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Lecture 7: Explainability and interpretability in medical Al, Feature importance
and Shapley values, Bias and fairness in biomedical Al, Discussion: Is
explainability critical or overrated?
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Outline of today’s class

What Is trustworthy Al?

Explaining Al predictions

Definitions of fairness in Al

Framework for fair Al

Algorithmic fairness criteria

Individual fairness

Group fairness



Trustworthy ML

= ML models are increasingly being deployed in real-
world applications

= |tis critical to ensure that these models are behaving
responsibly and are trustworthy

= There has been growing interest to develop and
deploy ML models and algorithms that are:
= Not only accurate

= But also explainable, fair, privacy-preserving, causal,
and robust

= This broad area of research is commonly referred
to as trustworthy ML



Motivation

Model understanding is absolutely critical in several
domains - particularly those involving high stakes
decisions




Why model understaning?

This model is
relying on incorrect
features to make

iction!! Let
model

Model understanding facilitates
debugging

v -7 i
Predictive v Prediction = Siberian Husky
Model

Hima Lakkaraju



Why model understanding?

Model understanding facilitates

bias detection

[ Predictive

— > Prediction = Do not release on bail
Model

Hima Lakkaraju



Why model understanding?

[ have some means

Loan Applicant Details
pp for recourse. Let me

Model understanding helps
provide recourse to individuals

who are adversely affected by
model predictions

Hima Lakkaraju



Motivation: Why model
understanding?

Model Understanding

This model is using

irrelevant features when

predicting on female
=¥avavs iana] should

Patient Data

If gender = female,
if ID_num > 200, then sick

and when to trust model predictions
when making decisions

'@'G'O‘ D
Predictive ,
Model \X

Healthy
Healthy
Sick

Hima Lakkaraju



Motivation: Why model
understanding?

Model Understanding
_ This model is using
Patient Data irrel f h
Feariers e irre evgn‘F eatures when
if ID_num > 200, then sick predicting on female
25, Fe

32,M
31, M

Model understanding allows us to vet
models to determine if they are

suitable for deployment in real world

Sick
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Predictive , : I II@
= Healthy = ‘
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Why should | care about
understanding ML models?

Utility Stakeholders

Debugging End users (e.g., loan applicants)

Bias Detection Decision makers (e.g., doctors,
judges)
Recourse
Regulatory agencies (e.g., FDA,
If and when to trust model predictions European commission)

Vet models to assess suitability for Researchers and engineers
deployment

10



Achieving model understanding

Goal: Build inherently interpretable predictive models

if (age = 18 — 20) and (ser = male) then predict yes

else if (age = 21 — 23) and (priors = 2 — 3) then prediet yes
else if (priors = 3) then predict yes

else predict no

Decision rules

- [permetrope
" .
., -
Aol young
-2d -10 10 20 30 40 50 60
Linear regression Decision trees
Test image Evidence for animal being a Siberian husky Evidence for animal being a transverse flute

Explanations using
attention maps

Saliency map of a black box (deep learning) model does not explain anything except where the model is
looking: We have no idea why this image is labeled as either a dog or a musical instrument when considering
only saliency. The explanations look essentially the same for both classes

Stop explaining black box machine leaming models for high stakes decisions and use
interpretable models instead, Nature Machine Intelligence 2019 11



Inherently interpretable models vs.
explaining complex models
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Build interpretable and Complex models might

accurate models achieve higher accuracy



Achieving model understanding

Explain pre-built models in a post-hoc manner

Interpretability /accuracy tradeoffs
and proliferation of black box models

force us to rely on post hoc
“explanations” of ML models

[Ribeiro et.al. 2016, 2018; Lakkaraju et. al. 2019]
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Explainable Al

“Explainable Al refers to the set of approaches that provide an interpretable description of
the behavior of a given (complex) model to end users.”

- husky 0.98

husky 0.98
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What is an explanation?

= Definition: Interpretable description of the model
behavior

I
X
I
Classifier I
I
I




Overview of explanation methods

Local explanations Global explanations

Explain individual predictions Explain complete behavior of the model

Help unearth biases in the local Sheds light on big picture biases affecting

neighborhood of a given instance larger subgroups

Help vet if individual predictions are Help vet if the model, at a high level, is
being made for the right reasons suitable for deployment

Hima Lakkaraju 17



Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
= |Integrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations

= Representation-based explanations
= Model distillation



LIME: Local interpretable
model-agnostic explanations

1. Sample points around x;
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[Ribeiro etal. 2016 ]


https://arxiv.org/abs/1602.04938
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LIME: Local interpretable
model-agnostic explanations
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LIME: Local interpretable
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https://arxiv.org/abs/1602.04938

LIME: Local interpretable
model-agnostic explanations

I
1. Sample points around x; |
2. Use model to predict labels for each sample e N l‘ :
3. Weigh samples according to distance to x; _|_+ ’.
4. Learnsimple linear model on weighted _|-_I." ) -
samples j1® o° .
5. Use simple linear model to explain x; I
|
Another popular method which outputs
feature importance scores: SHAP
SHAP values are based on game theory and Output = 0.4 Output = 0.4
. . . ]‘
assign an 1mportancle Value. t.o each feature in Age - 65 | hgerss
a model. Features with positive SHAP values cox—F ot
. . . . . Explanation . [ >eX=
positively impact the prediction, while those BP = 180 —» L ep 180
with negative values have a negative impact.  smi-40 — i 40

The magnitude is a measure of how strong
the effectis

[Ribeiro et al. 2016; Lundberg & Su-In Lee 2017 ]

Base rate = 0.1

T

Base rate =0.1

23


https://arxiv.org/abs/1602.04938

Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
* |ntegrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations
= Representation-based explanations
= Model distillation



Integrated Gradients (IG)

* |ntegrated Gradients (lIG) is an explanation method
for deep neural networks

= [t identifies important features that contribute most
to the model's prediction

F1 F2.  Label

25, Female, Cold Feature F1is

32,Male, No - 5 : .

31, Male, Cough IG Explainer > irrelevant, but
: F2 is important

Black Box Predictive

Model

. Appealing properties of integrated gradients:

= |t can be applied to any differentiable model like models
for images, text, or structured data

= |t requires no modification to the original ML model

Axiomatic Attribution for Deep Networks, ICML 2017



https://distill.pub/2020/attribution-baselines

How does |G work?

|G computes gradients of the model’s prediction w.r.t. input
features

|G is built on two axioms which need to be satisfied:

= Sensitivity and

= |mplementation invariance
Sensitivity:

= We establish a baseline instance as a starting point

= We then build a sequence of instances which we interpolate from a

baseline instance to the actual instance to calculate

Implementation invariance:

= |mplementation invariance is satisfied when two functionally
equivalent models have identical attributions for the same input
Image and the baseline image.

= Two models are functionally equivalent when their outputs are equal
for all inputs despite having very different implementations

Axiomatic Attribution for Deep Networks, /ICML 2017
26



Calculating and visualizing 1G

= Setup:
= |et’s consider an ML model for image classification
= We aim to use |G to explain the predicted image label

—> . ——— Thisis a cat!
= Step 1: '

= Start from a baseline where the baseline can be a black
Image whose pixel values are all zero or an all-white
Image, or a random image

= Baseline input is one where the prediction is neutral
and is central to any explanation method and visualizing
pixel feature importance scores

Axiomatic Attribution for Deep Networks, ICML 2017



Calculating and visualizing |G

= Step 2:
= (Generate a linear interpolation between the baseline
and the original image

* |nterpolated images are small steps(a) in the feature
space between your baseline and input image and
consistently increase with each interpolated image’s
Intensity

sipha 00 slpha 03 sipha 0 &

Axiomatic Attribution for Deep Networks, ICML 2017




Calculating and visualizing 1G

= Step 3: Calculate gradients to measure the
relationship between changes to a feature and
changes in the model’'s predictions

= The gradient informs which pixel has the strongest
effect on the models predicted class probabilities

= Varying variable changes the output, and the variable will
receive some attribution to help calculate the feature
importances for the input image

= Variable that does not affect the output gets no attribution

= Step 4: Compute the numerical approximation
through averaging gradients (that's why the method’s
name is integrated gradients)

Axiomatic Attribution for Deep Networks, ICML 2017



Calculating and visualizing |G

= Step 5:
= Scale IG to the input image to ensure that the
attribution values are accumulated across multiple
Interpolated images are all in the same units
= Represent the |G on the input image with the pixel
Importances

Overlay IG on Input image

Attribution mask

|G helps us explain what an ML model
looks at to make a prediction by
highlighting the feature importances.

It does this by computing the gradient of
the model’'s prediction output to its input
features.

Axiomatic Attribution for Deep Networks, ICML 2017



Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
* |Integrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations
= Representation-based explanations
= Model distillation



Prototype-based explanations

= Use examples (synthetic or natural) to explain
individual predictions

= Influence Functions (Koh & Liang 2017)

= |dentify instances in the training set that are responsible
for the prediction of a given test instance

= Activation Maximization (Erhan et al. 2009)

= |dentify examples (synthetic or natural) that strongly
activate a function (neuron) of interest



Prototypes for explaining time
series models

= Time series are not easily
visually interpretable
= Noisy samples
= Dense informative features, unlike
Imaging and text modalities

= Temporal patterns ‘

= Only show up when looking at
time segments and long-term
behaviors

= Perturbations matter I N

expression values

= Setting a value to zero does not VoL
ignore that time point

time points

= Temporal dependencies cannot Omranian etal. 2015
be ignhored

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023 33



Existing time series explainers are
iInadequate

@ Perturbations are continuous
= Can deform shape of samples

= Give only instance-based

© explanations

= Cannot relate patterns across

Desiderata for time series explanations
samples P

» Temporally connected and visually

= Fail to match performance of digestible
1 I  Identify the location of predictive time series
e generlc eXplalnerS signals and underlying interpretable
= Post-hoc methods suffer from a patterns

lack of faithfulness and stability « Connect explanations across samples

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023 34



= Surrogate model to mimic
the behavior of a pretrained = 2 —
time series model

TimeX makes inferences on |
masked samples

Model behavior

level of the latent space
= Learns a flexible latent space

of explanations

TimeX Is a time-series consistency

explainer

Pretrained model’s |
latent space

/\,\_/M\J

Input time series

<
TimeX latent
space

AN -—
consistency N/ |
. Identify what signal : 1, e |
= Enforces faithfulness at the themodelusesand [~ | ] [
where they are +/

Identify landmarks that explain
model behavior +/

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023 35



Learned landmarks represent important
patterns in physiological time series

Class 0
Class 1
W Landmarks [ |

Latent Space of Explanations

Landmarks partition the latent space of explanations
into interpretable temporal patterns

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023 36



Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
= |Integrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations

= Representation-based explanations
= Model distillation



Counterfactual explanations

What features need to be changed and by how much to
flip a model’s prediction?

c= Crestd Auklet o Red Faced Cormorant

[Goyal et. al,, 2019]



Counterfactual explanations

Predictive
Model

Applicant

Loan Application ' I
Deny Loan n

Counterfactual Generation
Algorithm

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

39



(Generating counterfactual
explanations: Intuition

Decision boundary

[Verma et. al., 2020]

Proposed solutions differ on:

1. How to choose among
candidate counterfactuals?

1. How much access is needed to
the underlying predictive model?



Quick Check

https://forms.gle/r7B2PKemuzpG1uSC/

AIM 2: Artificial Intelligence in Medicine

Harvard - BMIF 203 and BMI 702, Spring 2025

Lecture 7: Explainability and interpretability in medical Al, Feature importance and
Shapley values, Bias and fail in bi dical Al, Di: ion: Is bility critical or

overrated?

Course website and slides: https:/zitniklab.hms.harvard.edu/AIM2

marinka@hms.harvard.edu Switch account [

E@ Not shared

* Indicates required guestion

First and last name *

Your answer

Harvard email address *

Your answer

Describe a scenario in which a predictive model is created using a healthcare or  *
biomedical dataset and the LIME explainability method is used to analyze its
behavior. What can be expected from the LIME explanations?

Your answer

Describe a scenario in which a predictive model is created using a healthcareor  *
biomedical dataset and the Integrated Gradients explainability method is used to
analyze its behavior. What can be expected from the Integrated Gradients
explanations?

Your answer


https://forms.gle/r7B2PKemuzpG1uSC7

Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
= |Integrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations
= Representation-based explanations
= Model distillation




Global explanations from local
feature importances: SP-LIME

Single explanation

SP-LIME uses submodular optimization
and greedily picks k explanations

[Ribeiro et. al., 2016]



Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
= |Integrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations
= Representation-based explanations
= Model distillation




Representation-based explanations

(s
Y

How important is the notion of “stripes” for this prediction?

[Kim et. al., 2018]



Representation-based
explanations: TCAV approach

Examples of the concept “stripes”

BUMEE= [y ... . .. e
__,|
Yo dH0 v

Random examples

Train a linear classifier to separate - // (fE ) b ././ (@) ‘/.I (@) ./.l (@)
activations =) \ ) )
The vector orthogonal to the decision boundary ‘/l (E) /rvl / (é)
denotes the concept “stripes” /'[ (W) -C \ : / (@)
' fi( ) J1

Compute gradient w.r.t. this vector to determine
how important is the notion of stripes for a prediction

[Kim et. al,, 2018] TCAV = testing with concept activation vectors



Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
* |Integrated gradients
= Prototypes/Example-based explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations
= Representation-based explanations

= Model distillation




Black Box
Predictive
Model

d

N

Model distillation

vl, v2

vll, vl2

Data

Label 1
Label 1

Label 2

Model

Predictions J

Model distillation

A

4

- -

—>

\

Simpler, interpretable model
which is optimized to mimic
the model predictions

and \
M Pans-Depecaassn and [nsommia = No smd Mclaacholy = No, then
M Pass-Depeession and Invoamia = Yos and Melancholy = Yos and Tirednoss = Yos, then D
and Make =N
M Famly-Deprevson and and Mol od 1 then
B Fansly-Deprossion = No and 1 and Melancbol and then
M Past-Depoesson and Tirgdness = No amd Fxorcine «No and Insomaia « Yos, then 1
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Model distillat

0N

using decision

\

vl, v2

/ vi1, vi2

Data

Label 1
Label 1

Black Box
Model

Label 2

Model
Predictions _/

[Bastani et. al., 2019]
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d

Black Box
Model

[Lakkaraju et. al,, 2019]

Model distillatior
using decision sets

vl, v2

vll, v12

Data

Label 1
Label 1

Label 2

Model

Predictions J

\

N Agpe oo M0 il Ml =Y

1 Passl nd nacr el Mgl By ihe
1F Pass-Tps nd and Molasch s mnd Tireddag them
I Age o Male =
EXplalner —> IF Farsily-Dioprossion = %es and boarrnia = %0 sl Melanciedy and Tircdnouw then
IF Fasily-Dieprciaion =% i lnomsia =50 Gl Mdscholy =50 il Tiradasis =3o, hen H
Inglauit

IF Past-Dieprcision = Yo il Tirodssis = Mo gl Evcecing =50 il lisomaia = Yo, thon

X Prast Dhegression = m Rapsd- Werght-Giain = Ve aml Tirednes, = Ve amd Melascholy =es ihem [k
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Model distillation
using generalized additive models

\

vl, v2
/ vi1, vi2

Label 1
Black Box Label 1

Model

[Tanet. al., 2019]



Overview of explanation methods

= | ocal explanation methods:
= Feature importance scoring
= |Integrated gradients
= Prototype explanations
= Counterfactuals

= Global explanation methods:
= Collection of local explanations

= Representation-based explanations
= Model distillation
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Adopting Al In high-stakes areas

055 T
Original Defaulted into program +
. 0501 = —x= = Simulated H
I
e a C a re °l L/
045 4
o i
s %
5 0.0 AL
[ [ [] § 4 H
8 ’ '
| : ] o
g4 S0 =5 }
S c '
2 S ’ |
2 5 '
g E 030 ’
s H
[} [] 3 '
P H ozs :
S 24 |
v
0154 '
" 1
u ( : | I I | d We | fa re R R S T TR T S
Percentile of Algorithm Risk Score Percentile of Algorithm Risk Score
Fig. 1. Number of chronic illnesses versus algorithm-predicted risk, replaced with less healthy Blacks below the threshold, until the marginal patient
by race. (A) Mean number of chronic conditions by race, plotted against is equally healthy). The x symbols show risk percentiles by race: circles
algorithm risk score. (B) Fraction of Black patients at or above a given risk show risk deciles with 95% confidence intervals clustered by patient. The
score for the original algorithm (“original”) and for a simulated scenario dashed vertical lines show the auto-identification threshold (the black
that removes algorithmic bias (“simulated”: at each threshold of risk, defined line, which denotes the 97th percentile) and the screening threshold (the gray
at a given percentile on the x axis, healthier Whites above the threshold are line, which denotes the 55th percentile).

= Criminal risk assessment Obermeyer etal. Saience 2012
= Surveillance

= Financial lending
= Hiring

54



Three problematic examples

1. High-risk Healthcare Management

= Commercial prediction models are used by large health systems to
identify and help patients with complex health needs.

= These models can exhibit significant bias: At a given risk score,
black patients are considerably sicker than white patients

= The bias arises because the algorithm predicts health care costs
rather than iliness
2. Criminal Risk Assessment Tools

= Defendants are assigned scores that predict the risk of re-
committing crimes

= These scores inform decisions about bail, sentencing, and parole.
= Some tools have been biased against black defendants

3. Face Recognition Systems
= Surveillance and self-driving cars

= Systems can perform poorly for populations that are not well
represented in training dataset



The COMPAS debate

https://www.propublica.org/article/machine-bias-risk-
assessments-in-criminal-sentencing

Bernard Parker, left, was rated high risk; Dylan Fugett was rated low risk. (Josh Ritchie for ProPu

Machine Bias

There's software used across the country to predict future criminals. And it's
biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica .



COMPAS

Correctional Offender Management Profiling for
Alternative Sanctions

Used in prisons across country: AZ, CO, DL, KY,
LA, OK, VA, WA, WI

“Evaluation of a defendant’s rehabilitation needs”
Recidivism = likelihood of criminal to reoffend



COMPAS (continued)

“Our analysis of Northpointe’s tool, called COMPAS,
found that black defendants were far more likely than
white defendants to be incorrectly judged to be at a
higher risk of recidivism, while white defendants were
more likely than black defendants to be incorrectly
flagged as low risk.”




What are protected classes?

= Protected classes in the US:
= Race
= Sex
= Religion
= National origin
= Citizenship
= Pregnancy
= Disabillity status
= (Genetic information

= Regulated domains in the US:
= Credit (Equal Credit Opportunity Act)
= Education (Civil Rights Act of 1964; Education Amend. of 1972)
= Employment (Civil Rights Act of 1964)
= Housing (Fair Housing Act)



Fairness in ML

It does not necessarily mean being malicious: Bias can occur
even when everyone, from data generators to engineers to
clinical staft, has the best intentions

It is not one and done: Just because an algorithm has no bias
now does not mean it has no potential bias later

It is not new: Researchers have raised concerns about it over
the last 50 years

It is defined in many ways, for example, disparate treatment or
impact of algorithm

It can be a culmination of a flawed system
= Biases in data collection processes
= Biases in algorithmic design
= Bias in model implementation/deployment

It is the vigilance of how technology can amplify/create bias

60



How to define fairness in ML7

= Fairness through unawareness
= Group fairness

= Calibration

= Error rate balance

= Representational fairness

= Counterfactual fairness

= |ndividual fairness

Irene Chen



Fairness through unawareness

= |dea: Don't record protected
attributes, and don’t use them in
your algorithm

= Predict risk Y from features X and
group S using P(Y = Y|X) instead of
P(Y =Y|X,S)
= Pros: Guaranteed to not be making
a judgement on protected attribute

= Cons: Other proxies may still be
included in a “race-blind” setting,
e.g. zip code or conditions

Irene Chen



Irene Chen

Group fairness

ldea: Require prediction rate be the same across
protected groups
= E.g. "20% of the resources should go to the group that has
20% of population”

Predict risk Y from features X and group $ such that
P(Y=1S=1)=P(Y =1|S=0)
Pros: Literally treats each race equally

Cons:

= Too strong: Groups might have different base rates. Then,
even a perfect classifier wouldn’t qualify as “fair”

= TJoo weak: Doesn’t control error rate. Could be perfectly
biased (correct for S = 0 and wrong for § = 1) and still
satisfy




Irene Chen

Calibration

Calibration assessment

|dea: Same positive
predictive value across
groups

Predict Y from features X and
group S with score R:

P(Y:1|R=T,A:1) —  0.00-

o e
o ~
o o

Observed probability of recidivism
o
o
[4,]

P(Y=1|R =r,4 = 0)
Pros: “Equally right across
groups”

Cons: Not compatible with
error rate balance (next slide)

COMPAS decnle soore




Error rate balance

= |dea: Equal false positive

Error balance assessment: FPR

rates (FPR) across groups
P(Y =1lY =0, =1)
=PY=1Y=0,S=0) &7

= Pros: “Equally wrong across 2° Ilii
iLLLLh

groups,’ 0.25 -
= Cons: Incompatible with |

1.00 -

False positive rate
g

calibration and false RRERERENE L AN
negative rates (FNR), could
dilute with easy cases

[rene Chen



Inherent Trade-Offs in the Fair Determination of Risk Scores

Jon Kleinberg * Sendhil Mullainathan Manish Raghavan *

Abstract

Recent discussion in the public sphere about algorithmic classification has involved tension between
competing notions of what it means for a probabilistic classification to be fair to different groups. We
formalize three fairness conditions that lie at the heart of these debates, and we prove that except in highly
constrained special cases, there is no method that can satisfy these three conditions simultancously.
Morcover, even satisfying all three conditions approximately requires that the data lie in an approximate
version of one of the constrained special cases identified by our theorem. These results suggest some
of the ways in which key notions of faimess are incompatible with each other, and hence provide a
framework for thinking about the trade-offs between them.

framework for thinking about the trade-offs between them.

66



Representational fairness

= |dea: Transform input feature vectors in “fair
representations Z to minimize group information

= Pros: Reduce information given to model while still
keeping important information

= Cons: Trade-off between accuracy and fairness

X,A v ’/\Cz c(Z)
max I(X; Z) k/

min I(A; Z)

Irene Chen



Counterfactual fairness

= |dea: Group A should not
cause prediction Y

= Pros: Can model explicit %D @P
dependencies between @
features

" Cons; P(Paca (U)=y| X =2,A=a)

= Dependency graphs may _ PVaca(U)=y|X =2,A=a)
not represent real world

= |nference assumes
observed confounders

Irene Chen



Individual fairness

» |dea: Similar individuals should be treated similarly
= Pros: Can model heterogeneity within each group

= Cons: Notion of “similar” is hard to define
mathematically, especially in high dimensions

M(x)



How to define “fairness” in ML?

= airness-throughunawareness Not useful

= Group fairness
= Calibration Established

strategies
= Error rate balance
» Representational fairness |
= Counterfactual fairness Ongoing ana

. _ cutting-edge research
= |ndividual fairness



One fairness definition or one
framework

21 Fairness Definitions and Their ‘Nobody has found o definition which is
Politics. Arvind Narayanan. widely agreed as a go0d definition of
ACM Conference on Fairness, Fairness in the came way we have for, say,
Accountability, and Transparency the security of a random nomber
Tutorial (2018) ”
generator.

S. Mitchell, E. Potash, and S. Barocas (2018) “There are a number of definitions and
P. Gajane and M. Pechenizkiy (2018) research groups are not on the came

S. Verma and J. Rubin (2018) page when it comes to the definition of

Differences/connections between fairnecs.”
fairness definitions are difficult to The search for one frue definition
grasp. i¢ not a fruitful divection, agc

technical considerations cannot
We lack common language/framework.

adfudicate moral debates.”
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What Is trustworthy Al?
Explaining Al predictions
Definitions of fairness in Al
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Algorithmic fairness criteria
= |ndividual fairness

= Group fairness



Data User

Computes ML model
given sanitized data

A X
X
% AN xx X
D%D
X

Data Producer

Data Regulator

Determines fairness
criteria, determines data
source(s), audits results

1 Computes the fair
— representation given
data regulator criteria
AUTHORITY
EJU [i> D
" > o

McNamara, Ong and Williamson, AIES “19
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Framework for fair Al/ML

= Data regulator: determines fairness measures, audits results

= Data producer: creates “fair” feature vectors (i.e., “fair” representations)
= Data user: agnostically trains an ML model using “fair” feature vectors

Data Regulator

c .
Sensitive Group
attribute S | | stat. v(f,Y|S)
p vy
4 ™
Distance
p(Xi, X;) Fairness
- g Criteria_/
S~

[Input X ] [Output Y J

Data Producer

-
[ g: X, Y — ZJ
Representation
Learning )/

Data Y,

Data User
-
[ f:Z—Y J
ML Model
/
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Roles of different parties

= Data regulator determines which fairness criteria to

use, and (optionally) audits the results
= When training:

= |nput: interaction with users/experts/judges/policy to

determine fairness criteria
= Qutput: fairness criteria

= \When auditing the ML model:

= |nput (for auditing the data producer):
= “Fair” representations

= |nput (for auditing the data user):
= Data and model predictions

= Qutput:
= Are fairness criteria satisfied?

Data
Regulator

Determines fairness criteria,
determines data source(s),
audits results

. INPUT: Data

e  OUTPUT: Fairness criteria
AUDITING

¢ INPUT: Models

e OUTPUT: Satisfactory?



How to achieve fairness?

= Post-processing: Post-process the model outputs
Doherty et al. (2012), Feldman (2015), Hardt et al. (2016), Kusner et
al. (2018), Jiang et al. (2019)

* Pre-processing: Pre-process the data to remove bias, or
extract representations that do not contain sensitive
information during training

Kamiran and Calder (2012), Zemel et al. (2013), Feldman et al.
(2015), Fish et al. (2015), Louizos et al. (2016), Lum and Johndrow
(2016), Adler et al. (2016), Edwards and Storkey (2016)

* |n-processing: Enforce fairness notions by imposing
constraints into the optimization, or by using an adversary
Goh et al. (2016), Corbett-Davies et al. (2017), Agarwal et al. (2018),

Cotter et al. (2018), Komiyama et al. (2018), Narasimhan (2018), Wu
et al. (2018), Zhang et al. (2018), Jiang et al. (2019)



Outline of today’s class

What Is trustworthy Al?
Explaining Al predictions
Definitions of fairness in Al
Framework for fair Al

Algorithmic fairness criteria
= |ndividual fairness

= Group fairness



Algorithmic fairness criteria

1) Individual Fairness

&

2) Group Fairness



Individual fairness: Similar individuals
should be treated similarly

Baskethall (23%) Basketball (50%) Basketball (28%) Basketball (73%) Basketball (15%)

S A

Basketball (215%)

Volleyball (25%) Ping-pong ball (92%)

Ping-pong ball (73%) Rugby Ball (18%}) Baseball player (69%) Ping-pong ball (32%)

Problem: Pairs of similar individuals playing the same sport classified

differently. The model is biased against individuals with certain characteristics

Shown are pairs of pictures Explore biases of a neural net by analyzing the distance of a sample to the
(columns) sampled over the decision boundary using adversarial samples.

Internet along with their The distance to the decision boundary is closely related to the magnitude of the
prediction by a ResNet-10. perturbation necessary to make a sample cross it.

Stock and Cisse, ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases, ‘18
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Individual fairness: Similar individuals
should be treated similarly

= Data Regulator: Which individuals are similar?
equiv., which individuals should be treated
similarly?

= One approach:

= Define a partition of the space
into disjoint cells such that similar
iIndividuals are in the same cell

= |ndividuals in the same cell should
be treated similarly even if they
are apparently different (e.g., dots
with different colored attributes)




Individua
sho

U

fairness: Similar individuals

d be treated similarly

Data Regulator: Which individuals are similar?
quiv., which individuals should be treated similarly?

An algorithm Ayp is (B, €(D))-individually fair if X' can be
partitioned into B disjoint subsets denoted {C;};>; such that Vz; € X

@ € C; = [I(Ap, z1) — l(Ap, z2)| < (D)

Remark: Individual fairness implies algorithmic robustness (c.f. Xu & Mannor “11)

Dwork et al., “12; Cisse and Koyejo, ‘20
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Individual fairness: Pros and Cons

= Advantages:
= |ntuitive and easy to explain to data producers (and non-experts)
= |ndividual fairness implies generalization (c.f. Xu & Mannor, “12)

= |ndividual fairness implies statistical parity given regularity
conditions (Dwork et al., “12)

= Challenges:

= Regulator must provide a metric or a set of examples to be treated
similarly

= Constructing a metric requires significant domain expertise and
human insight

= Fairness of the representation heavily depends on the quality of the
metric chosen by the regulator

= Optimizing and measuring individual fairness is generally more
computationally expensive than other measures
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Algorithmic fairness criteria

J)ffndividual Fairness
ZEGroup Fairness




Group fairness: Similar classifier

statistics across groups

= Regulator: Which statistic v(f,Y|S) should be
equalized across groups S7

relevant elements

= Typical fairness measure is a
of the ML model performance:

= Eq. of opportunity (Hardt et al., “16)
TPg=P(Y =1,f = 1|5)
= Equalized odds (Hardt et al., “16)
{TPs; FPs}

= Statistical parity (Dwork et al., “12)
TPs + FPs = P(f(Z) = 1|5)

selected elements



Details #1: Statistical Parity

= Statistical parity is a popular measure of group fairness
= Setup:

= Populationis a set X

= Subset § c X that is a “protected” subset of the population

= Example:
= X Is people
= S is people who dye their hair blue

= \We are afraid that banks give fewer loans to the blues because
of hair-colorism, despite blue-haired people being just as
creditworthy as the general population on average



Details #2: Statistical parity

= Assumption: There is some distribution D over X
which represents the probability that any individual
will be drawn for evaluation

= Example:

= Some people will have no reason to apply for a loan
(maybe they’re filthy rich, or don't like homes, cars, or
expensive colleges)

= D takes that into account

= (Generally, we impose no restrictions on D, and the
definition of fairness will work no matter what D is



Detalls #3: Statistical parity

= Classifier f: X — {0,1} gives labels to X

= When given a person x as input f(x) = 1if x gets a
loan and 0 otherwise

= Statistical imparity of f on S with respect to X, D:

imparity (X, S,D) = P(f(x) = 1|x € S¢), = P(f(x) = 1|x € §)
L'_’ \_'_’

Probability that a random Probability that a random
individual from the complement individual drawn from §
SC¢islabeled 1 is labeled 1

= This is the statistical equivalent of adverse impact

= |t measures the difference that the majority and
protected classes get a particular outcome



Details #4: Statistical parity

Statistical imparity measures the difference that the
majority and protected classes get a certain outcome

When the difference is small, the classifier has
statistical parity, it conforms to this notion of fairness

Definition: ML model f: X — {0,1} achieves statistical
parity on D with respect to S up to bias € if

imparity (X, S,D)| <€

f f achieves statistical parity, it treats the general

population statistically similarly as the protected class

= |f 30% of normal-hair-colored people get loans, statistical
parity requires roughly 30% of blue also get loans




Group fairness: Pros and Cons

= Advantages:
= Efficient to compute, measure and enforce for data producer
and regulator

= Often easier to explain to policy-makers (as in terms of
population behavior)

= Challenges:
= Data regulator must determine which classifier statistic(s) to
equalize
= Fairness of the representation depends on the quality of the
fairness metric chosen by the regulator
= (Group fairness can lead to (more) violated individual
fairness, e.qg., intersectionality

= |t can lead to fairness gerrymandering (Kearns et. al., ‘18),
and other issues (McNamara et. al., “19)



Algorithmic fairness criteria

J)ffndividual Fairness
jﬁzroup Fairness



Data regulator: Measures (un-)fairness

= Regulator must choose how to measure (un-)fairness:

= For individual fairness: must choose the distance metric
= For group fairness: must choose the classifier statistic to
equalize
= However, remember that there are no magic metrics:
= Measurement 101: all measures have blind spots
= “When a measure becomes a target, it ceases to be a good
measure”
= For ML, we generally specify all measures apriori and
optimize them
= However, all metrics will have failure cases, i.e., unusual
situations with non-ideal behavior

= One productive approach is to select measures that
best capture tradeoffs relevant to the context



Quick Check

https://forms.gle/PwhV3CEN/74aywbEGS

AIM 2: Artificial Intelligence in Medicine

Harvard - BMIF 203 and BMI 702, Spring 2025

Lecture 7: Explainability and interpretability in medical Al, Feature importance and
Shapley values, Bias and fairness in bi dical Al, Di ion: Is lainability critical or
overrated?

Course website and slides: https://zitniklab.hms.harvard.edu/AIM2
Sign in to Google to save your progress. Learn more

* Indicates required guestion

First and last name *

Your answer

Harvard email address *

Your answer

Using the framework for fair Al, describe a biomedical Al application and explain  *
the roles of data regulators, data users, and data producers. Which individuals in

a clinic, research lab, biomedical institution or health system would take on these
roles?

Your answer

Give a biomedical example where you think that ensuring individual faimessis  *
necessary.

Your answer

Give a biomedical example where you think that ensuring group fairness is *
necessary.

Your answer


https://forms.gle/PwhV3CEN74aywbE68
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