adjacency matrix (assume binary)

▪ No node features or extra information is used!

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Input network
d-dimensional 

embedding space

Embedding Nodes

Goal: Map nodes so that similarity in the 
embedding space (e.g., dot product) 
approximates similarity in the network  

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Goal:

Need to define!

Input network
d-dimensional 

embedding space

Embedding Nodes
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



1. Define an encoder (a function ENC that maps 
node 𝑢 to embedding 𝒛𝑢)

2. Define a node similarity function (a measure 
of similarity in the input network)

3. Optimize parameters of the encoder so that:

Embedding Nodes: Approach
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



1. Encoder maps a node to a d-dimensional 
vector:

2. Similarity function defines how relationships 
in the input network map to relationships in 
the embedding space: 

node in the input graph

d-dimensional 
embedding

Similarity of u and v in 
the network

dot product between node 
embeddings

Two Key Components
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Embedding Methods
▪ Many methods use similar encoders:

▪ Shallow embedders:
▪ node2vec, DeepWalk, LINE, struc2vec

▪ Deep embedders:
▪ Graph neural networks

▪ These methods use different notions of 
node similarity:
▪ Two nodes have similar embeddings if:

▪ they are connected?
▪ they share many neighbors?
▪ they have similar local network structure?
▪ etc.

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Shallow graph 

representation learning
Node2vec: Feature Learning for Networks
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▪ Red: Target node
▪ k=1: 1-hop neighbors

▪ A (i.e., adjacency matrix)
▪ k= 2: 2-hop neighbors
▪ k=3: 3-hop neighbors

How to stochastically define 
these higher-order 

neighborhoods?

Multi-Hop Similarity

▪ Idea: Define node similarity function based 
on higher-order neighborhoods

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Learning Embeddings: Optimization

▪ Given 𝐺 = (𝑉, 𝐸)

▪ Goal is to learn 𝑓: 𝑢 → ℝ𝑑

▪ where 𝑓 is a table lookup
▪ We directly “learn” coordinates 𝒛𝒖 = 𝑓 𝑢  of 𝑢

▪ Given node 𝑢, we want to learn embedding 
𝑓(𝑢) that is predictive of nodes in 𝑢’s 
neighborhood 𝑁R(𝑢): 

max
𝑓

෍

𝑢 ∈𝑉

log Pr(𝑁R(𝑢)| 𝒛u)

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Goal: Find embedding 𝒛𝑢 that predicts 
nearby nodes 𝑁𝑅 𝑢 :

Assume conditional likelihood factorizes:

Learning Embeddings: Optimization
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Probability that u 

and v co-occur in a 

random walk over 

the network

Random-Walk Embeddings
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Why Random Walks?

1. Flexibility: Stochastic definition of node 
similarity:
▪ Local and higher-order neighborhoods

2. Efficiency: Do not need to consider all 
node pairs when training
▪ Consider only node pairs that co-occur in 

random walks

node2vec: Scalable Feature Learning for Networks

Aditya Grover
Stanford University

adityag@cs.stanford.edu

Jure Leskovec
Stanford University

jure@cs.stanford.edu

ABSTRACT

Prediction tasks over nodes and edges in networks require careful
effort in engineering features for learning algorithms. Recent re-

search in thebroader field of representation learning has led to sig-
nificant progress in automating prediction by learning the features

themselves. However, present approaches are largely insensitive to
local patterns unique to networks.

Herewepropose node2vec, an algorithmic framework for learn-
ing feature representations for nodes in networks. In node2vec, we

learn a mapping of nodes to a low-dimensional space of features
that maximizes the likelihood of preserving distances between net-

work neighborhoods of nodes. Wedefineaflexiblenotion of node’s
network neighborhood and design a biased random walk proce-

dure, which efficiently exploresdiverseneighborhoods and leadsto
rich feature representations. Our algorithm generalizes prior work
which is based on rigid notions of network neighborhoods and we

demonstrate that the added flexibility in exploring neighborhoods
is the key to learning richer representations.

We demonstrate the efficacy of node2vec over existing state-
of-the-art techniques on multi-label classification and link predic-

tion in several real-world networks from diverse domains. Taken
together, our work represents a new way for efficiently learning

state-of-the-art task-independent node representations in complex
networks.

Categor ies and Subject Descr iptors: H.2.8 [Database Manage-

ment]: Database applications—Data mining; I.2.6 [Ar tificial In-
telligence]: Learning

General Terms: Algorithms; Experimentation.

Keywords: Information networks, Feature learning, Node embed-

dings.

1. INTRODUCTION
Many important tasks in network analysis involve some kind of

prediction over nodes and edges. In a typical node classification
task, we are interested in predicting the most probable labels of

nodes in a network [9, 38]. For example, in a social network, we
might be interested in predicting interests of users, or in a protein-

protein interaction network we might be interested in predicting
functional labels of proteins [29, 43]. Similarly, in link prediction,
we wish to predict whether a pair of nodes in a network should

have an edge connecting them [20]. Link prediction is useful in
a wide variety of domains, for instance, in genomics, it helps us

discover novel interactions between genes and in social networks,
it can identify real-world friends [2, 39].

Any supervised machine learning algorithm requires a set of in-
put features. In prediction problems on networks this means that

one has to construct a feature vector representation for the nodes

u 

s3 

s2 
s1 

s4 

s8 

s9 

s6 

s7 

s5 

BFS 

DFS 

Figure1: BFS and DFS search strategies from node u (k = 3).

and edges. A typical solution involves hand-engineering domain-
specific features based on expert knowledge. Even if onediscounts

the tedious work of feature engineering, such features are usually
designed for specific tasks and do not generalize across different

prediction tasks.
An alternative approach is to use data to learn feature represen-

tations themselves [4]. The challenge in feature learning is defin-
ing an objective function, which involves a trade-off in balancing
computational efficiency and predictive accuracy. On one side of

thespectrum, onecould directly aim to findafeaturerepresentation
that optimizesperformanceof adownstream prediction task. While

this supervised procedure results in good accuracy, it comes at the
cost of high training timecomplexity dueto ablowup in thenumber

of parameters that need to be estimated. At the other extreme, the
objective function can be defined to be independent of the down-

stream prediction task and the representation can be learned in a
purely unsupervised way. This makes the optimization computa-

tionally efficient and with a carefully designed objective, it results
in task-independent features that match task-specific approaches in

predictiveaccuracy [25, 27].
However, current techniques fail to satisfactorily defineand opti-

mizeareasonable objectiverequired for scalableunsupervised fea-
ture learning in networks. Classic approaches based on linear and

non-linear dimensionality reduction techniques such as Principal
Component Analysis, Multi-Dimensional Scaling and their exten-

sions [3, 31, 35, 41] invariably involve eigendecomposition of a
representative data matrix which is expensive for large real-world

networks. Moreover, the resulting latent representations give poor
performance on various prediction tasks over networks.

Neural networksprovidean alternativeapproach to unsupervised
feature learning [15]. Recent attempts in this direction [28, 32]
propose efficient algorithms but are largely insensitive to patterns

unique to networks. Specifically, nodes in networks could be or-
ganized based on communities they belong to (i.e., homophily); in

other cases, the organization could be based on the structural roles
of nodes in the network (i.e., structural equivalence) [7, 11, 40,

42]. For instance, in Figure 1, we observe nodes u and s1 belong-
ing to thesamecommunity exhibit homophily, while thehub nodes

u and s6 in the two communities are structurally equivalent. Real-

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Random-Walk Optimization

1. Simulate many short random walks starting 
from each node using a strategy R

2. For each node u, get NR(u) as a sequence 
of nodes visited by random walks starting 
at u

3. For each node u, learn its embedding by 
predicting which nodes are in NR(u):

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



sum over all 

nodes u
sum over nodes v 
seen on random 

walks starting from u

predicted probability of u 

and v co-occurring on 

random walk, i.e., use 

softmax to parameterize 

𝑃(𝑣|𝒛𝑢)

Random walk embeddings = 𝒛𝑢  minimizing L 

Random-Walk Optimization
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Can efficiently approximate using negative sampling

Random Walks: Overview

1. Simulate many short random walks starting 
from each node using a strategy R

2. For each node u, get NR(u) as a sequence 
of nodes visited by random walks starting 
at u

3. For each node u, learn its embedding by 
predicting which nodes are in NR(u):

DetailsMarinka Zitnik - AIM II - marinka@hms.harvard.edu



Deep graph 

representation learning
GNNs and neural message passing
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▪ Encoder: Multiple layers of nonlinear 
transformation of graph structure

…

Graph neural networks
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Convolutional networks

▪ Let’s start with convolutional networks on an image:

▪ Single convolutional network with a 3x3 filter:

▪ Transform information (or messages) from the neighbors and 
combine them: σ𝑖 𝑊𝑖  ℎ𝑖

End-to-end learning on graphs with GCNs Thomas Kipf

Convolutional neural networks (on grids)

5

(Animation by  
Vincent Dumoulin)

Single CNN layer with 3x3 filter:

Image Graph

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ But what if your graphs look like this?

▪ Examples: 
▪ Biological or medical networks
▪ Social networks
▪ Information networks
▪ Knowledge graphs
▪ Communication networks
▪ Web graphs
▪ …

Disease pathwaysGene interaction network Biomedical knowledge graphs

Real world graphs
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Naïve approach

▪ Join adjacency matrix and features

▪ Feed them into a deep neural network:

▪ Issues with this idea:
▪ 𝑂(𝑁) parameters
▪ Not applicable to graphs of different sizes
▪ Not invariant to node ordering

End-to-end learning on graphs with GCNs Thomas Kipf

A    B    C    D    E

A

B

C

D

E

0     1     1     1     0          1     0

1     0     0     1     1          0     0

1     0     0     1     0          0     1

1     1     1     0     1          1     1

0     1     0     1     0          1     0

Feat

A naïve approach

8

• Take adjacency matrix     and feature matrix   

• Concatenate them  

• Feed them into deep (fully connected) neural net 

• Done?

Problems:

• Huge number of parameters 

• No inductive learning possible

?A

C

B

D

E

[A , X ]

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Graph neural networks

▪ Intuition: 
▪ Each node’s neighborhood defines a computational graph
▪ Generate node embeddings based on local network neighborhoods

▪ Neighborhood aggregation:

▪ Model can be of arbitrary depth
▪ Nodes have embeddings at each layer
▪ Layer 0 embedding of node u is its input features Xu

▪ Basic neighborhood aggregation: Average information from neighbors and apply a 
neural network

Neural networks

Layer 2

Layer 1

Layer 0

XE

XF

XA

XB

XA

XA

XC

?

?

?

?

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



…

Average of neighbor’s 

previous layer embeddings

Initial 0-th layer embeddings 

are equal to node features

Embedding after K 

layers of neighborhood 

aggregation 

Non-linearity 

(e.g., ReLU)

Previous layer 

embedding of v

Basic approach
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



…

trainable weight matrices 

(i.e., what we learn) 

We can feed these into any loss function and run 

stochastic gradient descent to train the weight parameters

Basic approach
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Drug combination modeling, 
antibiotic discovery

Applications in 
polypharmacy and drug 
design



▪ Combinatorial explosion
▪ >13 million possible combinations of 2 drugs
▪ >20 billion possible combinations of 3 drugs

▪ Non-linear & non-additive interactions
▪ Different effect than the additive effect of individual drugs

▪ Small subsets of patients
▪ Side effects are interdependent 
▪ No info on drug combinations not yet used in patients

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

,

Prescribed 

drugs

Drug

side effect

,

Prescribed 

drugs

Drug

side effect

,

Prescribed 

drugs

Drug

side effect

+ ≠

Mode 1

e.g., 

drugs

Mode 2

e.g., 

proteins

E.g., Specific type of drug-

drug interaction (𝑟1)

𝑟1

𝑟2

𝑟3

E.g., drug-target interaction (𝑟4)𝑟4
𝑟4

𝑟4

𝑟4

E.g., protein-protein interaction (𝑟5)

𝑟5

𝑟𝑖 Edge type 𝑖

Node types

Application: Drug combinations
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ Molecular, drug, and patient data for all US-approved drugs
▪ 4,651,131 drug-drug edges: Patient data from adverse event system, 

tested for confounders [FDA]

▪ 18,596 drug-protein edges 

▪ 719,402 protein-protein edges: Physical, metabolic enzyme-coupled, 
and signaling interactions

▪ Drug and protein features: drugs’ chemical structure, proteins’ 
membership in pathways

▪ This is a multimodal network with over 5 million edges 
separated into 1,000 different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Polypharmacy dataset
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ Two main stages:
1. Learn an embedding for every node in polypharmacy network

2. Predict a score for every drug-drug, drug-protein, protein-protein 
pair in the test set based on the embeddings

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

Example: How likely will 
Simvastatin and Ciprofloxacin, 
when taken together, break down 
muscle tissue?

Experimental setup
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Approach: Graph Neural Network

Node 𝑢

Input d-dimensional 

embedding space

𝑧𝑢

𝑧𝑣𝑓(𝑣)

𝑓(𝑢)

Node 𝑣

Map nodes to d-dimensional embeddings such that nodes with 

similar network neighborhoods are embedded close together

Decagon AI approach

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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0.705
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0.725
0.643

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

AUROC AP@50
Our method (Decagon)

RESCAL Tensor Factorization [Nickel et al., ICML'11]

Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]

Shallow Network Embedding [Zong et al., Bioinformatics'17]

Results: Polypharmacy side effects

Decagon

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Results: Polypharmacy side effects

Approach:

1) Train deep model on data generated prior to 2012

2) How many predictions have been confirmed after 2012?

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Application: Antibiotic discovery

Natural product mining

Small compound 

screening

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



GNNs to learn molecular structure

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Directed message passing neural network model iteratively (1) learns representations 
of molecules and (2) optimizes the representations for predicting growth inhibition

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Experimental setup

Input Output

Empirical Validation 

(Broad Repurposing Hub)

Task: Test top 99 predictions & 

prioritize based on similarity to known 

antibiotics or predicted toxicity

Training Dataset

(Human Medicines and Natural Products)

Data: 2,335 molecules (human 

medicines and natural products) 

screened for growth inhibition

Data: 6,111 molecules (at various 

stages of investigation for human 

diseases) in Broad Repurposing Hub

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Results

Halicin was developed to be an anti-diabetic drug, but the development was 

discontinued due to poor results in testing.

Halicin against 

E. coli

Halicin against 

M. tuberculosis

Halicin predicted to 

be antibacterial

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Results

A Deep Learning Approach to Antibiotic Discovery, Cell, 2020.

Halicin’s efficacy in murine models of infection

Validated against ~6K molecules to identify halicin, a novel candidate antibiotic

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Finding patients with similar genetic 
and phenotypic features

Application in medicine, 
patients-like-me retrieval



Diagnostic odysseys
▪ Over 7,000 rare diseases, each affects < 200,000 patients in the US

▪ Most diseases are phenotypically heterogeneous
▪ Front-line clinicians might lack disease experience, resulting in expensive clinical workups for patients 

across multiple years
▪ Diagnosis often requires a specialist, sub-specialist, or multi-disciplinary referrals

▪ On average, the long search for a rare disease diagnosis takes 5 to 7 years, 4 up to 8 
physicians, and 2 to 3 misdiagnoses

▪ Diagnostic delay is so pervasive that it leads to problems for patients:
▪ Undergoing redundant testing and procedures
▪ Substantial delay in obtaining disease-appropriate management and inappropriate therapies
▪ Irreversible disease progression—time window for intervention can be missed leading to disease 

progression

Can AI help shorten diagnostic odysseys 

for rare disease patients?

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022
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AI-assisted medical diagnosis

▪ Deep learning models trained (via supervised learning) on large 
labeled datasets can achieve near-expert clinical accuracy for 
common diseases

▪ Existing models require labeled datasets with thousands of 
diagnosed patients per disease:
▪ Diabetic retinopathy: deep neural net on 128 K retinal images
▪ Skin lesions: deep neural net on 129 K clinical images of skin cancers
▪ Childhood diseases: deep neural net on 1 M pediatric patient visits

The challenge with rare diseases is fundamental — datasets are three orders 
of magnitude smaller than in other uses of AI for medical diagnosis 
Needed is an entirely new approach to making AI-based rare disease diagnosis 
possible. This is for two primary reasons:
• Rare disease diagnosis cannot simply be solved by recruiting/labeling more patients because of 

high disease heterogeneity and low disease prevalence 
• Rare disease diagnosis cannot be solved by supervised deep learning because the models cannot 

extrapolate to novel genetic diseases and atypical disease presentations

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



▪ Step 1: Incorporate knowledge of 
known phenotype, gene, and 
disease relationships via GNN
▪ Knowledge-guided learning is achieved 

by self-supervised pre-training on our 
precision-medicine knowledge graph

▪ Step 2: Pre-trained GNN from Step 
1 is fine-tuned using synthetic 
patients 
▪ Training exclusively on synthetic rare 

disease patients without the use of any 
real-world labeled cases

▪ Synthetic patients used for training are 
created using an adaptive simulation 
approach 

▪ Realistic rare disease patients with 
varying numbers of phenotypes and 
candidate genes 

1 2

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Graph learning approach
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Diagnostic tasks

▪ Three diagnostic tasks:
▪ Causal gene discovery: Given a patient's set of phenotypes and a list of 

genes in which the patient has mutations, prioritize genes harboring 
mutations that cause the disease (phenotypes)

▪ Patients-like-me: Given a patient, find other patients with similar genetic 
and phenotypic features suitable for clinical follow-up

▪ Characterization of novel diseases: Given a patient's phenotypes, provide 
an interpretable NLP name for the patient's disease based on its similarity 
to each disease in the KG

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022
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Experimental setup

SHEPHERD’s model training: 

▪ 36K synthetic patients

SHEPHERD’s model evaluation

▪ UDN patient cohort: 465 rare disease 
patients with labeled diagnoses, spanning 
299 diseases
▪ 79% of genes and 83% of diseases are 

represented in only a single patient

▪ MyGene2 patient cohort: 146 rare 
disease patients, spanning 55 diseases

Simulation of undiagnosed patients with novel genetic conditions, medRxiv 2022

Deep learning for diagnosing patients with rare genetic diseases, medRxiv 2022

https://undiagnosed.hms.harvard.edu
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Results: Disease gene discovery

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022
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Results: Patients-like-me

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

UMAP plot of SHEPHERD’s embedding space of all simulated (circle), UDN (up-facing triangle), and 

MyGene2 (down-facing triangle) patients colored by their Orphanet disease category 

Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

Results: New disease naming
Marinka Zitnik - AIM II - marinka@hms.harvard.edu



Take-away messages

▪ SHEPHERD overcomes limitations of standard machine learning:
▪ Model inputs as KG subgraphs (i.e., clinic-genetic subgraphs of patients)
▪ Use self-supervised pre-training on biomedical knowledge
▪ Train the model on a large cohort of synthetic patients

▪ SHEPHERD generalizes to novel phenotypes, genes, and diseases:
▪ Performs well on patients whose subgraphs are of varying size
▪ Performs well on diagnosing patients with novel diseases

▪ Implications: 
▪ Implications for generalist models applicable across diagnostic process
▪ New opportunities to shorten the diagnostic odyssey for rare disease
▪ Implications for using deep learning on medical datasets with very few labels 

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022

First deep learning approach for individualized diagnosis 
of rare genetic diseases

Graph learning approach is not only helpful but necessary

Marinka Zitnik - AIM II - marinka@hms.harvard.edu
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