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Lecture 4: Designing LLM-driven agents to answer complex clinical queries with evidence-backed reasoning, 

Strategies to evaluate accuracy, robustness, and interpretability in high-stakes medical contexts, Case studies of 

LLM-based agents in clinical decision-making, drug discovery, and patient triage, Emerging trends, such as real-

time conversational agents, collaborative multi-agent systems, and autonomous discovery
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Today’s lecture

1. What are agents? 

2. A brief history of LLM-powered agents in the context 

of LLMs and agents

3. Overview of LLM-powered agents

4. Tool use and learning

5. Examples of agents in biology and medicine
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What is an agent?
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What is an agent?
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Action

Observation

▪ An “intelligent” system that interacts with some “environment”

Physical environments: robot, autonomous car

Digital environments: Deep Q-Network for Atari, Siri,AlphaGo

Humans asenvironments: chatbot

▪ Define “agent” by defining “intelligent” and “environment”

It changes over time

What is an agent?

CS294/194-196 Large Language Model Agents
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Text agent

Action ∈L

Observation ∈L

LLMagent

Reasoning 

agent

▪ Level 1: Text agent

Uses text action and observation 

Examples: ELIZA, LSTM-DQN

▪ Level 2: LLM agent

UsesLLM to act

Examples: SayCan, Language Planner

▪ Level 3: Reasoning agent

UsesLLM to reason to act 

Examples: ReAct,AutoGPT

think

about

…

What is an LLM-powered agent?

CS294/194-196 Large Language Model Agents
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LLM

Reasoning

Acting 

(Grounding, 

tool use, etc.)

CoT

Zero-shot CoT 

Self-consistency

…

Game 

Robotics 

RAG

…

ReAct

LLMagent (but not reasoning agent) Reasoning agent

New applications/ 

tasks/benchmarks

Web browsing 

Software engineering 

Scientific discovery

……

New methods

Memory, learning, 

planning, multi-agent…

A brief history of LLM agents

CS294/194-196 Large Language Model Agents
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▪ Domain specific!

▪ Requires manual 

design

▪ Cannot work beyond 

simple domains

ELIZA (1966): Text agent via rule design
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Language understanding for text-based games using deep reinforcement learning. EMNLP 2015.

▪ Domain specific!

▪ Requires scalar 

reward signals

▪ Requires extensive 

training

LSTM-DQN (2015): Text agent via RL

10
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LanguageModels are Few-Shot Learners NeurIPS 2020.

Training: next-token prediction 

on massive text corpora

Inference: (few-shot) 

prompting for various tasks!

LLMs: Generalists and few-shot learning
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■ LLM-powered agents areartificialentitiesthatenhance LLMswithessential capabilities, 

enablingthemtosensetheirenvironment,makedecisions,andtakeactions.

• SamAltman (Former CEOof OpenAI) himself said in his keynote: 

“GPTsand Assistants are precursors to agents. They will gradually

be able to plan and to perform more complex actions on your

behalf. These are our first step toward AI Agents.”

■ Bill Gates said: “Agents are not only going to change how

everyone interacts with computers. They’re also going to upend

the software industry, bringing about the biggest revolution in

computing since we went from typing commands to tapping on

icons.”

News in Financial Times. " TheadventoftheAIagent”.

GatesNotes. “The Future of Agents: AI is about to completely change how you use computers”.

Beyond LLMs: Autonomous agents
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• Virtual & Physical environment

EnvironmentAgent

Action

Environment

► The external context or surroundings in 

which the agent operates and makes 

decisions.

• Human &Agents’behaviors

• External database and knowledges

■ Thispavestheway fortheuseofAIagentsto 

simulateusersandotherentities,aswell as their

interactions.

Observation

LLM-powered agents

14WWW’24 Large Language Model Powered Agents in the Web
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Environment

Observation

Action

Agent
Broader Action Spaces

Multimodal Output

Text & Speech Images

Tools

Calling APIs: calculator, task-specific 
models, web searching …

Multi-modal Perception

Image & Video Speech

User behavior Science data Stock data

Code

Embodiment

Autonomous car

Robots; Arm; …

Action

► call external APIs for extra 

information that is missing from 

the model weights (often hard to 

change after pre-training): 

Generating multimodal outputs; 

Embodied Action; Learning tools; 

Using tools; Making tools; ……

Guanzhi Wang et al., Voyager: An Open-Ended Embodied Agent with Large Language Models.

LLM-powered agent: Observations & actions

15

Marinka Zitnik - AIM2 - marinka@hms.harvard.edu



Environment

Observation

Action

Agent

Brain

Construction

Broader Action Spaces

Multimodal Output

Text & Speech Images

Tools

Calling APIs: calculator, task-specific 
models, web searching …

Multi-modal Perception

Image & Video Speech

User behavior Science data Stock data

Code

Embodiment

Autonomous car

Robots; Arm; …

Memory

Short-term &
Long-term

Time

Brain

Decision Making

Reasoning

Planning

Reflection

Retrieve

Summary

LLM-powered agent: Internals (“Brain”)

16WWW’24 Large Language Model Powered Agents in the Web
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Memory

Short-term &
Long-term

Time

Brain

Decision Making

Reasoning

Planning

Reflection

Retrieve

Summary

□ Memory: “memory stream” stores sequences of agent’s past 

observations, thoughts and actions:

► Sufficient space for long-term and short-term memory;

► Abstraction of long-term memory;

► Retrieval of past relevant memory;

□ Decision Making Process:

► Planning: Subgoal and decomposition: Able to break down 

large tasks into smaller, manageable subgoals, enabling 

efficient handling of complex tasks.

► Reasoning: Capable of doing self-criticism and self-

reflection over past actions, learn from mistakes and refine 

them for future steps, thereby improving the quality of final 

results.
□ Personalized memory and reasoning process foster diversity and

independence of AIAgents.

LLM-powered agent: Internals (“Brain”)
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Environment

Collaboration

Observation

Action

Agent

Brain

Agent

Human

Construction

Broader Action Spaces

Multimodal Output

Text & Speech Images

Tools

Calling APIs: calculator, task-specific 
models, web searching …

Multi-modal Perception

Image & Video Speech

User behavior Science data Stock data

Code

Embodiment

Autonomous car

Robots; Arm; …

Memory

Short-term &
Long-term

Time

Brain

Decision Making

Reasoning

Planning

Reflection

Retrieve

Summary

Multi-Agents System

Cooperation Adversarial 
Interactions

Human In the Loop

Instructor-
Executor

EvaluationEqual 
Partnership

LLM-powered agent: Overview
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LET’S CONSIDER ONE TASK FOR NOW: QUESTION 

ANSWERING (QA)
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Q: what is 1 +2? A: 3

Q: Janet’s ducks lay 16 eggsper day. She 

eats three for breakfast every morning and 

bakes muffins for her friends every day with 

four. Shesells the remainder for $2 per egg. 

How much does she make every day?

Requires reasoning

Q: who is the latest UKPM? Requires knowledge

Q: what is the prime factorization of 34324329? Requires computation

QA systems

20
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VARIOUS SOLUTIONS HAVE BEEN DEVELOPED FOR

DIFFERENT QATASKS
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Program of Thoughts Prompting: Disentangling Computation from Reasoning for Numerical Reasoning Tasks

Code augmentation for computation
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▪ Answer knowledge-intensive questions with

▪ Extra corpora

▪ Aretriever (e.g., BM25, DPR,etc.)

▪ What if there’s no corpora? (e.g. who’s the latest PM?)

Retrieval-augmented generation (RAG) for 

knowledge
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TALM:ToolAugmented LanguageModels. Toolformer: Language Models CanTeachThemselves to UseTools

▪ Special tokens to invoke tool calls for

▪ Search engine, calculator, etc.

▪ Task-specific models (translation)

▪ APIs

▪ Unnatural format requires task/tool-specific fine-tuning

▪ Multiple tool calls?

Tool use
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Interleaving Retrieval with Chain-of-Thought Reasoning for 

Knowledge-Intensive Multi-Step Questions

Measuring and Narrowing the Compositionality Gap in 

Language Models.

What if both knowledge and 

reasoning are needed?
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Knowledge-intensive QA 

RAG
Commonsense QA 

RAG

Canwe have a simple, unifying solution?

We need abstraction.

CoT

Symbolic reasoning
Tool use 

Mathematical reasoning 
PoT

Tool use

WebGPT

Multi-hop knowledge-intensive QA 

Self-ask IRCoT

QA

CS294/194-196 Large Language Model Agents
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CoT

Reasoning OR acting

Flexible and general to 

augment test-time compute

Lackof external knowledge and tools

RAG/Retrieval/Code/Tool use

Flexible and general to 

augment knowledge, 

computation, feedback, etc.

Lack of reasoning

CS294/194-196 Large Language Model Agents
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Reasoning (update internal belief)

Reasoning

Question

Answer

LLM

Acting (obtain external feedback)

Observation

Action

Reasoning

Observation

ReAct: a new paradigm of agents that reason and act

Action

• Synergy of reasoning and acting

• Simple and intuitive to use

• General across domains

28
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Task: xxxxxx

Observation: 

xxxxxx

Thought: xxx

Action: xxx

Task:

Human prompt 

LLM output

Environment 
feedback

Thought: xxx

Action: xxx

Thought: xxx

Action: xxx

……

• One-shot prompting

• Few-shot prompting

• Fine-tuning

ReAct supports

ReAct is simple and intuitive to use

Example ReAct

trajectory
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You are an agent that answers questions by using two actions:

-

- search[query]: Google search the query. You can also use it to 

calculate math.

finish[answer]: return the answer

Your generation should have the following format:

Thought: to analyze the observation and inform the action. 

Action: your action

Question: If I have seven trillion dollars today, can I buy Apple, 

Nvidia, and Microsoft? If not, how much more money do I need?

A zero-shot ReAct prompt
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LLM
Thought: I need to find the current market capitalization of Apple, Nvidia, and 

Microsoft to understand how much it would cost to buy all of them.
Action: search["current market capitalization of Apple, Nvidia, and Microsoft"]

(GPT-4)

Observation: "Nvidia's market cap stood at $1.832 trillion as of about 10 a.m. ET 

Wednesday, while Alphabet's was at $1.814 trillion, bringing Nvidia behind just 

Microsoft (MSFT) at $3.015 trillion and Apple (AAPL) at $2.836 trillion."

(Mar 2024)

Thought: Now that I have the market cap for all companies, let's add them together 

and see if $7 trillion is enough.
Action: search["1.832 trillion + 3.015 trillion + 2.836 trillion"]

Observation: 7683000000000

Thought: The amount of money needed in addition to the $7 trillion is $683 billion.

Action: finish["You need an additional $683 billion to be able to buy Apple, Nvidia, and
Microsoft."]

✓
31Marinka Zitnik - AIM2 - marinka@hms.harvard.edu



LLM

(GPT-4)

Thought: I need to find the current market capitalization of Apple, Nvidia, and 

Microsoft to understand how much it would cost to buy all of them.
Action: search["current market capitalization of Apple, Nvidia, and Microsoft"]

Thought: The search did not give any results. I will need to search for each 

company's market capitalization individually.
Action: search["current market capitalization of Apple"]

Observation: nothing found!
(My adversarial 
observation)

Observation: 'price': 180.75
(My adversarial 
observation)

Thought: This is the current price of Apple's stock, not its market capitalization. The market cap is
calculated by multiplying the share price by the number of outstanding shares. Thus, I need to find
the total number of Apple's outstanding shares to calculate its market cap.
Action: search["total number of Apple's outstanding shares"] ✓

Synergy: acting support reasoning, reasoning guides acting

Continuous to 
solve the task
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Act 1: Go to drawer 1

Obs 1: The drawer 1 is closed.

Act 2: Open drawer 1

Obs 2: You open the drawer 1. The drawer 1 is open. In it, you see a dishsponge 2, and a spoon 1.

Act 3: Go to sinkbasin 1

Obs 3: On the sinkbasin 1, you see a dishsponge 3, a spatula 1, and a spoon 2.

Act 4: Take peppershaker 1 from sinkbasin 1
Obs 4: Nothing happens.

Take peppershaker 1 from sinkbasin 1

Nothing happens.

Act 5:

Obs 5:

……

Acting without

Reasoning

Act only

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 

1, a coffee machine 1, a countertop 3, a stove burner 1, and a toaster 1.

Your task is to: Put some pepper shaker on a drawer.

X

Cannot explore systematically or incorporate feedback

33
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(Here the agent goes to cabinet 1, 2, 3, 4, 5, 6, then countertop 1 and 2)

Act 9: Go to countertop 3

Obs 9: On the countertop 3, you see a apple 1, a bread 1, ...... a pepper shaker 1, and a vase 3.

Act 10: Take pepper shaker 1 from countertop 3

Obs 10: You pick up the pepper shaker 1 from the countertop 3.

Act 11: Think[Now I find a pepper shaker 1. Next, I need to put it in/on drawer 1.]
Act 12: Go to drawer 1

Obs 12: Drawer 1 is closed.

Act 13: Open drawer 1

Obs 13: You open Drawer 1 …

Act 14: Put pepper shaker 1 in/on drawer 1

Obs 14: You put pepper shaker 1 in/on the drawer 1.

ReAct Enables Systematic

Exploration

ReAct

Act 1: Think[First I need to find a peppe shaker...more likely to appear in cabinets (1-6), 

countertops (1-3), ... ]
Act 2: Go to cabinet 1

Obs 2: On the cabinet 1, you see a vase 2.

You are in the middle of a room. Looking quickly around you, you see a cabinet 6, a cabinet 

1, a coffee machine 1, a countertop 3, a stove burner 1, and a toaster 1.

Your task is to: Put some pepper shaker on a drawer.

✓
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ReAct is general and effective

PaLM-540B
HotpotQA

(QA)
FEVER

(fact check)
ALFWorld

(Text game)

Reason 29.4 56.3 N/A

Act 25.7 58.9 45

ReAct 35.1 64.6 71

(NLP tasks) (RL tasks)

35
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Reasoning agent: reasoning is an internal action for agents
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Human 

intel l igence

Small brain 

capacity

Big brain 

capacity Tool use Collaborative work

Artificial 

intelligence Small models Large models
Aut onomous 

agents Multi -agent systems

Tool use and learning

38
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• Tools extends human capabilities in productivity, efficiency, and problem-solving

• Humans have been the primary agents in tool use throughout history

• Question: can artificial intelligence be as capable as humans in tool use?

Tool Intelligence

39WWW’24 Large Language Model Powered Agents in the Web
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Controllerprovides feasible 
planstofulfill user requests

Framework for tool use in agents

40WWW’24 Large Language Model Powered Agents in the Web
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ToolSet:acollectionoftools 
withdifferent functionalities

Controllerprovides feasible 
planstofulfill user requests

Framework for tool use in agents

41WWW’24 Large Language Model Powered Agents in the Web
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ToolSet:acollectionoftools 
withdifferent functionalities

Environmentprovides the 
platformwhere toolsoperate

Controllerprovides feasible 
planstofulfill user requests

Framework for tool use in agents

42WWW’24 Large Language Model Powered Agents in the Web
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WWW’24 Large Language Model Powered Agents in the Web

ToolSet:acollectionoftools 
withdifferent functionalities

Environmentprovides the 
platformwhere toolsoperate

Theperceiversummarizes 
feedbacktothe controller

Controllerprovides feasible 
planstofulfill user requests

Framework for tool use in agents
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Framework for tool use in agents
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• ReAct

Planning with feedback

45
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• DFSDT - Depth-first search-based decision tree method for reasoning 

Planning with feedback
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• ImitationLearning
• Byrecordingdataonhumantoolusagebehaviors, largemodelsmimichumanactions to

learnabouttools

• Thesimplestandmostdirectmethodoftool learning.

Tool

Behavior

LLM LLMwhich 

canutilize 
tool

Learning to use tools

47
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• Supervised Learning
• Clonehumanbehavior touse searchengines

• Supervisedfine-tuning+reinforcement learning

• Onlyneed6,000annotateddata points

Nakano, Reiichiro,etal. "WebGPT:Browser-assistedquestion-answeringwithhumanfeedback."arXivpreprintarXiv:2112.09332(2021).

WebGPT

48
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• Ateachstep,thesearchmodelexecutesactionstocollectsupportingfacts, whichare
senttothesynthesismodelforanswergeneration

WebGPT

Nakano, Reiichiro,etal. "WebGPT:Browser-assistedquestion-answeringwithhumanfeedback."arXivpreprintarXiv:2112.09332(2021). 49
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• Supervised Learning
• Excellentperformance in long-formQA,evensurpassinghumanexperts

Nakano, Reiichiro,etal. "WebGPT:Browser-assistedquestion-answeringwithhumanfeedback."arXivpreprintarXiv:2112.09332(2021).

WebGPT
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• TutorialLearning
• Byhavingthemodelreadtoolmanuals(tutorials), itunderstandsthefunctionsofthe toolsand

howtoinvokethem

• Almostexclusively, largemodelsfromtheOpenAIseries(suchasChatGPT, GPT-4)
possessahighzero-shot capability tounderstandtoolmanuals.

Tool

Tutorial

LLM
LLMwhich 

canutilize 
tool

APIManual,ToolManual,…

Learning to use tools
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• Describe the functionality; In-context with example(s).

Learning to use tools
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• Highlights:
• Over16,000realAPIs(collectedfromRapidAPI)

• Supportssingleandmulti-tool invocation

• Complex multi-stepreasoningtasks

ToolBench

53
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• API Collection

• Instruction Generation

• Answer Annotation

ToolBench construction
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• API Collection
• RapidAPIHub: 

https://rapidapi.com/hub

• Filterover16,000high-qualityAPIs 
frommorethan50,000APIs

• Include49categories

ToolBench construction

55
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• Instruction generation
• SingleTool+Multi-Tool

• (1)SampleacollectionofAPIs:

• (2)ChatGPTautomaticallygenerateinstructionsthatmayrequirecallingoneormore 
APIsin thecollection:

ToolBench construction
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• Answer Annotation
• gpt-3.5-turbo-16k:featureof functioncall

• IssueswithReACT
• ErrorPropagation:Anerror in asinglestepannotationcanrender theentireaction 

sequence unusable

• LimitedExploration:ReACTcan onlysampleonesequence fromtheinfinite action 
sequencespacebasedontheLM’sprobabilities

• DFSDT:DynamicallyextendstheTOTtothetool learningscenario

ToolBench construction
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• Automatic evaluation framework 
based on ChatGPT

• Two metrics:

• Success rate: The proportion of 
commands successfully completed 
within a limited number of API calls

• Preference: Comparison of 
quality/usefulness between two answers, 
i.e., which one is better?

• Highly consistent with human 
experts (~80%)

ToolEval

58
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• Demonstrateexceptionallyhighgeneralizability toOOD commandsandAPIs, 
significantly outperformingChatGPT+ReACT

• DFSDT>>ReACT

ToolLLaMA

59
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• Self-supervisedtoollearning
• Pre-defined toolAPIs

• Encourage modelstocall andexecutetoolAPIs

• Designself-supervisedlosstoseeif thetoolexecutioncanhelp languagemodeling

If thetoolexecutionreduces LM loss, 
savetheinstancesastrainingdata

Toolformer

60
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of LLMs and agents
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5. Examples of agents in biology and medicine
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Scientific discovery in the age of AI
Nature 2023

Empowering biomedical discovery with AI agents 
Cell 2024

How to build the virtual cell with AI: Priorities and 
opportunities

Cell 2024

“AI scientist”

AI capable of skeptical reasoning 
that integrates biomedical tools with 

experimental platforms and 
eventually innovates on its own

62
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Empowering discovery 

with AI agents

▪ Integrate human creativity and AI 

capabilities

▪ Coordinate tasks like hypothesis creation, 

data analysis, and experiment design

▪ Use reasoning, interaction, and memory 

for reflective learning

▪ Combine tools like LLMs, FMs and ML 

models, and experimental platforms

▪ Collaborate with humans and other agents 

in modular workflows

▪ Vision: AI systems as collaborative 

partners in scientific discovery

Empowering Biomedical Discovery with AI Agents, Cell 2024 63
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AI agent configurations

▪ Perception and tool use integrate 

multimodal data and utilize specialized 

tools to expand research capabilities

▪ Brainstorming agents propose diverse 

research ideas

▪ Expert consultation agents leverage 

domain-specific expertise to refine ideas 

and validate findings

▪ Debate and roundtable agents critically 

evaluate hypotheses

▪ Self-driving lab agents optimize end-to-end 

research workflows

Empowering Biomedical Discovery with AI Agents, Cell 2024 65
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Agentic AI: From molecules to therapies

Multi-agent AI for 

single-cell powered 

drug discovery

Knowledge-grounded 

AI agent for expert-

level biological 

reasoning

AI agent with a 

massive number of 

tools for precision 

therapy

Cells PatientsMolecules

66
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20% of human proteins lack well-defined functions, and even well-annotated proteins 

often miss functional insights across various biological contexts and disease states

40% of human proteins are missing context-specific functional insights 

95% of publications focus on only 5,000 human proteins

We have models that predict protein structure 
from sequence and achieve atom-level accuracy

Predicting protein function from sequence, 
structure is an open challenge

Structure for 

each protein

Function for 

each protein

67

Marinka Zitnik - AIM2 - marinka@hms.harvard.edu



zitniklab.hms.harvard.edu/ProCyon
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ProCyon: Foundation model for protein 

function

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 69
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ProCyon: Foundation model for protein 

function

Owen Queen

Robert Calef

Yepeng Huang

Valentina Giunchiglia

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 70
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ProCyon training dataset

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024

▪ 33 million protein-phenotype pairs across 5 knowledge domains 

▪ 250 million protein sequences

▪ 800,000 protein structures

▪ 50 million full-length papers for nature language understanding
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ProCyon model training

▪ Model training via three main objectives:

▪ Language modeling – Next token prediction

▪ Contextual protein retrieval – Contrastive learning

▪ User guidance – Instruction tuning

▪ Final model: 11B parameter ProCyon model

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 72
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Key capabilities of ProCyon

Multimodality

Zero-shot task transfer

Unbound vocabulary of user input

Prediction & generation 
ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 73
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Zero-shot prediction of protein function

ProTeus

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 74
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ProCyon identifies new peptides that bind 

ACE2

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024Pentelute Lab, MIT Chemistry

1

2
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ProCyon identifies new peptides that bind 

ACE2

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024Pentelute Lab, MIT Chemistry

1

2 3

4
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ProCyon identifies drug-binding protein 

domains

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 77
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Modeling phenotypes linked to genetic 

variants

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 78
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Retrieving proteins against small molecule 

drugs
▪ ProCyon can handle phenotype queries that interleave drug and disease 

knowledge domains

▪ One practical application of this capability is the identification of 
disease-specific targets, where ProCyon can retrieve proteins targeted 
by a small-molecule drug for a given disease. 

▪ Bupropion is a small molecule drug used to treat major depressive 
disorder (MDD) and aid in smoking cessation 

▪ Its therapeutic effects are mediated through distinct protein targets: 
the norepinephrine transporter (NET, UniProt: P23975), which is 
primarily involved in treating MDD and the cholinergic receptor 
nicotinic alpha 3 subunit (AChR, CHRNA3, UniProt: P32297), which plays 
a role in smoking cessation

▪ Bupropion also targets the dopamine transporter (DAT, UniProt: 
Q01959), which contributes to the therapeutic mechanisms of both 
MDD and smoking cessation 

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024 79
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Generation of “protein caption cards”: AKNAD1

These generations are not made solely based on sequence similarity, where the 

closest sequence in SwissProt has only a 30% similarity 

QA Filtering

P
ro

T
e
u

s

ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024; Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, arXiv 202480
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ProCyon: A multimodal foundation model for protein phenotypes, Biorxiv 2024; Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, arXiv 2024

How good are generated phenotypes? 

LLM-as-a-judge approach
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AI agent for drug target identification

Homologous

Recombination

Olaparib

P

Prediction across hundreds of cell 

type and cell state contexts: Study 

effects of drugs across diverse cell 

types and cell states

Democratizing access to virtual cell models: Enable 

researchers to use in silico simulators of cell behavior 

and foster human-AI collaboration

Contextual AI models for single-cell protein biology, Nature Methods 2024

Sparse Dictionary Learning Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022

On Knowing a Gene: A Distributional Hypothesis of Gene Function, Cell Systems, 2024

Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, in press 2025
Pengwei Sui Michelle Li
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Conversational interface to single-cell atlases 

Single-cell resource model knowledge

• Single-cell Genomics 

• Code Generation 

• Code Introspection & Repair 

• Flexible Metric Adoption 

• Streamline Therapeutic Data Analysis

• Reasoning Through Online Literature Search

Auto prediction and analysis

• Cell type Annotation 

• Gene Association Prediction 

• Response to chemical/genetic perturbations across disease states

AI agent for drug target identification
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Measure phenotype 

and mechanisms

Design therapeutic agents

 or select optimal perturbations

Provide each patient 

with the right

drug, at the right 

dose, at the right time

+

Clinical phenotypes and diseases

17,000 Diseases 

7,000 Rare diseases

5-7% Rare diseases with treatments

No Treatment options for many 
disease subtypes

Medicines and drugs

40-50 New molecules per year

30% Drugs are issued at least one 

post-approval new indication 

Many Drugs have accrued over 10 
drug indications over the years

Precision medicine (treatments)
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KGARevion: KG-based LLM agent for 

knowledge-intensive medical QA

Agent’s actions: 
• Generate candidate answers
• Review candidate answers:

• Contextualized KGs
• RAG techniques
• Other knowledge-grounding systems

• Revise the answers, repeat

Objectives for this model design: 
• Improved accuracy of response
• Better contextualization
• Mitigate safety and hallucination issues

Su et al., Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, ICLR 2025 Xiaorui Su
88

Marinka Zitnik - AIM2 - marinka@hms.harvard.edu



LLM flexibility: These 

systems support integration 

with LLMs of varying sizes

Robustness: KG+LLM 

agents are reliable and 

robust multiple-choice 

selectors

KGARevion = KG-based LLM agent

Knowledge flexibility: These 

systems support integration 

with contextualized KGs

KG-based LLM agents enhance robustness and 

flexibility of open-ended medical reasoning

Su et al., Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, ICLR 2025 89
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Benchmarking completed after the 

knowledge cut-off data for LLM and the KG

Open-ended evaluation on MMLU-Med, 

MedQA-US, PubMedQA, BioASQ-Y/N, and 
three DDx benchmarks designed at Basic, 
Intermediate, and Expert difficulty levels

KGARevion = KG-based LLM agent

Su et al., Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, ICLR 2025

KG-based LLM agents outperform KG-only and 

LLM-only models on benchmarks
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Reason about knowledge-intensive questions
Question: A 29-year-old woman presents to the clinic with a 6-month history of 
progressive weakness and muscle pain. She has experienced difficulty walking and 
has had several falls in the past month. Her symptoms have progressed despite 
taking ibuprofen and acetaminophen. Physical examination reveals muscle 
atrophy in her upper and lower extremities. Laboratory tests show elevated 
creatine kinase levels and a positive test for Human Immunodeficiency Virus (HIV). 
What is the most likely diagnosis? Clinical

concepts

Su et al., Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, ICLR 2025 91
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Reason about knowledge-intensive questions
Question: A 29-year-old woman presents to the clinic with a 6-month history of 
progressive weakness and muscle pain. She has experienced difficulty walking and 
has had several falls in the past month. Her symptoms have progressed despite 
taking ibuprofen and acetaminophen. Physical examination reveals muscle 
atrophy in her upper and lower extremities. Laboratory tests show elevated 
creatine kinase levels and a positive test for Human Immunodeficiency Virus (HIV). 
What is the most likely diagnosis? Clinical

concepts

Do these actions matter? - Yes
• Generate candidate answers
• Review candidate answers:

• Contextualized KGs
• RAG techniques
• Knowledge-grounding systems

• Revise the answers, repeat

Su et al., Knowledge Graph Based Agent for Complex, Knowledge-Intensive QA in Medicine, ICLR 2025 92
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TxAgent: Precision therapy agent using 

massive number of tools

Shanghua Gao
93

Marinka Zitnik - AIM2 - marinka@hms.harvard.edu



Agent is trained 

to use 200+ 

tools!
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TxAgent’s toolbox

• Targets, drugs, diseases:
• Inter-entity associations, 

symptoms, indications, etc.
• 56 tools

• FDA drug product labels:
• Indications, contraindications, adverse 

events, geriatric effects, etc.
• 151 tools

• Phenotype, symptom, and disease associations
• 3 tools
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TxAgent’s toolbox

{name: get_associated_targets_by_disease_efoID
description: Find targets associated with a specific 
disease or phenotype based on EFO ID.
input: EFO ID}

{name: get_contraindications_by_drug_name
description: Retrieve contraindications information based 
on the drug name.
input: Drug name}

{name: get_associated_diseases_by_HPO_ID
description: Retrieve diseases associated with a list of 
phenotypes or symptoms by the phenotype HPO IDs.
input: HPO ID}

96
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TxAgent performance
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Today’s lecture

1. What are agents? 

2. A brief history of LLM-powered agents in the context 

of LLMs and agents

3. Overview of LLM-powered agents

4. Tool use and learning

5. Examples of agents in biology and medicine
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