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Outline for today’s class

Foundations of network biology and medicine

Foundations of graph Al
Node classification, link prediction, graph classification
Semi-supervised learning and label diffusion

Graph representation learning
Shallow graph embeddings
Introduction to graph neural networks (GNNs)
Neural message-passing models

Applications
Gene function prediction: What does my gene do?
Medical diagnosis: Patients-like-me retrieval and diagnosis
Drug combination modeling: polypharmacy
Antibiotic discovery: Finding new candidate antibiotics



Foundations of network
biology and medicine

What are networks/graphs?

Predictive modeling using graphs




Why networks?

Networks are a general

language for describing

and modeling complex
systems






Network!
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General Mathematical Language
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Why Networks? Why Now?

= Question: How are diseases and disease
genes related to each other?

" Findings: Disease genes likely to interact and
have similar expression
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Image from: Goh et al. 2007. The human disease network. PNAS.


mailto:http://www.pnas.org/content/104/21/8685.short

Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Why Networks? Why Now?

" Question: How to simulate an eukaryotic cell?

" Findings: Simulations reveal molecular

mechanisms of cell growth, drug resistance
and synthetic life
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Image from: Ma et al. 2018. Using deep learning to model the hierarchical structure
and function of a cell. Nature Methods.



https://www.nature.com/articles/nmeth.4627
https://www.nature.com/articles/nmeth.4627
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Why Networks? Why Now?

" Question: How to model cancer heterogeneity?

" Findings: New cancer subtypes with distinct
patient survival
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Image from: Wang et al. 2014. Similarity network fusion for aggregating data types
on a genomic scale. Nature Methods.



https://www.nature.com/articles/nmeth.2810
https://www.nature.com/articles/nmeth.2810
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Why Networks? Why Now?

" Question: How to study ecological systems?

" Findings: Pollinators interact with flowers in
one season but not in another, and the same
flower species interact with both pollinators
and herbivores

Image from: Pilosof et al. 2017. The multilayer nature of ecological networks.
Nature Ecology and Evolution.



https://www.nature.com/articles/s41559-017-0101
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Why Networks? Why Now?

= Question: Do large, dense, and cosmopolitan
areas support socioeconomic m|X|n%and
exposure among diverse individuals:

® Findings: Contrary to expectations, residents of
large cosmopolitan areas have less exposure to a
souoeconommally diverse range of individuals
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Image from: Nilforoshan et al. 2023. Human mobility networks reveal increased
segregation in large cities. Nature.



https://www.nature.com/articles/s41586-023-06757-3
https://www.nature.com/articles/s41586-023-06757-3
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Why Networks? Why Now?
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Image from: Richiardi et al. 2015. Correlated gene expression supports
synchronous activity in brain networks. Science.



https://science.sciencemag.org/content/348/6240/1241/
http://science.sciencemag.org/content/357/6353/802
http://science.sciencemag.org/content/357/6353/802
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Many Data are Networks
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Evolution of Resilience in Protein Interactomes Across the Tree of Life, PNAS, 2019; MARS: Discovering Novel Cell Types across
Heterogeneous Single-Cell Experiments, Nat Methods, 2020; Leveraging the Cell Ontology to Classify Unseen Cell Types, Nat Commun,
2021; Identification of Disease Treatment Mechanisms through the Multiscale Interactome, Nat Commun, 2021; Network Medicine
Framework for Identifying Drug Repurposing Opportunities for COVID-19, PNAS, 2021; Population-Scale Patient Safety Data Reveal
Inequalities in Adverse Events Before and During COVID-19 Pandemic, Nat Comput Science, 2021



Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Predictive and Generative Modeling

" Predict a type of a given node
" Node classification

= Predict whether two nodes are linked
= Link prediction

" |dentify densely linked clusters of nodes
= Community detection, module detection

= How similar are two nodes/networks
= Network similarity

= Design graphs with desirable properties
" Generative modeling and molecular design

This topic will be covered in M6: Generative Al
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Node Classification: Example
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Image from: Ganapathiraju et al. 2016. Schizophrenia interactome with 504 novel
protein—protein interactions. Nature.



https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience
https://www.nature.com/articles/npjschz201612?WT.feed_name=subjects_neuroscience

Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Link Prediction

ot o

Machine
Learning
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Link Prediction: Example

Drugs Dlseases

Predicting which € \’#
diseases a new
molecule might ¢ x 6

treat!

=

— “Treats” relationship

2| Unknown drug-disease relationship

Image from: Zitnik et al. 2020. Network-based discovery of drug indications.
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Community Detection

30

Machine
Learning

>
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Community Detection: Example
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Image from: Menche et al. 2015. Uncovering disease-disease relationships
through the incomplete interactome. Science.



mailto:http://science.sciencemag.org/content/347/6224/1257601
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Graph Classification
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Graph Classification: Example

Molecule Tree decomposition

Designing new '
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Image from: Jin et al. 2018. Junction Tr neration. ICML.



http://proceedings.mlr.press/v80/jin18a/jin18a.pdf

Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Generative Modeling and Design

Geometric deep learning underlies several
breakthroughs, including AlphaFold for
protein structure prediction

Geometric deep
learning model
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Geometric deep learning is receiving increasing interest in
biology, chemistry, and medical sciences as a new tool for
molecular design and optimization

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021




Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

AlphaFold Network

" What drives accurate protein structure
prediction?
= Novel neural architecture based on the evolutionary,

physical and geometric constraints of protein
structures
@rertid

" [nput:
P . : . Input sequence
= Primary AA sequence of a given protein

= Aligned sequences of homologues

= Qutput:

* Predicted 3D coordinates of all heavy T g
atoms in a protein

r.m.s.d.g; = 2.2A; TM-score = 0.96

Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature 2021



Genes-like-me

What does my gene do? Give me

more genes like these
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Recommender Systems

Consider user x: Find set § of other users whose
ratings are “similar” to x’s ratings; Estimate x’s
preference based on ratingsin §
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Recommender Systems in Biology

“Give me more “Give me more
movies like proteins like
this one” this one”
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Biological Rationales

" Local hypothesis: Proteins involved in the
same disease have an increased tendency to
interact with each other

= Disease module hypothesis: Cellular
components associated with disease tend to
cluster in the same network neighborhood
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Barabasi et al., Network medicine: a network-based approach to human disease, Nature Reviews Genetics 2011
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Recommender Systems in Biology

" “What does my gene do?”

" Goals: Determine a gene’s function based on who it
interacts with — “guilty-by-association” principle

" “Give me more genes like these”

= Goals:
= Find more multiple sclerosis genes
" Find new ciliary genes

" Find members of a proteasome complex, etc.



Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

“"What Does My Gene Do?”

EaT i

Networks

Find set N of other genes - e @ <

whose interactions are ° 0% <
“similar” to TP53’s e @z

interactions

Query gene
TP53

Prediction using guilty-by-association principle: Estimate TP53’s
function in the cell based on functions of genesin N
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“Give Me More Genes Like These”

Netwo rk

v \

Gene recommender

ATP2A2
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NO 51 Networks Functions
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NOS3 S— . :
Physical interactions [0 regulation of system process
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Finding “"Guilty Associates”

" Predict gene functions using guilty-by-association:

Red: Genes involved in protein folding
White: Genes with unknown function

Protein folding cDC4as

CPR3

MCA1

= What other genes participate in “protein
folding”?
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“Guilty Associates” Problem

" let W be an X n (weighted) adjacency matrix
over n genes

= lety = {—1,0,1}" be a vector of labels:

= 1: positive gene, known to be involved in a gene
function/biological process

= -1: negative gene
" 0:unlabeled gene

= Goal: Predict which unlabeled genes are likely
positive
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“Guilty Associates” Approach

" Approach: Learn a vector of discriminant
scores f, where f; is likelihood that node i is
positive

= Example:
CDC48 Yy = [1, 1, 1, 1, O,O,O,O,O,O;O;O;O;O]

W = (weighted) adjacency matrix
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Approach 1: Neighbor Scoring

" Node score f; is weighted sum of the labels
of i’s direct neighbors:

n
fi= 2 Wiy;
=1

fca = Wgamcal " YMmcal

= Example:

CDC48

MCA1
foB = WiBcpcas * Yepcas + WeBtpH2 * Yebcas

foc = WeetpHz * YTDH?2
TDH2

Cﬁ)c\g
GD
GE Red: Positive nodes

White: fi =0
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Approach 1: Neighbor Scoring

" Node score f; is weighted sum of the labels
of i’s direct neighbors:

n
fi= 2 Wiy;
=1

fca = Wgamcal " YMmcal

= Example:

CDC48

MCA1
foB = WiBcpcas * Yepcas + WeBtpH2 * Yebcas

foc = WeetpHz * YTDH?2
TDH2

= One half of GC’s neighbors are positives
S\g = One third of GA’s neighbors are positives

= But: fgc = fca (if W is binary)

GD

GF
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Weighted Neighbors

" Normalize matrix W by node degrees:

Matrix notation:

1 n fi=D"'Wy
fi :d_z Wiy;, d; =szij D = diag(d)
| R
=1

= Example:

CDC48

MCA1 .
fca = 3 Wcamcal - Ymcal

TDH2 fee = 3 (WgB.cpcas * Yepcas T Wes tDH2 * YTDH2)

GC 1
GD O\g foc = > W e TpH2 * YTDH?2
GF
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Random Walks

= Matrix P = D~ 1W is known as Markov
transition matrix

= D is a diagonal matrix with diagonal elements d;

* P is a row stochastic matrix, >.; P;; = 1

" Row i is a probability distribution over random
walks starting at node i
P;;
@®—-0
" P;; is probability of a random walker
following a link from node i to node j
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Indirect Neighbor Scoring
® Use random walks to include indirect
neighbors in computations

® |dea: Extend direct neighbor scoring formula
f= D "'Wy = Py toinclude 2-hop
neighbors

= Probability of a random walk of length two
between node i and node j is:

n
P,
[P]ij:ZPikij Pik
k=1
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Approach 2: 2-Hop Neighbors

" Consider 2-hop neighbors when calculating
node score f; as:

Epl]y] +z P2 l]y]

Direct 2-hop
neighbors neighbors
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Example: 2-Hop Neighbors

cDC48 P=Dw

n n
fi= ZpijJ’j +Z[P2]ij3’j
=1 =1

.

Direct
neighbors

fca = Pgamca1 * YMca1

52 2

fce = PGemcat - Ymca1 + PGETpH2 * YTDH2
2

+ PGe cpcas * YcDcas

O Direct neighbor of a positive gene

O 2-hop neighbor of a positive gene

Red: Positive genes
White: fi =0
[Pz]l-j> 0 if there is a walk of length 2 between i and j
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Beyond 2-Hop Neighbors

= This approach can be extended to include nodes at
distance 7 (usually r < 4):

= [P"];; = Probability of a walk from i to j in r steps

" Increasing r beyond 2 sometimes results in
degradation of prediction performance

= [Chua et al., Bioinformatics 2006; Myers et al., Genome
Biology 2005, Cowen et al., Nature Reviews 2017]

= Next: Use random walks propagate labels
throughput the network
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Beyond 2-Hops: Label Propagation

" | abel propagation generalizes neighborhood-
based approaches by considering random walks
of all possible lengths

" The algorithm can be derived as:
1. Iterative diffusion process [Zhou et al., NIPS 2004]

2. Solution to a specific convex optimization task
[Zhou et al., NIPS 2004, Zhu et al., ICML 2003]

3. Maximum a posteriori (MAP) estimation in Gaussian
Markov Random Fields [Rue and Held, Chapman &
Hall, 2005]

= Next: Derivation based on diffusion



Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Label Propagation: Intuition

Intuition: Diffuse labels through edges of the network

(b) First Iteration

(a) Initial Labels Score

O O . O high
QL O OO XN &

B0 IXYKA XD | XK
O— oG O O—o oG O low

® e

oo 0oLRo0 O0-0 oRO0
Oy O 0 e QO N
00 =0 2

Red: positive nodes
Red: positive nodes Pink: f; > 0

White: unlabeled nodes White: f; = 0
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Diffusion Process: Idea

= Diffusion is defined as an iterative process [Zhou et
al., NIPS 2004]

" Diffuse labels through network edges:

= Start with initial label information, fgo) =Y

= |n each iteration, node i receives label information

from its neighbors and also retains some of its initial
label

= A specifies relative amount of label information from i’s
neighbors and its initial label

" Finally: Label for each unlabeled node is set to be
the class (-1 or 1) of which it has received most
information



Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Diffusion Process: Formally

Details

= Diffusion process is defined as iteration:
At iteration r = 0, define fgo) — Y;

At iteration r + 1, the score for node i is

weighted average of the scores for i’s neighbors
in iteration r, and i’s initial label:

n
FI e =Dy + 2y Wi
j=1

0 < A< 1ismodel parameter
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Diffusion Process: Example

Score
(a) Initial Labels (b) First lteration I high
O-@ O
@ ik /N O-@ Q
> R Q /10
| O I
O O O C)(O)O O O O '®) O o
2 fo Y e fM=awy+(1-2Dy
A &S "
O , O O O
O-0 O SR o
o ®)
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(©) Second Iteration Al Nodes within 2 hops are fi>0
o @ O assigned a non-zero value White: f; =0
QL R
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@ fAO=wf®+1-21y
OO o Q-0
o AL SN e
-6 o) Question: How many iterations?
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Convergence Condition

Details

= |f all eigenvalues of W are in range [—1, 1],
then the sequence f(") converges to:

f=(-2) W)y
r=0

[W"];;> 0 if awalk of length r between i and j
Weight A" decreases with increasing distance

® = Discriminant scores f are weighted sum of
walks of all lengths between nodes

® = High value f;: i is connected to positively
labeled nodes with many short walks
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Diffusion Process: Example

Score
(a) Initial Labels (b) First Iteration I high
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All nodes within 2 hops are {d) Final Scores fi>0

(c) Second lteration .
assigned a non-zero value OR e White: f; =0

O-@ Q
@) /-0 OOOO

O

@ f@=WfD +1-2Dy o f =(1-2) E(AW)TY
O QO O—-0 o Q-0
O O O S
A &P o NP
o =6 O OO
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Does the Process Always Converge?

" Problem: The infinite sum converges only if all
eigenvalues of W are in [—1, 1], i.e., p(W) <1

= Solution: Normalize W before diffusion:
= Symmetric normalization:
S — D_]-/ZWI)_l/2 D = diag(d)
= Signal is spread in a breadth-first search manner

= Asymmetric normalization:

P=D'w
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Exact Solution at Convergence

= |If p(W) < 1, use Taylor expansion to compute
exact solution for label propagation:

f=1-2)) GS)y
=0 |
o peomati seriesr
U (I — A)1= Z:()Ar
f=A-1)U-18)""1y
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Function Prediction: Setup

= Multi-label node classification: Node (gene) has 0+
labels (functions):

1. For each label learn a separate vector f:

= High value of f;: i is connected to many labeled
nodes through many short walks — i likely has

the label

2. Train: Observe a fraction of nodes and their labels
3. Test: Predict functions for the remaining nodes

= Select optimal value for A using cross-validation
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Function Prediction: Results

1B GeneMANIA (15 networks)
[ ] Label Propagation on BioPIXIE
0.95 "I Local Neighborhood on BioPIXIE

0.9

0.85

0.8

AUROC
o
N
2

0.7

0.65

0.6

0.55

0.5

BP 3 BP 11 BP 30 BP 101
Evaluation Category

Label propagation outperforms neighborhood scoring

methods
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Function Prediction: Results

1.0
0.8 -
L
< 0.6
()
2
2
o
i
o 0.4-
=
=
—— Mutation frequency
0.2 —— Mean mutation propagation
— Differential expression frequency
— Mean differential expression propagation |
0-t T 1 1 1 1
0 0.2 0.4 0.6 0.8 1.0

False-positive rate

Network propagation variants outperform their frequency-based counterparts (compare the blue curve to the green
curve, and the red curve to the black curve)
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GeneMANIA Tool (genemania.org)

Query list:

® ®  © GeneMANIA X Marinka

& C 1 ® genemania.org

Networks
» Predicted

Function FDR Coverage ||
(O DNA recombination 3.29e-36 22/151 %

(O reciprocal DNA recombination 1.32e-22 12/35 B‘J@ .
RAD51L3-REELS

(O reciprocal meiotic 1.32e-22 12/35
recombination

(O meiotic nuclear division 3.33e-22 14/84
(O meiotic cell cycle 4.53e-22 14/87

» Physical interactions
[ —

» Shared protein domains

» Co-expression
|

» Pathway
|

» Co-localization
[ |

O meiosis | 9.47e-21 12/50

(O structure-specific DNA binding 4.58e-19  14/142 RAD51D)
(O cellular process involved in 9.19e-17 14/207

reproduction

MSH5-SARCD
(O double-stranded DNA binding  9.00e-16  11/84
(O nuclear division 1.59e-15 14/257
(O organelle fission 5.38e-15 14/282

(O double-strand break repair 1.86e-14 11/112
(0 ATPase activity 1.59-13 12/197
(O double-strand break repair via 1.64e-13 9/55
homologous recombination

(O recombinational repair 1.70e-13 9/56
(O DNA-dependent ATPase 1.70e-13 9/56
activity

(O mismatch repair 252e-12 7/22
(O single-stranded DNA binding 9.04e-12 8/50
(O regulation of DNA 8.76e-11  7/35
recombination

(O ribonucleoside 5.88e-10 9/139 @

monophosphate catabolic
process

(O purine nucleoside @

monophosphate catabolic
process

(O purine ribonucleoside
monophosphate catabolic
process

(O ATP catabolic process
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Quick Check

https://forms.gle/iwjeypcTrCBrkDcm7

AIM II: Artificial Intelligence in Medicine Il

Artificial Intelligence in Medicine Il, Spring 2025

Lecture 8: Foundations of network biology and medicine, Foundations of graph Al, Semi-
supervised learning and label diffusion, Graph representation learning, Introduction to
graph neural networks (GNNs), Neural message-passing models, Applications in gene
function prediction, medical diagnosis, drug combination modeling, and antibiotic
discovery

Course website and slides: hitps://zitniklab.hms.harvard.edu/AIM2

* Indicates required question

First and last name *

Your answer

Harvard email address *

Your answer

Think of another network example in biology or medicine that was not covered in *
today's lecture. What are nodes? How are edges defined? What predictive or
generative tasks can be meaningfully defined on your network?

Your answer

In class, we introduced the guilty-by-association approach (i.e., direct neighbor ~ *
scoring, indirect neighbor scoring, label propagation) through gene function
prediction. Can you think of a different biomedical problem where the same
approach can be helpful?

Your answer

Submit Clear form


https://forms.gle/iwjeypcTrCBrkDcm7

Graph representation
learning

Introduction to graph neural networks,

and neural message passing models
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Predictive Modelmg Llfecycle

(Supervised) Machine Learning Lifecycle: This
feature, that feature. Every single time!

Raw Structured Learning Model
Data Data Algorithm
>

t Automatically Downstream
Eng Ing learn the features prediction task
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Feature Learning in Graphs

Goal: Efficient task-independent feature
learning for machine learning in networks!

node

vec
— IR
fru—->R N p,
<
]Rd
Feature representation,
O embedding
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Embedding Nodes

Disease similarity 2'—\d'ihﬁge"h\éikco)nal node
network embeddings
Input Output

How to learn mapping function f7

Intuition: Map nodes to embeddings such that similar
nodes in the graph are embedded close together
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Setup

= Assume we have a graph G:

" Vis the vertex set
" Ais the adjacency matrix (assume binary)

* No node features or extra information is used!
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Embedding Nodes

Goal: Map nodes so that similarity in the
embedding space (e.g., dot product)
approximates similarity in the network

llll“----
.
-“-‘
..
®
ny
.
-
.
.
* ENC u
-
.
+*
.
.
.
*
.
.
o
.

encode nodes

.
.
st
-------
---------------------------------------

d-dimensional

Input network embedding space
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Embedding Nodes

-

(Y

Goal: similarity(u,v) ~ z

AN

Need to define!

Zy,

d-dimensional

Input network embedding space



Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Embedding Nodes: Approach

Define an encoder (a function ENC that maps
node u to embedding z,,)

Define a node similarity function (a measure
of similarity in the input network)

. Optimize parameters of the encoder so that:

similarity (u, v) ~ z, z,
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Two Key Components

1. Encoder maps a node to a d-dimensional

vector: d-dimensional
ENC(U) — Z,U‘/ embedding
node in the/input graph
2. Similarity function defines how relationships

in the input network map to relationships in
the embedding space:

similarity(u, v) & ZI Zy
Similarity of zand vin dot product between node

the network embeddings
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Embedding Methods

= Many methods use similar encoders:
= Shallow embedders:
= node2vec, DeepWalk, LINE, struc2vec

" Deep embedders:
= Graph neural networks

" These methods use different notions of
node similarity:

" Two nodes have similar embeddings if:
= they are connected?
= they share many neighbors?
= they have similar local network structure?
" etc.



Shallow graph

representation learning
Node2vec: Feature Learning for Networks
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Multi-Hop Similarity

" [dea: Define node similarity function based
on higher-order neighborhoods

" Red: Target node
* k=1:1-hop neighbors
= A (i.e., adjacency matrix)
" k= 2:2-hop neighbors
" k=3:3-hop neighbors

How to stochastically define
| these higher-order
k=3 neighborhoods?
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Learning Embeddings: Optimization
" Given G = (V,E)

= Goal is to learn f:u —» R

= where f is a table lookup
= We directly “learn” coordinates z,, = f(u) of u

" Given node u, we want to learn embedding
f (u) that is predictive of nodes in u’s

neighborhood N (u):
m}gx z log Pr(Ng(u)| z,)

uev
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Learning Embeddings: Optimization

Goal: Find embedding z,, that predicts
nearby nodes Ny (u):

Z log(P (u)|Zy))

veV
Assume conditional likelihood factorizes:

P(Nr(u)lz,)= ][ Pnilz.)

n;ENgr(u)
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Random-Walk Embeddings

Probability that u

ZTZ ~ and v co-occurin a
u U random walk over

the network
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Why Random Walks?

1. Flexibility: Stochastic definition of node
similarity:
Local and higher-order neighborhoods

2. Efficiency: Do not need to consider all
node pairs when training

Consider only node pairs that co-occur in
random walks
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Random-Walk Optimization

1. Simulate many short random walks starting
from each node using a strategy R

2. For each node u, get N (u) as a sequence
of nodes visited by random walks starting
at u

3. Foreach node 1, learn its embedding by
predicting which nodes are in N ,(u):

=




=y

ueV

/

sum over all
nodes u

Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Random- WaIk Optlmlzatlon

2

vENR(u)

—log(

/

\ ZnEV eXp(Z;Lan) /

exp(zlzv) \

\

predicted probability of u
and v co-occurring on
random walk, I.e., use

softmax to parameterize

P(v|z,)

Random walk embeddings = z,, minimizing L
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Random Walks: Overview

Details

1. Simulate many short random walks starting
from each node using a strategy R

2. For each node u, get N (u) as a sequence
of nodes visited by random walks starting
at u

3. Foreach node 1, learn its embedding by
predicting which nodes are in N ,(u):

=

Can efficiently approximate using negative sampling




Deep graph

representation learning
GNNSs and neural message passing
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Graph neural networks

" Encoder: Multiple layers of nonlinear
transformation of graph structure

Graph Regularization, Graph

convolutions e.g., dropout convolutions

(23
Q
O

X

Activation
function
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Convolutional networks

= Let’s start with convolutional networks on an image:

Feature maps

Convolutions Subsampling Convolutions Subsampling Fully connected

= Single convolutional network with a 3x3 filter:

$k

Image Graph

" Transform information (or messages) from the neighbors and
combine them: };; W; h;

.O.Q: | I o 1o
LI »Eg»
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Real world graphs

= But what if your graphs look like this?

RS AN
o, MER12° [
2A

Disease pathways Biomedical knowledge graphs

= Examples:
= Biological or medical networks
= Social networks
* Information networks
= Knowledge graphs
= Communication networks
= Web graphs
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Naive approach

" Join adjacency matrix and features
" Feed them into a deep neural network:

3 hidden layer 1  hidden layer 2 hidden layer 3
input layer

A B C D E Feat
A(0111o 10\
@ ® B 10 0 1 1 0 0 ?
® c 10 0 1 0 0 1 u
© D D| 1 1 1 0 1 1 1
E{L o 10 10 1 0 |

" |ssues with this idea:
= O(N) parameters
" Not applicable to graphs of different sizes
" Not invariant to node ordering
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Graph neural networks

= |ntuition:
Each node’s neighborhood defines a computational graph
Generate node embeddings based on local network neighborhoods

= Neighborhood aggregation:

Neural networks — X,
TARGET NODE \ .4‘ XC
l . Xa
. @ Xg
<« 7 o] ‘ 33: ..........
. v 4'. ...... ‘ XE
Layer2 . Xe
o<
INPUTGRAPH T e . XA
Layer 1
Layer O

Model can be of arbitrary depth
= Nodes have embeddings at each layer
= lLayer 0 embedding of node u is its input features X,

= Basic neighborhood aggregation: Average information from neighbors and apply a
neural network
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Basic approach

Graph Regularization, Graph
Woitens . | e.g., dropout convolutions

Activation
function

Initial O-th layer embeddings _
— are equal to node features Previous layer
embedding of v

h* = +B Vke{l,.. K}
z, = h’* \Average of neighbor’s

previous layer embeddings

\ Embedding after K Non-linearity
layers of neighborhood  (e.g., ReLU)

aggregation
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Basic approach

Graph Regularization, Graph
convolutions e.g., dropout convolutions

Activation
function

/

trainable weight matrices

hg — x, (| e., what we learn)
kl\
b _ o . Z +.hk L), Vke{l,.., K}
uEN(v)
Z, = h*

\ We can feed these into any loss function and run
stochastic gradient descent to train the weight parameters



Applications In
polypharmacy and drug
design

Drug combination modeling,

antibiotic discovery
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Application: Drug combinations

=  Combinatorial explosion ’
>13 million possible combinations of 2 drugs Y re
>20 billion possible combinations of 3 drugs TS o

= Non-linear & non-additive interactions o/ N o
Different effect than the additive effect of individual drugs

= Small subsets of patients O n ’ i 99

Side effects are interdependent
No info on drug combinations not yet used in patients

E.g., Specific type of drug-
drug interaction (r;)

1; Edgetypei

T
Mode 1 3 Z : OA Node types
e.g.,
drugs E.g., drug-target interaction (r,)
Mode 2
protems E.g., protein-protein interaction (rs)

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Polypharmacy dataset

A Drug @ Protein
r1 Gastrointestinal bleed side effect A—@ Drug-protein interaction
2 Bradycardia side effect ©—O Protein-protein interaction

= Molecular, drug, and patient data for all US-approved drugs

= 4,651,131 drug-drug edges: Patient data from adverse event system,
tested for confounders [FDA]

= 18,596 drug-protein edges

= 719,402 protein-protein edges: Physical, metabolic enzyme-coupled,
and signaling interactions

*  Drug and protein features: drugs’ chemical structure, proteins’
membership in pathways

= This is a multimodal network with over 5 million edges
separated into 1,000 different edge types

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Experimental setup

A Drug @ Protein
r1 Gastrointestinal bleed side effect A—@ Drug-protein interaction

2 Bradycardia side effect ©—O Protein-protein interaction

= Two main stages:
1. Learn an embedding for every node in polypharmacy network

2. Predict a score for every drug-drug, drug-protein, protein-protein
pair in the test set based on the embeddings

/S\ Simvastatin

gxample: How Iikg!y Wp| .
25K rof : imvastatin and Ciprofloxacin,
profioxacin when taken together, break down

muscle tissue?

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Approach: Graph Neural Network

Node v

d-dimensional
embedding space

Input 4

Decagon Al approach

Map nodes to d-dimensional embeddings such that nodes with
similar network neighborhoods are embedded close together

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Results: Polypharmacy side effects

0.9 0.834
0.693 0.705 0.725 0.731

0.567

0.476

AUROC AP@50

B Decagon

B RESCAL Tensor Factorization [Nickel et al., ICML'11]

E Multi-relational Factorization [Perros, Papalexakis et al., KDD'17]
O Shallow Network Embedding [Zong et al., Bioinformatics'17]

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018

0.643
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Results: Polypharmacy side effects

Approach:

1) Train deep model on data generated prior to 2012

2) How many predictions have been confirmed after 2012°

Rank|Drug Drug Side effect Evidence found
1 |Pyrimethamine Aliskiren Sarcoma, T
2 |Tigecycline Bimatoprost ~ Autonomic 1
3 |Telangiectases Omeprazole Dacarbazine / \
4 |Tolcapone Pyrimethamine Blood brain
Case Report padache

Severe Rhabdomyolysis due to Presumed Drug Interactions
between Atorvastatin with Amlodipine and Ticagrelor

8 |Atorvastatin
9 |Aliskiren
10 |Estradiol

ular acidosis

[Anag~___— Azelaic acid Cerebral thrombosis
Amlodipine Muscle inflammation
Tioconazole Breast inflammation
Nadolol Endometriosis

Modeling Polypharmacy Side Effects with Graph Convolutional Networks, Bioinformatics, 2018
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Application: Antibiotic discovery

1953: Glycopeptides, Nitroimidazoles, Streptogramins < P 1955: Cycloserine, Novobiocin

1952: Macrolides < P 1957 Rifamycins
1950: Pleuromutilins 1 : P 1961: Trimethoprim
1948: Cephalosporins < i P 1942: Quinolones, Lincosamides, Fusidic acid
1947: Polymyxins, Phenicols < : P 1949: Fosfomycin

1944 Nitrofurans < i - P 1971: Mupirocin

1945: Tetracyclines < P 1976: Carbapenems

1943: Aminoglycosides, Bacitracin (topical) < ! P 1978: Oxazolidinones
1932: Sulfonamides < P 1979: Monobactams

1928: Penicillins <« : ; P 1987: Lipopeptides

v DISCOVERY VOID
Natural product mining v

Small compound
screening

¢ Cell

ARTICLE | VOLUME 180, ISSUE 4, P688-702.E13, FEBRUARY 20, 2020

A Deep Learning Approach to Antibiotic Discovery

(0] 10

Jonathan M. Stokes  Kevin Yang ' « Kyle Swanson ... Tommi S. Jaakkola » Regina Barzilay 2

James J. Collins 2 '’ Show all authors ® Show footnotes
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GNNs to learn molecular structure

Chemical landscape

arge scale prediction
(upper limit 108 +)

' : v

Directed message L
passing neural network

Conventional small

molecule screening
4 o&g ™ e L
Tzaining 2oL Iterative Chemical screening
(10 molecules) model (upper limit 10° - 10°)
l re-training

|

Hit validation
(1 - 3% hit rate)

Machine learning

|

Predictions &
model validation

' \ k /] —— | identification
bond 2-1
\_

[antibiotic] & optimization
J L v,

Growth

<

.

Directed message passing neural network model iteratively (1) learns representations
of molecules and (2) optimizes the representations for predicting growth inhibition

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020.
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Experimental setup

Training Dataset
(Human Medicines and Natural Products)

Empirical Validation
(Broad Repurposing Hub)

!
0 —
. 0
HO 12 1
2 - - - 99 p
Q 0 0 N
j Q:0:50 . o ¥ | )
O o Q0O o € s
—_— o Q Q O = )8 - \
)) DA% QO j £ / n N
7 9:0:0 2 064 ’ - 0 S
3 Q O o} < 2 y
» © © Q . 2 044
w_p- O 044 E HaN
L
| 1 — 02 -
_
2 2 B 8 S A : ! _ =
S Q Q (o) 0 20 0 € 104 10( 1500
Q Q O Predicted mx acd 1 o 1
%0.¢ N ) Yiroroso 2 ou "< m
N g " 7 ﬁ J ® o} o O ﬁ 0 7
0 N 2 = - o]
o g H o) 2 ) (o] o) a
5 9700
3 Q Q o
o] o) Q
Input Output

Data: 2,335 molecules (human
medicines and natural products)
screened for growth inhibition

Data: 6,111 molecules (at various
stages of investigation for human
diseases) in Broad Repurposing Hub

Task: Test top 99 predictions &
prioritize based on similarity to known
antibiotics or predicted toxicity

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020.
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Results

Halicin was developed to be an anti-diabetic drug, but the development was
discontinued due to poor results in testing.

Halicin predicted to
be antibacterial

Halicin against
E. coli

Halicin against
M. tuberculosis

training set
Broad library
halicin

X
1

N
> 08 Jl\/ \)
- E (?\ﬁ ~8 S>RN
E 06+ 0 3%
2 o S
* 204 ]
‘g HN
.E

o
~N
n

LJ L}
0 500 1000 1500 2000 2500
Ranked training set molecules

0.7 9 10”4
U]
064 10”4
054 10"
£ 04- E 10°4
3 2 5 1hr
= - 1074
8 o 10._ ahr
0.2 ahr
0.1 10°4 BW25113
BW25113 5 | nutrient replete
0 T T L] T T L] L] 1 10 T T T T 1
10° 10 10 10? 10" 10° 10' 10® 10° 0% 10" 10° 10 10° 10°
[halicin] pg/ml [halicin] pg/ml
14 - 10% 9 M. twberculosis H3TRy
r no drug
A 10: halicin (16 pg/ml)
s 4
£ 0.8 E 10"
89 £ 10°
:
8 06 (5} ‘0_“
0.4+
924 10 .
M. tuberculosis H37Rv
0 Ll L] Al Ll L 1 L} L} L) Al 1
1% 1w0? 10" 1w® 1w 10 10 0 50 100 150 200
[halicin] pa/mi Time (hours)

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020.



QD (600nm)
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Results

Halicin's efficacy in murine models of infection

B C
0.7 - 107+ 10°-
064 10°4 10°- ®s a9
054 107 10+ -
0.4+ g 10°4 : g of
hr 10" =
0.3+ & 10°- S )
2] ‘| Bhy 1074 °
0.2 10 8hr ;
014 10°4 A. baumannii CDC 288 107
A. baumannii COC 288 » | nutrient deplete e 3 N ——
0 T T T T T T T 1 10 T l T 1 10 LA e o o ce—
10° 10* 10® 107 10" 10° 10' 10? 10° 0% 10" 10° 10 10° o* vehicle halicin
[haticin] pg/ml [halicin] pg/ml (0.5% DMSQO) (0.5% wiv)
E
19 1 usW
0.8 vehicle 1051 ® ©
E B e o
107 - - o o o L
064 matrcmdazola ” 106- v S e o ‘. &
- 5 B ™ e®
044 Gl 7 We AT ST S e
disrupt hal(cm 104 vehicle ° w* .
0.2 colonization mfect metronidazole (50 matkg) —_— @
S resistance 10> halicin (15 mg/kg) .
. e - . — e
: ©
0 T T T T f T T T T 1 102 T T T -
10° 10* 10° 107 107 10" 10’ 10° 10° -72 -48 .24 Ohrs 24 144 24 48 72 96 120 144
[halicin] pg/ml ampicillin C. difficile treatment Time after infection (hours)
200 malkg infection every 24 hrs

Validated against ~“6K molecules to identify halicin, a novel candidate antibiotic

A Deep Leaming Approach to Antibiotic Discovery, Cell, 2020.



Application in medicine,
patients-like-me retrieval

Finding patients with similar genetic

and phenotypic features




Diagnostic odysseys

= Qver 7,000 rare diseases, each affects < 200,000 patients in the US
= Most diseases are phenotypically heterogeneous

= Front-line clinicians might lack disease experience, resulting in expensive clinical workups for patients
across multiple years

= Diagnosis often requires a specialist, sub-specialist, or multi-disciplinary referrals

= On average, the long search for a rare disease diagnosis takes 5 to 7 years, 4 up to 8
physicians, and 2 to 3 misdiagnoses

= Diagnostic delay is so pervasive that it leads to problems for patients:
= Undergoing redundant testing and procedures
= Substantial delay in obtaining disease-appropriate management and inappropriate therapies

= Irreversible disease progression—time window for intervention can be missed leading to disease
progression

Can Al help shorten diagnostic odysseys

for rare disease patients?

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022
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Al-assisted medical diagnosis

= Deep learning models trained (via supervised learning) on large
labeled datasets can achieve near-expert clinical accuracy for
common diseases

= Existing models require labeled datasets with thousands of
diagnosed patients per disease:

= Diabetic retinopathy: deep neural net on 128 K retinal images
= Skin lesions: deep neural net on 129 K clinical images of skin cancers
* Childhood diseases: deep neural net on 1 M pediatric patient visits

The challenge with rare diseases is fundamental — datasets are three orders
of magnitude smaller than in other uses of Al for medical diagnosis
Needed is an entirely new approach to making Al-based rare disease diagnosis

possible. This is for two primary reasons:

* Rare disease diagnosis cannot simply be solved by recruiting/labeling more patients because of
high disease heterogeneity and low disease prevalence

* Rare disease diagnosis cannot be solved by supervised deep learning because the models cannot
extrapolate to novel genetic diseases and atypical disease presentations

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022
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Graph learning approach

Embed Biomedical Embed Rare Disease
Knowledge Patient Information

@
Samplabiomedical Input candidate ” Input a set of
knowledge nodes 5 -
= gene or disease patient phenotypes
(unrelated to patients)
© ® o
m =
KG | #Types | count
o Nodes | 7 105,220
Edges 15 1,678,274
0 o ¢
Embed knowledge Embed candidate Embed & aggregate
graph entities gene or disease patient phenotypes
=% (}H & disease x
henotype > B - N
pRencsyRe B B € phenotype
Y CE < disease patient/ > &
Bx” “em-
genea> B D
e
gene> BU
patient i by B g g
° e disease x
P P
g > e
.
genea 4 el .
_____________ ° ‘("
. (7 S — patient j
patient k e T N
E ----- d-dimensional disease z
gene b

embedding space

Self-supervised learning
via link prediction on the
rest of knowledge graph.

Embed patient closer to the correct gene, disease, or patients
with the same gene/disease, and farther from the incorrect
gene, disease, or patients with a different gene/disease.

Step 1: Incorporate knowledge of

known phenotype, gene, an

disease relationships via GNN

= Knowledge-guided learning is achieved
by self-supervised pre-training on our
precision-medicine knowledge graph

Step 2: Pre-trained GNN from Step
1 is fine-tuned using synthetic
patients

= Training exclusively on synthetic rare
disease patients without the use of any
real-world labeled cases

= Synthetic patients used for training are
created using an adaptive simulation
approach

= Realistic rare disease patients with

varying numbers of phenotypes and
candidate genes
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Diagnostic tasks

" Three diagnostic tasks:

= Causal gene discovery: Given a patient's set of phenotypes and a list of
genes in which the patient has mutations, prioritize genes harboring
mutations that cause the disease (phenotypes)

= Patients-like-me: Given a patient, find other patients with similar genetic
and phenotypic features suitable for clinical follow-up

= Characterization of novel diseases: Given a patient's phenotypes, provide
an interpretable NLP name for the patient's disease based on its similarity
to each disease in the KG

SHEPHERD

&
& oo | e
olecular
&HD é& Genetic sequencing = Experimental or diagnosis
3& ’ ﬁ ':& & analysis cohort validation
A 4 v v Causal gene Disease
N
|
n @®

Phenotypes Variant filtered Expert curated
candidate genes candidate genes
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Experimental setup

https://undiagnosed.hms.harvard.edu

SHEPHERD’s model training: U Undiagnosed

Diseases Network

= 36K synthetic patients ——
[ Simulated Patients ]
_ @St
] --—" S
’ 1 T ﬁ - /’:,/ \\\\\\s\ S
SHEPHERD’s model evaluation % IS A TARNSIS O
gg ’,/ ’/,/ I \\\\ \\\\\\\ é
. . G g - Rt 1 S b
= UDN patient cohort: 465 rare disease I L7 X \\\ S
. . . . = - \ N
patients with labeled diagnoses, spanning |3 7 N
299 diseases g5 .' N
T ! .
= 79% of genes and 83% of diseases are - I .
represented in only a single patient [ =
u MyGenez patient COhort: 146 ra re Patient dataset ‘ Train cohort Validation cohort Test cohort
disease patients, spanning 55 diseases S e
MyGene2 - - N =146

Simulation of undiagnosed patients with novel genetic conditions, medRxiv 2022
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Results: Disease gene discovery

a Performance on expert curated gene list b Correlation between network distance & performance
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Results: Patients-like-me el

a Patient: UDN-P3 Patient Card
Causal gene: RPS6KA3

Disease: Coffin-Lowry syndrome

Patient Gene Disease
Rank

1 GRIA3 X-linked intellectual disability
due to GRIA3 anomalies

2 RPS6KA3 Coffin-Lowry syndrome

3 THOC2 X-linked intellectual disability-
short stature-overweight
syndrome

4 AP1S52 Fried syndrome

5 SMS Syndromic X-linked intellectual

disability Snyder type

Patient: UDN-P4
Causal gene: CAPN1
Disease: autosomal recessive spastic
paraplegia type 76

Patient Card

Patient Gene Disease
Rank

1 REEP1 hereditary spastic paraplegia 31

2 KIFIA hereditary spastic paraplegia 30

3 DDHD1 hereditary spastic paraplegia 28

4 CAPN1 autosomal recessive spastic
paraplegia type 76

5 MTPAP hereditary spastic paraplegia 3A
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Patients-like-me

N

UMAP plot of SHEPHERD'’s embedding space of all simulated (circle), UDN (up-facing triangle), and
MyGene2 (down-facing triangle) patients colored by their Orphanet disease category

2 Patient: UDN-P5 Patient Card
A Causal gene: NLRP12, RAPGEFL1
. Disease: Atypical presentation of familial cold
> o autoinflammatory syndrome
* 2 o
< ‘vfp a Patient Rank Gene Disease
. 1 NLRP3  Familial cold-induced
* autoinflammatory syndrome 1
2 NLRP12 Familial cold-induced
autoinflammatory syndrome 2
3 FAS autoimmune lymphoproliferative
syndrome type 1
2 P = 4 IL6ST GP130-deficient hyper-IgE syndrome
S . 5 FLG atopic dermatitis 2
- v £ 3 -
ey 3 —
o : - 3
S e A
1 .
~* ¥ S
S o
Patient: UDN-P6 Patient Card
Causal gene: GATAD2B
Disease: GATAD2B-associated syndrome
Patient Rank Gene Disease
1 SMARCC2 Coffin-Siris syndrome 8
2 GATAD2B GATAD2B-associated syndrome
3 NACC1 neurodevelopmental disorder
*“ ° p with epilepsy, cataracts, feeding
T difficulties, and delayed brain
: al myelination syndrome
. 4 GRIN2B  intellectual disability, autosomal
* dominant 6
; 5 KMT2C Kleefstra syndrome
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Results: New disease naming

a Rank Disease
1 ARlimb-girdle muscular
dystrophy type 2B
GNE myopathy

3 MYH7-related late-onset
scapuloperoneal muscular
dystrophy

4  Emery-Dreifuss muscular
dystrophy 2, AD

5 AR limb-girdle muscular
dystrophy type 2G

Patient: UDN-P7
Causal gene: SGCA

Disease: AR limb-girdle muscular atrophy type 2D

-
N

Percent Similarity

(=
(=}
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S N & O o™

==

Patient Card

Top 5 phenotypes: Toe walking, Calf muscle
pseudohypertrophy, Elevated serum creatine
kinase, Proximal muscle weakness, Generalized
muscle weakness

Rank Disease Patient: UDN-P8

1 Combined oxidative
phosphorylation
deficiency 39

2 Hypomyelinating
leukodystropy-20

3 Pyruvate dehydrogenase 20
E3-binding protein
deficiency

4 Intellectual disability-
epilepsy-extrapyramidal
syndrome

5 Combined oxidative
phosphorylation defect
type 27

=
w

Percent Similarity
[
o

Causal gene: ATP5PO

Disease: ATP5PO-related Leigh syndrome

Top 5 phenotypes: Profound global developmental
delay, cerebral hypomyelination, limb hypertonia,
hypoplasia of the corpus callosum, infantile spasms

Patient Card
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g ||.| 1L

[
(=}

Percent Similarity

Percent Similarity

(=]

E

N

0
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w
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Novel disease

characterization
(-3
;
£
& &

Rank Disease

1

2
3
I 4
5

Patient: UDN-P2
Causal gene: GLYR1

Methylmalonic aciduria &
homocystinuria type cblF
Neonatal
hemochromatosis
Homozygous 11P15-p14
deletion syndrome
ALG8-CDG

Congenital anemia
Patient Card

Disease: Novel syndrome - pancreatic insufficiency & malabsorption

€ .,

o

Patient: UDN-P9
Causal gene: RPL13

Top 5 phenotypes: Failure to thrive in infancy, Global developmental
i d“elgx, Gastroparesis, Abnormality of vision, Duodenal atresia
STer Yy

Patient Card

Disease: Spondyloepimetaphyseal dysplasia, Isidor-Toutain type
Top 5 phenotypes: Spondylometaphyseal dysplasia, Genu
varum, Short femoral neck, Flat glenoid fossa, Platyspondyly

Rank Disease

1

2

3

4

|||_.|:|||I il 1

Multiple epiphyseal
dysplasia type 1
Progressive
pseudorheumatoid
arthropathy of childhood
Multiple epiphyseal
dysplasia type 5
Metaphyseal
chondrodysplasia, Spahr
type

Multiple epiphyseal
dysplasia

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022



Marinka Zitnik - AIM Il - marinka@hms.harvard.edu

Take-away messages

= SHEPHERD overcomes limitations of standard machine learning:
= Model inputs as KG subgraphs (i.e., clinic-genetic subgraphs of patients)
= Use self-supervised pre-training on biomedical knowledge
= Train the model on a large cohort of synthetic patients

= SHEPHERD generalizes to novel phenotypes, genes, and diseases:
= Performs well on patients whose subgraphs are of varying size
= Performs well on diagnosing patients with novel diseases

= |mplications:
= Implications for generalist models applicable across diagnostic process
= New opportunities to shorten the diagnostic odyssey for rare disease
= |mplications for using deep learning on medical datasets with very few labels

First deep learning approach for individualized diagnosis
of rare genetic diseases

Graph learning approach is not only helpful but necessary

Deep learning for diagnosing patients with rare genetic diseases, medRxiv, 2022



	Slide 1
	Slide 2: Outline for today’s class
	Slide 3:  Foundations of network biology and medicine
	Slide 4
	Slide 5
	Slide 6
	Slide 7: General Mathematical Language
	Slide 8: Why Networks? Why Now?
	Slide 9: Why Networks? Why Now?
	Slide 10: Why Networks? Why Now?
	Slide 11: Why Networks? Why Now?
	Slide 12: Why Networks? Why Now?
	Slide 13: Why Networks? Why Now?
	Slide 14: Many Data are Networks
	Slide 15: Predictive and Generative Modeling
	Slide 16: Node Classification
	Slide 17: Node Classification: Example
	Slide 18: Link Prediction
	Slide 19: Link Prediction: Example
	Slide 20: Community Detection
	Slide 21: Community Detection: Example
	Slide 22: Graph Classification
	Slide 23: Graph Classification: Example
	Slide 24: Generative Modeling and Design
	Slide 25: AlphaFold Network
	Slide 26: Genes-like-me
	Slide 27: Recommender Systems
	Slide 28: Recommender Systems in Biology
	Slide 29: Biological Rationales
	Slide 30: Recommender Systems in Biology
	Slide 31: “What Does My Gene Do?”
	Slide 32: “Give Me More Genes Like These”
	Slide 33: Finding “Guilty Associates”
	Slide 34: “Guilty Associates” Problem
	Slide 35: “Guilty Associates” Approach
	Slide 36: Approach 1: Neighbor Scoring
	Slide 37: Approach 1: Neighbor Scoring
	Slide 38: Weighted Neighbors
	Slide 39: Random Walks
	Slide 40: Indirect Neighbor Scoring
	Slide 41: Approach 2: 2-Hop Neighbors
	Slide 42: Example: 2-Hop Neighbors
	Slide 43: Beyond 2-Hop Neighbors
	Slide 44: Beyond 2-Hops: Label Propagation
	Slide 45: Label Propagation: Intuition
	Slide 46: Diffusion Process: Idea
	Slide 47: Diffusion Process: Formally
	Slide 48: Diffusion Process: Example
	Slide 49: Convergence Condition
	Slide 50: Diffusion Process: Example
	Slide 51: Does the Process Always Converge?
	Slide 52: Exact Solution at Convergence
	Slide 53: Function Prediction: Setup
	Slide 54: Function Prediction: Results
	Slide 55: Function Prediction: Results
	Slide 56: GeneMANIA Tool (genemania.org)
	Slide 57: Quick Check
	Slide 58: Graph representation learning
	Slide 59: Predictive Modeling Lifecycle
	Slide 60: Feature Learning in Graphs
	Slide 61: Embedding Nodes
	Slide 62: Setup
	Slide 63: Embedding Nodes
	Slide 64: Embedding Nodes
	Slide 65: Embedding Nodes: Approach
	Slide 66: Two Key Components
	Slide 67: Embedding Methods
	Slide 68
	Slide 69: Multi-Hop Similarity
	Slide 70: Learning Embeddings: Optimization
	Slide 71: Learning Embeddings: Optimization
	Slide 72: Random-Walk Embeddings
	Slide 73: Why Random Walks?
	Slide 74: Random-Walk Optimization
	Slide 75: Random-Walk Optimization
	Slide 76: Random Walks: Overview
	Slide 77
	Slide 78: Graph neural networks
	Slide 79: Convolutional networks
	Slide 80: Real world graphs
	Slide 81: Naïve approach
	Slide 82: Graph neural networks
	Slide 83: Basic approach
	Slide 84: Basic approach
	Slide 85: Applications in polypharmacy and drug design
	Slide 86: Application: Drug combinations
	Slide 87: Polypharmacy dataset
	Slide 88: Experimental setup
	Slide 89: Approach: Graph Neural Network
	Slide 90: Results: Polypharmacy side effects
	Slide 91: Results: Polypharmacy side effects
	Slide 92: Application: Antibiotic discovery
	Slide 93: GNNs to learn molecular structure
	Slide 94: Experimental setup
	Slide 95: Results
	Slide 96: Results
	Slide 97: Application in medicine, patients-like-me retrieval
	Slide 98: Diagnostic odysseys
	Slide 99: AI-assisted medical diagnosis
	Slide 100: Graph learning approach
	Slide 101: Diagnostic tasks
	Slide 102: Experimental setup
	Slide 103: Results: Disease gene discovery
	Slide 104: Results: Patients-like-me
	Slide 105: Results: New disease naming
	Slide 106: Take-away messages

