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Lecture 7: Explainability and interpretability in medical AI, Feature importance 

and Shapley values, Bias and fairness in biomedical AI, Discussion: Is 

explainability critical or overrated?



▪ What is trustworthy AI?

▪ Explaining AI predictions

▪ Definitions of fairness in AI

▪ Framework for fair AI

▪ Algorithmic fairness criteria

▪ Individual fairness

▪ Group fairness

Outline of today’s class
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Trustworthy ML

▪ ML models are increasingly being deployed in real-

world applications

▪ It is critical to ensure that these models are behaving 

responsibly and are trustworthy 

▪ There has been growing interest to develop and 

deploy ML models and algorithms that are:

▪ Not only accurate

▪ But also explainable, fair, privacy-preserving, causal, 

and robust 

▪ This broad area of research is commonly referred 

to as trustworthy ML
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Motivation

Model understanding is absolutely critical in several 

domains - particularly those involving high stakes 

decisions 
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Why model understaning?
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Predictive
Model

Input

Prediction = Siberian Husky

Model Understanding

This model is 
relying on incorrect 

features to make 
this prediction!! Let 

me fix the model

Model understanding facilitates 
debugging

Hima Lakkaraju



Why model understanding?
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Predictive 
Model

Defendant Details

Model Understanding

Race

Crimes

Gender

This prediction is 
biased. Race and 
gender are being 
used to make the 

prediction!!Model understanding facilitates 
bias detection

Prediction = Do not release on bail

Hima Lakkaraju



Why model understanding?
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Predictive 
Model

Loan Applicant Details

Prediction = Denied Loan

Model Understanding

Increase salary by 
50K + pay credit 
card bills on time 
for next 3 months 
to get a loan

I have some means 
for recourse. Let me 
go and work on my 
promotion and pay 

my bills on time.Model understanding helps 
provide recourse to individuals 
who are adversely affected by 

model predictions 

Hima Lakkaraju



Motivation: Why model 

understanding?
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Predictive 
Model

Patient Data 

Model Understanding
This model is using 

irrelevant features when 
predicting on female 

subpopulation. I should 
not trust its predictions 

for that group.

Predictions

25, Female, Cold

32, Male, No

31, Male, Cough

.

.

.

.

Healthy

Sick

Sick

.

.
Healthy

Healthy

Sick 

If gender = female, 
   if ID_num > 200, then sick

If gender = male,

   if cold = true and cough = true, then sick Model understanding helps assess if 
and when to trust model predictions 

when making decisions 

Hima Lakkaraju



Motivation: Why model 

understanding?
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Predictive 
Model

Patient Data 

Predictions

25, Female, Cold

32, Male, No

31, Male, Cough

.

.

.

.

Healthy

Sick

Sick

.

.
Healthy

Healthy

Sick 

This model is using 
irrelevant features when 

predicting on female 
subpopulation. This 
cannot be approved!

Model Understanding

If gender = female, 
   if ID_num > 200, then sick

If gender = male,

   if cold = true and cough = true, then sick Model understanding allows us to vet 
models to determine if they are 

suitable for deployment in real world 

Hima Lakkaraju
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Debugging

Bias Detection

Recourse

If and when to trust model predictions

Vet models to assess suitability for 
deployment

Utility

End users (e.g., loan applicants)

Decision makers (e.g., doctors, 
judges)

Regulatory agencies (e.g., FDA, 
European commission)

Researchers and engineers

Stakeholders

Why should I care about 

understanding ML models?



Achieving model understanding
Goal: Build inherently interpretable predictive models
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Stop explaining black box machine learning models for high stakes decisions and use

interpretable models instead, Nature Machine Intelligence 2019

Linear regression Decision trees

Decision rules

Saliency map of a black box (deep learning) model does not explain anything except where the model is 

looking: We have no idea why this image is labeled as either a dog or a musical instrument when considering 
only saliency. The explanations look essentially the same for both classes 



Complex models might                                
achieve higher accuracy

Build interpretable and
accurate models  

Inherently interpretable models vs. 

explaining complex models
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Explain pre-built models in a post-hoc manner

Explainer

[Ribeiro et. al. 2016, 2018; Lakkaraju et. al. 2019]

Interpretability/accuracy tradeoffs 
and proliferation of black box models 

force us to rely on post hoc 
“explanations” of ML models

Achieving model understanding
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▪ What is trustworthy AI?

▪ Explaining AI predictions

▪ Definitions of fairness in AI

▪ Framework for fair AI

▪ Algorithmic fairness criteria

▪ Individual fairness

▪ Group fairness

Outline of today’s class
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Explainable AI
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“Explainable AI refers to the set of approaches that provide an interpretable description of 
the behavior of a given (complex) model to end users.”

husky 0.98

husky 0.98

Explanation 
Algorithm



What is an explanation?

▪ Definition: Interpretable description of the model 

behavior

16

Classifier User

ExplanationFaithful Understandable



Overview of explanation methods
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Explain complete behavior of the model

Help unearth biases in the local 
neighborhood of a given instance

Sheds light on big picture biases affecting 
larger subgroups 

Help vet if individual predictions are 
being made for the right reasons 

Help vet if the model, at a high level, is 
suitable for deployment

Explain individual predictions

Local explanations Global explanations

Hima Lakkaraju



Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation
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LIME: Local interpretable 

model-agnostic explanations
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1. Sample points around xi

[Ribeiro et al. 2016 ]

https://arxiv.org/abs/1602.04938


LIME: Local interpretable 

model-agnostic explanations

20
[Ribeiro et al. 2016 ]

1. Sample points around xi

2. Use model to predict labels for each sample

https://arxiv.org/abs/1602.04938


LIME: Local interpretable 

model-agnostic explanations
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[Ribeiro et al. 2016 ]

1. Sample points around xi

2. Use model to predict labels for each sample

3. Weigh samples according to distance to xi

https://arxiv.org/abs/1602.04938


LIME: Local interpretable 

model-agnostic explanations

22
[Ribeiro et al. 2016 ]

1. Sample points around xi

2. Use model to predict labels for each sample

3. Weigh samples according to distance to xi

4. Learn simple linear model on weighted 
samples

https://arxiv.org/abs/1602.04938


LIME: Local interpretable 

model-agnostic explanations

23
[Ribeiro et al. 2016; Lundberg & Su-In Lee 2017 ]

1. Sample points around xi

2. Use model to predict labels for each sample

3. Weigh samples according to distance to xi

4. Learn simple linear model on weighted 
samples

5. Use simple linear model to explain xi

Another popular method which outputs 
feature importance scores: SHAP

SHAP values are based on game theory and 
assign an importance value to each feature in 
a model. Features with positive SHAP values 
positively impact the prediction, while those 
with negative values have a negative impact. 
The magnitude is a measure of how strong 
the effect is

 

https://arxiv.org/abs/1602.04938


Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation
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Integrated Gradients (IG)

▪ Integrated Gradients (IG) is an explanation method 
for deep neural networks

▪ It identifies important features that contribute most 
to the model's prediction

▪ Appealing properties of integrated gradients:
▪ It can be applied to any differentiable model like models 

for images, text, or structured data

▪ It requires no modification to the original ML model

25

Axiomatic Attribution for Deep Networks, ICML 2017

Black Box Predictive 
Model

F1  F2.         Label

25, Female, Cold

32, Male,     No

31, Male,     Cough

.

.

.

.

IG Explainer
Feature F1 is 

irrelevant, but
F2 is important



How does IG work?

▪ IG computes gradients of the model’s prediction w.r.t. input 
features

▪ IG is built on two axioms which need to be satisfied:
▪ Sensitivity and

▪ Implementation invariance

▪ Sensitivity:
▪ We establish a baseline instance as a starting point 

▪ We then build a sequence of instances which we interpolate from a 
baseline instance to the actual instance to calculate

▪ Implementation invariance:
▪ Implementation invariance is satisfied when two functionally 

equivalent models have identical attributions for the same input 
image and the baseline image.

▪ Two models are functionally equivalent when their outputs are equal 
for all inputs despite having very different implementations
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https://distill.pub/2020/attribution-baselines

Axiomatic Attribution for Deep Networks, ICML 2017



Calculating and visualizing IG

▪ Setup:
▪ Let’s consider an ML model for image classification

▪ We aim to use IG to explain the predicted image label

▪ Step 1:
▪ Start from a baseline where the baseline can be a black 

image whose pixel values are all zero or an all-white 
image, or a random image

▪ Baseline input is one where the prediction is neutral 
and is central to any explanation method and visualizing 
pixel feature importance scores

27

This is a cat!

Axiomatic Attribution for Deep Networks, ICML 2017



Calculating and visualizing IG

▪ Step 2:

▪ Generate a linear interpolation between the baseline 

and the original image

▪ Interpolated images are small steps(α) in the feature 

space between your baseline and input image and 

consistently increase with each interpolated image’s 

intensity

28

Axiomatic Attribution for Deep Networks, ICML 2017



Calculating and visualizing IG

▪ Step 3: Calculate gradients to measure the 
relationship between changes to a feature and 

changes in the model’s predictions

▪ The gradient informs which pixel has the strongest 
effect on the models predicted class probabilities

▪ Varying variable changes the output, and the variable will 

receive some attribution to help calculate the feature 

importances for the input image 

▪ Variable that does not affect the output gets no attribution

▪ Step 4: Compute the numerical approximation 

through averaging gradients (that’s why the method’s 
name is integrated gradients)

29

Axiomatic Attribution for Deep Networks, ICML 2017



Calculating and visualizing IG

▪ Step 5: 

▪ Scale IG to the input image to ensure that the 

attribution values are accumulated across multiple 

interpolated images are all in the same units

▪ Represent the IG on the input image with the pixel 

importances

30

IG helps us explain what an ML model 

looks at to make a prediction by 

highlighting the feature importances. 

It does this by computing the gradient of 

the model’s prediction output to its input 
features.

Axiomatic Attribution for Deep Networks, ICML 2017



Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation

31



Prototype-based explanations

▪ Use examples (synthetic or natural) to explain 

individual predictions

▪ Influence Functions (Koh & Liang 2017)

▪ Identify instances in the training set that are responsible 

for the prediction of a given test instance

▪ Activation Maximization (Erhan et al. 2009)

▪ Identify examples (synthetic or natural) that strongly 

activate a function (neuron) of interest

32



Prototypes for explaining time 

series models
▪ Time series are not easily 

visually interpretable
▪ Noisy samples

▪ Dense informative features, unlike 
imaging and text modalities

▪ Temporal patterns
▪ Only show up when looking at 

time segments and long-term 
behaviors

▪ Perturbations matter
▪ Setting a value to zero does not 

ignore that time point

▪ Temporal dependencies cannot 
be ignored

Omranian et al., 2015

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023 33



Existing time series explainers are 

inadequate

▪ Perturbations are continuous
▪ Can deform shape of samples

▪ Give only instance-based 
explanations
▪ Cannot relate patterns across 

samples

▪ Fail to match performance of 
generic explainers
▪ Post-hoc methods suffer from a 

lack of faithfulness and stability

Dynamask, ICML 2021

Desiderata for time series explanations

• Temporally connected and visually 
digestible

• Identify the location of predictive time series 

signals and underlying interpretable 

patterns

• Connect explanations across samples

1

2

3

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023 34



TimeX is a time-series consistency 

explainer

▪ Surrogate model to mimic 
the behavior of a pretrained 
time series model

▪ TimeX makes inferences on 
masked samples

▪ Model behavior 
consistency
▪ Enforces faithfulness at the 

level of the latent space

▪ Learns a flexible latent space 
of explanations

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023 35



Learned landmarks represent important 

patterns in physiological time series 

Latent Space of Explanations

6

5

4
1

32

Landmarks partition the latent space of explanations 
into interpretable temporal patterns

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023 36



Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation
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Counterfactual explanations

38

What features need to be changed and by how much to 

flip a model’s prediction?

[Goyal et. al., 2019]



Counterfactual explanations

39

Predictive 
   Model

Deny Loan 

Loan Application

Recourse: Increase your salary by 50K & pay your credit card bills on time for next 3 months

f(x)

Applicant

Counterfactual Generation 
Algorithm



Generating counterfactual 

explanations: Intuition

40

[Verma et. al., 2020]

Proposed solutions differ on:

1. How to choose among 
candidate counterfactuals?

1. How much access is needed to 
the underlying predictive model?



Quick Check
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https://forms.gle/r7B2PKemuzpG1uSC7 

https://forms.gle/r7B2PKemuzpG1uSC7


Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation

42



Global explanations from local 

feature importances: SP-LIME

43

LIME explains a single prediction
local behavior for a single instance

Can’t examine all explanations
Instead pick k explanations to show to the user

Diverse
Should not be redundant 

in their descriptions

Representative
Should summarize the 

model’s global behavior

SP-LIME uses submodular optimization 
and greedily picks k explanations

[Ribeiro et. al., 2016]

Single explanation



Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation

44



Representation-based explanations

45

[Kim et. al., 2018]

Zebra
(0.97)

How important is the notion of “stripes” for this prediction?



Representation-based 

explanations: TCAV approach

46

Examples of the concept “stripes”

Random examples

Train a linear classifier to separate 
activations

The vector orthogonal to the decision boundary
denotes the concept “stripes”

Compute gradient w.r.t. this vector to determine
how important is the notion of stripes for a prediction

TCAV = testing with concept activation vectors[Kim et. al., 2018]



Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototypes/Example-based explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation

47



Model distillation
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Model 
Predictions

Black Box 
Predictive 

Model

Label 1

Label 1

.

.

.
Label 2

.
v1, v2

.

.

v11, v12

.

Data 

Explainer
Simpler, interpretable model 
which is optimized to mimic 

the model predictions

Model distillation



Model distillation 

using decision trees
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Model 
Predictions

Black Box 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer

[Bastani et. al., 2019]



Model distillation 

using decision sets
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Model 
Predictions

Black Box 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer

[Lakkaraju et. al., 2019]



Model distillation 

using generalized additive models
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Model 
Predictions

Black Box 
Model

Label 1
Label 1
.
.
.
Label 2

.
v1, v2
.
.
v11, v12
.

Data 

Explainer

[Tan et. al., 2019]



Overview of explanation methods

▪ Local explanation methods:

▪ Feature importance scoring

▪ Integrated gradients

▪ Prototype explanations

▪ Counterfactuals

▪ Global explanation methods:

▪ Collection of local explanations

▪ Representation-based explanations

▪ Model distillation
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▪ What is trustworthy AI?

▪ Explaining AI predictions

▪ Definitions of fairness in AI

▪ Framework for fair AI

▪ Algorithmic fairness criteria

▪ Individual fairness

▪ Group fairness

Outline of today’s class
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Adopting AI in high-stakes areas

▪ Healthcare

▪ Genomic medicine

▪ Public health policy

▪ Child welfare

▪ Criminal risk assessment

▪ Surveillance

▪ Financial lending

▪ Hiring

54

Obermeyer et al. Science 2019



Three problematic examples

1. High-risk Healthcare Management
▪ Commercial prediction models are used by large health systems to 

identify and help patients with complex health needs.

▪ These models can exhibit significant bias: At a given risk score, 
black patients are considerably sicker than white patients

▪ The bias arises because the algorithm predicts health care costs 
rather than illness

2. Criminal Risk Assessment Tools
▪ Defendants are assigned scores that predict the risk of re-

committing crimes

▪ These scores inform decisions about bail, sentencing, and parole. 

▪ Some tools have been biased against black defendants

3. Face Recognition Systems
▪ Surveillance and self-driving cars

▪ Systems can perform poorly for populations that are not well 
represented in training dataset

55



The COMPAS debate

https://www.propublica.org/article/machine-bias-risk-

assessments-in-criminal-sentencing

56



COMPAS

▪ Correctional Offender Management Profiling for 

Alternative Sanctions

▪ Used in prisons across country: AZ, CO, DL, KY, 

LA, OK, VA, WA, WI

▪ “Evaluation of a defendant’s rehabilitation needs”

▪ Recidivism = likelihood of criminal to reoffend

57



COMPAS (continued)

“Our analysis of Northpointe’s tool, called COMPAS, 

found that black defendants were far more likely than 

white defendants to be incorrectly judged to be at a 

higher risk of recidivism, while white defendants were 

more likely than black defendants to be incorrectly 

flagged as low risk.”
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What are protected classes? 

▪ Protected classes in the US: 
▪ Race 

▪ Sex 

▪ Religion 

▪ National origin 

▪ Citizenship 

▪ Pregnancy 

▪ Disability status 

▪ Genetic information

▪ Regulated domains in the US:
▪ Credit (Equal Credit Opportunity Act)

▪ Education (Civil Rights Act of 1964; Education Amend. of 1972)

▪ Employment (Civil Rights Act of 1964)

▪ Housing (Fair Housing Act) 

59



Fairness in ML

▪ It does not necessarily mean being malicious: Bias can occur 
even when everyone, from data generators to engineers to 
clinical staff, has the best intentions

▪ It is not one and done: Just because an algorithm has no bias 
now does not mean it has no potential bias later

▪ It is not new: Researchers have raised concerns about it over 
the last 50 years

▪ It is defined in many ways, for example, disparate treatment or 
impact of algorithm 

▪ It can be a culmination of a flawed system
▪ Biases in data collection processes

▪ Biases in algorithmic design

▪ Bias in model implementation/deployment

▪ It is the vigilance of how technology can amplify/create bias

60



How to define fairness in ML?

▪ Fairness through unawareness 

▪ Group fairness

▪ Calibration

▪ Error rate balance 

▪ Representational fairness 

▪ Counterfactual fairness

▪ Individual fairness 

61Irene Chen



Fairness through unawareness 

▪ Idea: Don’t record protected 

attributes, and don’t use them in 

your algorithm

▪ Predict risk Y from features X and 

group 𝑆 using 𝑃( ෠𝑌 = 𝑌|𝑋) instead of 

𝑃( ෠𝑌 = 𝑌|𝑋, 𝑆) 

▪ Pros: Guaranteed to not be making 

a judgement on protected attribute

▪ Cons: Other proxies may still be 

included in a “race-blind” setting, 

e.g. zip code or conditions

62Irene Chen



Group fairness

▪ Idea: Require prediction rate be the same across 
protected groups
▪ E.g. “20% of the resources should go to the group that has 

20% of population”

▪ Predict risk 𝑌 from features 𝑋 and group 𝑆 such that 
𝑃 ෠𝑌 = 1|𝑆 = 1 = 𝑃 ෠𝑌 = 1|𝑆 = 0

▪ Pros: Literally treats each race equally 

▪ Cons:
▪ Too strong: Groups might have different base rates. Then, 

even a perfect classifier wouldn’t qualify as “fair”

▪ Too weak: Doesn’t control error rate. Could be perfectly 
biased (correct for S = 0 and wrong for 𝑆 = 1) and still 
satisfy

63Irene Chen



Calibration

▪ Idea: Same positive 
predictive value across 
groups 

▪ Predict 𝑌 from features 𝑋 and 
group 𝑆 with score 𝑅: 

 𝑃(𝑌 = 1|𝑅 = 𝑟, 𝐴 = 1)  =
𝑃(𝑌 = 1 |𝑅 = 𝑟, 𝐴 =  0) 

▪ Pros: “Equally right across 
groups” 

▪ Cons: Not compatible with 
error rate balance (next slide)

64Irene Chen



Error rate balance

▪ Idea: Equal false positive 

rates (FPR) across groups 

𝑃( ෠𝑌  =  1| 𝑌 =  0 , 𝑆 =  1)
=  𝑃( ෠𝑌 =  1 𝑌 =  0 , 𝑆 =  0 ) 

▪ Pros: “Equally wrong across 

groups” 

▪ Cons: Incompatible with 

calibration and false 

negative rates (FNR), could 

dilute with easy cases 

65Irene Chen
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“We prove that except in highly constrained 
special cases, there is no method that satisfies 

these three [fairness] conditions 
simultaneously.”



Representational fairness

▪ Idea: Transform input feature vectors in “fair

representations 𝑍 to minimize group information 

▪ Pros: Reduce information given to model while still 

keeping important information 

▪ Cons: Trade-off between accuracy and fairness 

67Irene Chen



Counterfactual fairness

▪ Idea: Group 𝐴 should not 

cause prediction ෠𝑌 

▪ Pros: Can model explicit 

dependencies between 

features 

▪ Cons: 

▪ Dependency graphs may 

not represent real world 

▪ Inference assumes 

observed confounders 

68Irene Chen



Individual fairness

▪ Idea: Similar individuals should be treated similarly 

▪ Pros: Can model heterogeneity within each group 

▪ Cons: Notion of “similar” is hard to define 

mathematically, especially in high dimensions 

69



How to define “fairness” in ML?

▪ Fairness through unawareness

▪ Group fairness

▪ Calibration

▪ Error rate balance 

▪ Representational fairness 

▪ Counterfactual fairness

▪ Individual fairness 

70

Not useful

Established

strategies

Ongoing and 

cutting-edge research



One fairness definition or one 

framework

71



▪ What is trustworthy AI?

▪ Explaining AI predictions

▪ Definitions of fairness in AI

▪ Framework for fair AI

▪ Algorithmic fairness criteria

▪ Individual fairness

▪ Group fairness

Outline of today’s class
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McNamara, Ong and Williamson, AIES ‘19
73



Framework for fair AI/ML

▪ Data regulator: determines fairness measures, audits results

▪ Data producer: creates “fair” feature vectors (i.e., “fair” representations)

▪ Data user: agnostically trains an ML model using “fair” feature vectors

74



Roles of different parties

▪ Data regulator determines which fairness criteria to 
use, and (optionally) audits the results

▪ When training:
▪ Input: interaction with users/experts/judges/policy to 

determine fairness criteria

▪ Output: fairness criteria

▪ When auditing the ML model:
▪ Input (for auditing the data producer):

▪ “Fair” representations

▪ Input (for auditing the data user):
▪ Data and model predictions 

▪ Output:
▪ Are fairness criteria satisfied?

75



How to achieve fairness?

▪ Post-processing: Post-process the model outputs
Doherty et al. (2012), Feldman (2015), Hardt et al. (2016), Kusner et 
al. (2018), Jiang et al. (2019)

▪ Pre-processing: Pre-process the data to remove bias, or 
extract representations that do not contain sensitive 
information during training
Kamiran and Calder (2012), Zemel et al. (2013), Feldman et al. 
(2015), Fish et al. (2015), Louizos et al. (2016), Lum and Johndrow 
(2016), Adler et al. (2016), Edwards and Storkey (2016)

▪ In-processing: Enforce fairness notions by imposing 
constraints into the optimization, or by using an adversary
Goh et al. (2016), Corbett-Davies et al. (2017), Agarwal et al. (2018), 
Cotter et al. (2018), Komiyama et al. (2018), Narasimhan (2018), Wu 
et al. (2018), Zhang et al. (2018), Jiang et al. (2019)
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▪ What is trustworthy AI?

▪ Explaining AI predictions

▪ Definitions of fairness in AI

▪ Framework for fair AI

▪ Algorithmic fairness criteria

▪ Individual fairness

▪ Group fairness

Outline of today’s class
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Algorithmic fairness criteria

1) Individual Fairness

2)Group Fairness

78



Individual fairness: Similar individuals 

should be treated similarly

Problem: Pairs of similar individuals playing the same sport classified 
differently. The model is biased against individuals with certain characteristics

Stock and Cisse, ConvNets and ImageNet Beyond Accuracy: Understanding Mistakes and Uncovering Biases, ‘18

Shown are pairs of pictures 

(columns) sampled over the 

Internet along with their 

prediction by a ResNet-10.

Explore biases of a neural net by analyzing the distance of a sample to the 

decision boundary using adversarial samples. 

The distance to the decision boundary is closely related to the magnitude of the 

perturbation necessary to make a sample cross it.

79



Individual fairness: Similar individuals 

should be treated similarly

▪ Data Regulator: Which individuals are similar? 

equiv., which individuals should be treated 

similarly? 

▪ One approach: 

▪ Define a partition of the space      

into disjoint cells such that similar     

individuals are in the same cell 

▪ Individuals in the same cell should        

be treated similarly even if they       

are apparently different (e.g., dots     

with different colored attributes)

80



Remark: Individual fairness implies algorithmic robustness (c.f. Xu & Mannor ‘11)

Individual fairness: Similar individuals 

should be treated similarly

Dwork et al., ‘12; Cisse and Koyejo, ‘20
81



Individual fairness: Pros and Cons

▪ Advantages:
▪ Intuitive and easy to explain to data producers (and non-experts)

▪ Individual fairness implies generalization (c.f. Xu & Mannor, ‘12)

▪ Individual fairness implies statistical parity given regularity 
conditions (Dwork et al., ‘12)

▪ Challenges:
▪ Regulator must provide a metric or a set of examples to be treated 

similarly

▪ Constructing a metric requires significant domain expertise and 
human insight

▪ Fairness of the representation heavily depends on the quality of the 
metric chosen by the regulator

▪ Optimizing and measuring individual fairness is generally more 
computationally expensive than other measures

82



Algorithmic fairness criteria

1) Individual Fairness

2)Group Fairness
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Group fairness: Similar classifier 

statistics across groups

▪ Regulator: Which statistic 𝜈(𝑓, 𝑌|𝑆) should be 

equalized across groups 𝑆?

▪ Typical fairness measure is a       function 

of the ML model performance:

▪ Eq. of opportunity (Hardt et al., ‘16)

▪ Equalized odds (Hardt et al., ‘16)

▪ Statistical parity (Dwork et al., ‘12)

𝑇𝑃𝑆 = 𝑃(𝑌 = 1, 𝑓 = 1|𝑆)

{𝑇𝑃𝑆; 𝐹𝑃𝑆}

𝑇𝑃𝑆 + 𝐹𝑃𝑆 = 𝑃(𝑓 𝑍 = 1|𝑆)
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Details #1: Statistical Parity

▪ Statistical parity is a popular measure of group fairness

▪ Setup: 

▪ Population is a set 𝑋 

▪ Subset 𝑆 ⊂ 𝑋 that is a “protected” subset of the population

▪ Example: 

▪ 𝑋 is people

▪ 𝑆 is people who dye their hair blue 

▪ We are afraid that banks give fewer loans to the blues because 

of hair-colorism, despite blue-haired people being just as 

creditworthy as the general population on average

85



Details #2: Statistical parity

▪ Assumption: There is some distribution 𝐷 over 𝑋 

which represents the probability that any individual 

will be drawn for evaluation

▪ Example:

▪ Some people will have no reason to apply for a loan 

(maybe they’re filthy rich, or don’t like homes, cars, or 

expensive colleges)

▪ 𝐷 takes that into account

▪ Generally, we impose no restrictions on 𝐷, and the 

definition of fairness will work no matter what 𝐷 is
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Details #3: Statistical parity

▪ Classifier 𝑓: 𝑋 →  {0,1} gives labels to 𝑋

▪ When given a person 𝑥 as input 𝑓(𝑥) = 1 if 𝑥 gets a 

loan and 0 otherwise

▪ Statistical imparity of 𝑓 on 𝑆 with respect to 𝑋, 𝐷:

imparity𝑓 𝑋, 𝑆, 𝐷 = 𝑃 𝑓 𝑥 = 1 𝑥 ∈ 𝑆𝐶 − 𝑃(𝑓 𝑥 = 1|𝑥 ∈ 𝑆)

▪ This is the statistical equivalent of adverse impact

▪ It measures the difference that the majority and 

protected classes get a particular outcome

Probability that a random 
individual drawn from 𝑆 

is labeled 1

Probability that a random 
individual from the complement 

𝑆𝐶 is labeled 1
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Details #4: Statistical parity

▪ Statistical imparity measures the difference that the 
majority and protected classes get a certain outcome

▪ When the difference is small, the classifier has 

statistical parity, it conforms to this notion of fairness

▪ Definition: ML model 𝑓: 𝑋 → {0,1} achieves statistical 
parity on 𝐷 with respect to 𝑆 up to bias 𝜖 if 
|imparity𝑓(𝑋, 𝑆, 𝐷)| < 𝜖

▪ If 𝑓 achieves statistical parity, it treats the general 

population statistically similarly as the protected class

▪ If 30% of normal-hair-colored people get loans, statistical 

parity requires roughly 30% of blue also get loans
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Group fairness: Pros and Cons

▪ Advantages: 
▪ Efficient to compute, measure and enforce for data producer 

and regulator 

▪ Often easier to explain to policy-makers (as in terms of 
population behavior) 

▪ Challenges: 
▪ Data regulator must determine which classifier statistic(s) to 

equalize 

▪ Fairness of the representation depends on the quality of the 
fairness metric chosen by the regulator

▪ Group fairness can lead to (more) violated individual 
fairness, e.g., intersectionality 

▪ It can lead to fairness gerrymandering (Kearns et. al., ‘18), 
and other issues (McNamara et. al., ‘19) 

89



Algorithmic fairness criteria

1) Individual Fairness

2)Group Fairness
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Data regulator: Measures (un-)fairness

▪ Regulator must choose how to measure (un-)fairness:
▪ For individual fairness: must choose the distance metric

▪ For group fairness: must choose the classifier statistic to 
equalize

▪ However, remember that there are no magic metrics:
▪ Measurement 101: all measures have blind spots

▪ “When a measure becomes a target, it ceases to be a good 
measure” 

▪ For ML, we generally specify all measures apriori and 
optimize them 
▪ However, all metrics will have failure cases, i.e., unusual 

situations with non-ideal behavior 

▪ One productive approach is to select measures that 
best capture tradeoffs relevant to the context 
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Quick Check
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https://forms.gle/PwhV3CEN74aywbE68 

https://forms.gle/PwhV3CEN74aywbE68


▪ What is trustworthy AI?

▪ Explaining AI predictions

▪ Definitions of fairness in AI

▪ Framework for fair AI

▪ Algorithmic fairness criteria

▪ Individual fairness

▪ Group fairness

Outline of today’s class
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