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Time series are everywhere
Irregularly sampled with varying time intervals between successive readouts, 

complex dynamics and various sensors observed at different time points

Climate Healthcare Space systems

Domain Adaptation for Time Series Under Feature and Label Shifts, ICML 2023

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023 2
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Time series in healthcare

Mihaela van der Schaar
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Time series in healthcare

▪ Multiple streams of measurements

▪ Measurements are sparse, irregularly and informatively sampled

▪ Multiple outcomes of interest (various events of interest, various morbidities)

▪ True clinical states are unobserved (e.g., onset of diseases)

▪ Many possible patterns (heterogeneous phenotypes, comorbidities)

Mihaela van der Schaar
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Time series data come in different forms

▪ Time series consist of

▪ Data points ordered in time

▪ Preferably in regular intervals 

▪ Typically, 1 or more components/channels/dimensions

▪ Time axis not strictly needed but helpful to

▪ Order data

▪ Perform analysis and forecast future readouts

▪ Temporal resolution of the time series depends on the use-case

▪ Often in minutes, hours, days, weeks, month, ...
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Today’s lecture

• Time series tasks in healthcare

• Self-supervised pre-training for time series

• Learning representations of regular and 

irregular time series 

• Understanding time series models
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Time 

series 

tasks in 

healthcare

Dynamic forecasting

Time-to-event and survival analysis

Clustering and phenotyping

Screening and monitoring

Early prediction of diagnosis

Treatment effect prediction
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Time series forecasting: Predicting the future
Multivariate forecasting

▪ Forecasting with multiple time series

▪ Access to conditional past and future data, 

both continuous and categorical

▪ Accurate forecasting is a difficult task

▪ Dependency on multiple covariates

▪ Long-range dependencies

▪ Inherent uncertainty in input/target data

Univariate forecasting

▪ Single time series forecasting (with time)

▪ The future may be forecasted just by looking 
at the past

▪ Analysis and ML forecasting methods for this 
are widely researched

▪ Simple methods like moving average, 
regression, and general neural networks can 
often be sufficient, depending on the 
accuracy required
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Input data 

(time-series)

Observational EHR data + 
clinical knowledge

Dynamic 

forecasts

Disease progression 

model

Mihaela van der Schaar

Time series forecasting: Predicting the future

▪ Build disease progression models

▪ Understand and model carefully the available data!

▪ Learn the model parameters from available EHR data (Training time)

▪ Issue dynamic forecasts for the patient at hand (Test time/Run-time)

▪ Unravel new understanding of disease progression
▪ Population

▪ Sub-groups of patients

▪ Personalized
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Mihaela van der Schaar

Disease progression models: Formalism

Population-level representation of 

disease states

Markov models

Disadvantages: 

• Observable models

• One disease at a time

• “Average” patient
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Hidden Markov Models (HMMs)

Introducing latent (hidden/unobservable) disease states

Disease Stages

Clinical findings 
Lab measurements 

Vital signs 

Treatments

Events of interest 

Observation times

Mihaela van der Schaar

Disease progression models: Formalism
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Pathological Pathological
event 1 event 1

Most likely future Most likely future 
Pathological DiseaseA Pathological Disease B

event 2 event 2

22

- Previous states

- Order of states

- Duration in a state

History matters!

Ignore history

One size fits all!

Only capture population-level 
transitions across progression stages 

Ignores individual clinical trajectories

Goal A: Accurately forecast individual-level disease trajectories

What are the risks of mortality, relapse, comorbidities, complications, etc. in 

the future?

Goal B: Understand disease progression mechanisms

Underlying latent structure of disease evolution

Patients’ subgroup analysis 

Refined phenotypes

Disease progression models: Goals

Mihaela van der Schaar
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Example of 3 patients diagnosed with breast cancer (BC)

Should we group patients based on similarity in the time-series observations?

conventional notion of clustering

Key idea: similarity in time-series observations

(e.g. dynamic time warping, auto-encoders)

Autoencoder-based approaches

Clustering & phenotyping: How should we 

group patients?

Mihaela van der Schaar
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Example of 3 patients diagnosed with breast cancer (BC)

What if both Patient A and C will have an adverse event (e.g., death) that can be expected by 
increases in cancer antigen and mammographic density

Temporal notion of clustering: similarity in future outcomes

no adverse outcomes BC-related Death BC-related Death

Mihaela van der Schaar

Clustering & phenotyping: How should we 

group patients?

- Predictive of similar future outcomes
- Doctors and patients can actively plan

- Learn representations of past observations (time-series data) that 

best describe future events and outcomes
14



Who to screen? 

When to screen? 

What to screen?

- What is the value of various information over time for this event for

this individual?

Mihaela van der Schaar

Personalized screening and monitoring
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Lab test Event

of 

Interest

Who to screen? 

When to screen? 

What to screen?
• Deep Sensing [Yoon, Jordon, vdS, 2018]

• Disease Atlas [Yoon, Jordon, vdS, 2019]

• Clairvoyance [Jarrett et al, 2021]

Mihaela van der Schaar

Personalized screening: Formalism
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Early prediction of diagnosis
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Early prediction of diagnosis

▪ Risk prediction

▪ Segments individuals using population-based risks, usually based on few 

variables

▪ Rarely uses longitudinal data usually only calculated once

▪ Risk scores then lead to guideline-driven management of patients 

often rigid

▪ Many diseases lack guidelines and protocols

▪ This is all predicated upon a quantitative understanding of disease 

progression
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• Early diagnosis is more than just event prediction/forecasting

• It involves unravelling and dissecting the underlying states of disease 

progression towards the event of interest

A quantitative understanding of disease progression is needed!

Mihaela van der Schaar

How can we detect disease early?
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Non-specific
Symptoms

Genetic 
“Offset”

Pathology Disease
Present Progresses

Healthy

Diagnosis

Made

Emerging Pre-malignant
Conditions (Dysplasia)

Mihaela van der Schaar

Early diagnosis: How?
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Disease 

Progresses

Emerging Pre-malignant
Conditions (Dysplasia)

Non-specific 
Symptoms

Early diagnosis: How?

Genetic 
“Offset”

Pathology 
Present

Healthy

Diagnosis 

Made

Early diagnosis 

Made

(with ML support)

Mihaela van der Schaar
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Mihaela van der Schaar
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How to treat? When to give treatment? When to stop treatment?

(a) Decide treatment plan (b) Decide optimal time of treatment (c) Decide when to stop treatment

Mihaela van der Schaar

Treatment effect prediction
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given patient history :

Time-dependent patient features:

Time-dependent treatments:

Patient history:

where

Static patient features:

Longitudinal patient

features:

• Lab test

• Treatments 

administered

• Symptoms

• Hospital visits

• CTscans

Breast cancer 

patient
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Current time Time

Observed (factual) outcome for treatment

Past

Diagnosis
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Causal inference 
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Electronic Health 

Records Longitudinal patient observational data

Mihaela van der Schaar

Causal effect inference from longitudinal 

patient observational data
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The patient history contains time-dependent confounders 
which bias the treatment assignment in the observational dataset.

Patient covariates - affected by past treatments which then influence future treatments and outcomes

Bias from time-dependent confounders.

Mihaela van der Schaar

Challenges in using longitudinal observational 

data for estimating treatment outcomes
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Time 

series 

tasks in 

healthcare

Dynamic forecasting

Time-to-event and survival analysis

Clustering and phenotyping

Screening and monitoring

Early prediction of diagnosis

Treatment effect prediction
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Today’s lecture

• Time series tasks in healthcare

• Self-supervised pre-training for time series

• Learning representations of regular and 

irregular time series 

• Understanding time series models

1

2

3

4

27



Pre-training on time series

▪ Question: How to process a time series dataset so as to greatly improve 
generalization to new time series coming from a different dataset

▪ Goal: 
▪ Transfer a model to new datasets without explicit retraining or minimal adaptation

▪ Resulting performance ≥ SoTA model on target dataset alone 

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
28



Why is this challenging?

▪ Expected performance gains are often not realized:

▪ Distribution shifts

▪ Properties of the target dataset unknown at pre-training

▪ Large variation of temporal dynamics across datasets,

▪ Varying semantic meaning, irregular sampling, system factors (e.g., different 

devices or subjects)

▪ For example, pre-training on a time series dataset with low-frequency 

components (smooth trends) may not produce positive transfer on 

tasks involving high-frequency components (transient events) 

What inductive biases could facilitate such generalizable 

representations of time series?

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
29



Do time series datasets 

represent unique challenges? 

▪ Target datasets are not available in pre-training

▪ Pre-trained model must capture a latent shared property that can apply to 

an unseen dataset

▪ Need to identify a shared property universal to different time series 

datasets to enable transfer from pre-training to target datasets

Vision Language Time series

?
Shapes, edges, texture Word order, grammar

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
30



Time-frequency consistency (TF-C)

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
31



Overview of TF-C approach

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
32



Datasets

▪ SleepEEG: 371,055 univariate brainwaves (100 Hz) collected from 197 
individuals. Samples are labeled by 5 sleeping stages

▪ Epilepsy: Brain activity of 500 subjects recorded by single-channel EEG (174 
Hz). Samples are labeled by epilepsy seizures

▪ FD-A: Vibration from rolling bearing of a mechanical system aiming at fault 
detection. Every sample has 5,120 timestamps and an indicator for one out of 
three mechanical device states

▪ FD-B: Same as FD-A but the rolling bearings are performed in different working 
conditions (e.g., varying rotational speed) 

▪ HAR: 10,299 9-dimensional samples recording 6 daily activities

▪ GESTURE: 440 accelerometer samples on 8 hand gestures

▪ ECG: 8,528 single-sensor ECG recordings sorted into four classes based on 
human physiology

▪ EMG: 163 EMG samples with 3-class labels implying muscular diseases 

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
33



Baselines and experimental setup

▪ Six pre-training methods: 

▪ TS-SD, TS2vec, CLOCS, Mixing-up, TS-TCC, SimCLR

▪ To examine utility of pre-training:

▪ Non-deep learning KNN model applied directly to fine-tuning datasets 

▪ Random initialization approach to randomly initialize fine-tuning model

▪ Performance metrics: accuracy, precision (macro-averaged), recall, 

F1 score, AUROC, and AUPRC 

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
34



Results: One-to-one transfer learning

▪ Pre-train a model on a pre-training dataset and fine-tune the model 

on one target dataset only 

▪ HAR → GESTURE: 6 types of human daily activities measured by an 8-

channel time series → 8 hand gestures measured by 1 channel
7.2% margin over 

the best baseline

On average, our TF-C model claims a large margin of 15.4% over all baselines. Further, the strongest 

baseline varies across scenarios (i.e., TS-TCC in FD-A → FD-B; Mixing-up in SleepEEG → Epilepsy) 

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
35



Results: One-to-many transfer learning

▪ Pre-train a model on a dataset and use it across a broad range of 

tasks across many target datasets from diverse domains

▪ SleepEEG → {EPILEPSY, FD-B, GESTURE, EMG}

• Pre-training and fine-tuning datasets 

SleepEEG → {FD-B, GESTURE, EMG} 
are diverse. This gap leads to poor 
baseline performance 

• TF-C has high tolerance to diverse 
datasets and can can serve as a 

universal model when no relevant pre-
training datasets are available

• TF-C is the best performer in 14/18 

settings with an 8.4% performance gain

• TF-C consistently outperforms KNN and 

Random Init. by a large margin of 42.8% 
and 25.1%

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
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Is TF-C principle needed for 

pre-training time series models?

▪ Removing 𝓛𝑻𝑭−𝑪, 𝓛𝑻, and 𝓛𝑭 result in performance degradation of 

6.1%, 7.2%, and 6.7%

▪ Replacing 𝓛𝑻𝑭−𝑪 with a loss measuring consistency in time (𝓛𝑻𝑻−𝑪) 

or frequency (𝓛𝑭𝑭−𝑪): performance gain cannot be simply explained 

by contrastive loss; time-frequency consistency is crucial

▪ ℒ𝑇𝐹−𝐶  outperforms ℒ𝑇𝑇−𝐶  and ℒ𝐹𝐹−𝐶  by 5.3% and 7.2%

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022
37



Self-supervised pre-training: Recap

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurIPS 2022

• Pre-training for time series poses unique challenges due to potential 

mismatches between pre-training and target domains, e.g., shifts in 

temporal dynamics, evolving trends, and long-range and short effects 

• Self-supervised approach: TF-C uses contrastive learning to inject TF-

C into a pre-training model, bringing the encoded time-based and 

frequency-based representations and their local neighborhoods close 

together in the latent space

• Strong generalization: Our findings have implications for building 

broadly generalizable pre-training models for time series

38



▪ State-of-the-art for sequence 

modeling

▪ Self attention

▪ No-recurrent units, allowing parallel 

computation 

▪ Widely used in almost all language 

tasks now

▪ Machine translation

▪ Text generation

▪ Question answering

Sequence-to-sequence neural models: 

Beyond natural language understanding

39



Informer – for long term time series forecasting

Autoformer – decomposing the time series components

…and many more

arXiv:2012.07436

arXiv:2106.13008

Transformer architectures for time series

40



arXiv:1912.09363

Temporal fusion transformer

Transformer architectures for time series

41



arXiv:2303.06053

TSMixer – An all MLP architecture for time series forecasting

Transformer architectures for time series

42



Today’s lecture

• Time series tasks in healthcare

• Self-supervised pre-training for time series

• Learning representations of regular and 

irregular time series 

• Understanding time series models
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Irregular vs. regular time series

Regular time series Irregular time series

ObservationsTimestamps

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022
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Why are irregular time series challenging? 

Prevailing methods:

▪ Assume aligned measurements

▪ Assume fixed-sized input data

▪ Impute or fill-in missing values

Irregular time series:

▪ Observations across sensors are not aligned

▪ Varying times among adjacent observations

▪ Arbitrary length: different samples have varying number of observations

▪ Different subsets of sensors recorded at different time points

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 45



Problem definition

Input:
▪ Dataset 𝐷 of irregular time series samples

▪ Every sample 𝑆𝑖 can have multiple sensors

▪ Every sensor can have arbitrary number of 
irregularly sampled observations/readouts

▪ Raindrop learns a function 𝑓: 𝑆𝑖 → 𝒛𝑖  that maps 𝑆𝑖 to a fixed-length 
representation 𝑧𝑖 suitable for downstream tasks of interest, such as 
classification

▪ Using learned 𝑧𝑖, one can predict label ෝ𝑦𝑖 ∈ {1, … , 𝐶} for 𝑆𝑖

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 46



Model irregularity by leveraging sensor 

dependencies 

▪ Sensors are not independent of each other:

▪ Inter-sensor dependencies contain useful information about time series

▪ Idea: Leverage relational structure among sensors 

▪ Learn latent graph structures from multivariate time series and model time-

varying inter-sensor dependencies through neural message passing

▪ Model sample-varying and time-varying relational structure in irregular time 

series

Next: What motivates the use of 

inter-sensor dependencies?

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 47



Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022

Raindrop: Observations 

as “raindrops” hitting a “surface”

▪ Observations (raindrops) hit the sensor graph (surface) 

asynchronously and at irregular times

▪ Observations are processed by passing messages to neighboring 

sensors (creating ripples), taking into account learned sensor 

dependencies

Next: How to learn inter-sensor dependencies that 

can vary across samples and time?

48



Sensor dependency graphs

Generate embedding of node u by capturing node 

dependencies through message passing 

Node

features

Message

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 49



Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022

Sensor dependency graphs

Sensor dependency graph

Node: Sensor

Edge: Sensor interactions

50



Passing messages between 

neighboring sensors in every sample

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 51



Passing messages between 

neighboring sensors in every sample

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 52



Overview of Raindrop

Hierarchical learning 

▪ Step 1: Construct sensor dependency graphs
▪ For every sample, initialize a fully-connected graph

▪ During training, update neighbors & edge weights: 
▪ Graphs are time-sensitive 

▪ Graphs are sample-sensitive

▪ Similar graphs for similar samples

▪ Step 2: Sensor 𝒖 is activated = its value is observed
▪ Use message passing to generate observations for neighbors of active sensor 𝑢

▪ Step 3: Sensor embeddings
▪ For sensor 𝑢, aggregate observation embeddings across all timestamps into 𝑢’s embedding

▪ Step 4: Sample embedding
▪ Gather embeddings across all sensors into a representation of sample 𝑆𝑖 using a readout 

function

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 53



Datasets & evaluation setup

▪ P19: PhysioNet Sepsis Early Prediction
▪ 40,336 patients, 34 sensors

▪ Classification: Sepsis occurring or not

▪ P12: PhysioNet Mortality Prediction
▪ 11,988 patients, 36 sensors

▪ Classification: Length of stay in the ICU (>3 days or not)

▪ PAM: PAMAP2 Physical Activity Monitoring
▪ 5,333 samples, 17 sensors

▪ 8-class classification: 8 activities of daily lives

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 54



Setting 1/3: Time series classification 

Given irregular sensor readouts of a given sample, predict a label for it

▪ Raindrop achieves strong performance across three benchmarks

▪ In binary classification (P19 and P12), it outperforms baselines by 5.3% in AUROC and 4.8% in AUPRC

▪ In a challenging 8-way classification (PAM), it outperforms baselines by 5.7% in accuracy and 5.5% in F1 score

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 55



Dataset P19: 

▪ 38,803 patients, 34 sensors

▪ Label: Sepsis or not

▪ Missing sensors: 10-50%

Setting 2/3: Leave-sensors-out
Missing rate    Model

Failed sensors

Larger missing rate → Large 

improvement in performance

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 56



Setting 3/3: Group-wise classification

▪ Split by age: Patients older than 65 years vs. younger patients

▪ Split by gender: Male vs. female patients 

▪ Use one group as training set and randomly split the other group into 

validation (50%) and test set (50%)

▪ Strong results in across-group scenarios; e.g., Raindrop outperforms strongest baseline by 4.8% in AUROC and 
13.1% in AUPRC when asked to generalize to female patients

▪ Raindrop can generalize to new samples unseen during training: 
▪ Sensor dependency graphs are sample-specific and estimated using a sample’s observations
▪ Raindrop can adaptively generate sensor dependencies based on readouts of a test sample

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 57



Can Raindrop learn dynamics of sensors? 

Distinguishable patterns between graphs of negative and positive samples → Raindrop learns 

dynamics of sensors purely from observational data

Patients with no sepsis
Sensor dependency graphs averaged across 

negative samples

Patients who develop sepsis
Sensor dependency graphs averaged across 

positive samples

Nodes: sensors

Nodes 1 (pulse oximetry), 5 (diastolic 

BP), and 12 (partial pressure of carbon 

dioxide from arterial blood) have

lower weights in patients with no sepsis

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 58



Can Raindrop learn dynamics of sensors? 

Node 0 (heart rate) is not connected to any others sensor, 

indicating that heart rate carries little predictive value for 

the onset of sepsis

Edges from node 3 (systolic BP) to node 13 (oxygen saturation 

from arterial blood) and node 6 (respiration rate) to node 25 

(potassium) are informative for distinguishing between w/ and 

w/o sepsis

Show is differential inter-sensor graph between patients who will likely develop sepsis and those who 

won’t

Edges are colored by the divergences; darker colors denote sensor dependencies that are more 

crucial to patient classification

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 59



Irregular time series: Recap

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022

• Irregular time series: Raindrop addresses the complexity of time 

series, e.g., misaligned observations, varying time gaps & varying 

numbers of observations per sensor

• Inter-sensor structure: Raindrop adopts neural message passing to 

model inter-sensor dependencies in irregular time series

• Great generalization: Raindrop has excellent performance in 

challenging settings, including setups where a subset of sensors 

malfunction (i.e., have no readouts at all)
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Today’s lecture

• Time series tasks in healthcare

• Self-supervised pre-training for time series

• Learning representations of regular and 

irregular time series 

• Understanding time series models
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Model
f

Input Time Series

𝐗𝐗 ∈ ℝT×d X

Output
f(𝐗𝐗)

Intrinsic

Post-Hoc

Explanation

Black Box
f

Input Time Series

𝐗𝐗 ∈ ℝT×d X

Output
f(𝐗𝐗)

ExplanationExplainer

(e.g. LIME, SHAP)

(e.g. linear models, trees, attention)

62

Intrinsic vs. post-hoc interpretability

Mihaela van der Schaar



Highlight most important features for the model

• Integrated Gradient [Sundararajan et al. 2017]

• SHAP [Lundberg et al. 2017]

“Standard” feature importance methods perform poorly for time-series
[Ismail et al., NeurIPS 2020]

63
Mihaela van der Schaar

Standard feature importance scoring methods



Challenges for explaining time series

▪ Not easily visually interpretable
▪ Noisy samples

▪ Dense informative features, unlike 
imaging and text modalities

▪ Temporal patterns

▪ Only show up when looking at time 
segments and long-term behaviors

▪ Perturbations matter
▪ Setting a value to zero does not 

ignore that time point

▪ Temporal dependencies cannot be 
ignored

Omranian et al., 2015

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023
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t

pricet

Wait

Sell

Buy

Time induces a context

Explanations should take 

this context into account

65

What makes time series datasets different?

Mihaela van der Schaar



How to detect salient features?

Perturbation based detection

Feature perturbation affects prediction → Salient feature t

pricet

Premise: salient features affect the model’s prediction

BSuelyl
Detect salient features by feature perturbations

Salient

66
Mihaela van der Schaar



Time context matters

Typical saliency methods treat each input x t , i as a feature

⟹ Time dependency is ignored by the saliency method

⟹ Time dependency is integrated in perturbation

t

xt, i

t∗

t

ct(t∗, i )

Window perturbation:

Dynamic Perturbation Operator

Idea: perturb each xt∗ , i by using neighbouring times:

67
[Crabbé, van der Schaar, ICML 2021]

How to take the time context into account? 



t

xt, i

t∗

t

ct(t∗, i )

Past window perturbation:

How to take the time context into account? 

68
[Crabbé, van der Schaar, ICML 2021]

Time context matters

Typical saliency methods treat each input x t , i as a feature

⟹ Time dependency is ignored by the saliency method

⟹ Time dependency is integrated in perturbation

Dynamic Perturbation Operator

Idea: perturb each xt∗ , i by using neighbouring times:



69

Dynamask

[Crabbé, van der Schaar, ICML 2021]



What do we mean by parsimonious?

Masks should not highlight more features than necessary

⟹ We need to enforce feature selection

How to enforce parsimony?

The user selects the fraction a of most important features 

We add a regularization to enforce sparsity:

Useless:

Useful:

time

feature

70
[Crabbé, van der Schaar, ICML 2021]

How to make saliency masks parsimonious?



Quick time variations of the saliency

Might want to avoid quick time variations of the saliency

This can be a prior belief or a preference of the user

How to avoid this?

We add a regularization to penalize saliency jumps over time:

time

feature

71
[Crabbé, van der Schaar, ICML 2021]

How to avoid quick variation in 

the saliency mask?



True saliency Dynamask saliency

Baseline saliency

72
[Crabbé, van der Schaar, ICML 2021]

Dynamask - Example



Existing time series explainers are inadequate

▪ Perturbations are continuous

▪ Can deform shape of samples

▪ Give only instance-based 

explanations

▪ Cannot relate patterns across 

samples

▪ Fail to match performance of 

generic explainers

▪ Post-hoc methods suffer from a lack 

of faithfulness and stability

Dynamask, ICML 2021

Desiderata for time series explanations

• Temporally connected and visually digestible

• Identify the location of predictive time series 

signals and underlying interpretable patterns

• Connect explanations across samples

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023

1
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3
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TimeX is a time-series consistency explainer

▪ Surrogate model to mimic the 

behavior of a pretrained time 

series model

▪ TimeX makes inferences on 

masked samples

▪ Model behavior consistency

▪ Enforces faithfulness at the level of 

the latent space

▪ Learns a flexible latent space of 

explanations

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023
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TimeX learns highly-faithful explanations

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023
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Landmarks learn important patterns in ECG 

Latent Space of Explanations

6

5

4
1

32

Landmarks partition the latent space of explanations into interpretable temporal patterns

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023
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Explanations through self-supervised model 

behavior consistency: Recap

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurIPS 2023

• TimeX is a SOTA time series 

explainer

• STEs learn discrete masks that 

represent explanations and prevent 

shortcut learning

• Model behavior consistency 

preserves faithfulness across latent 

spaces

• Landmarks find important common 

temporal patterns to increase 

interpretability
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Today’s lecture

• Time series tasks in healthcare

• Self-supervised pre-training for time series

• Learning representations of regular and 

irregular time series 

• Understanding time series models

1

2

3

4
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Thank you for an incredible semester!

Final project presentations: See you all tomorrow (Wed) from 9am-12pm

79

https://zitniklab.hms.harvard.edu/AIM2

This is just the beginning

You now have the tools to bridge AI and 

medicine to ask deeper questions, to build more 

powerful models, and to reimagine what is 

possible for human health

The future of AI in medicine will be shaped by 

those who think critically, work collaboratively, 

and innovate responsibly. Keep pushing the 

boundaries of what we know. Stay grounded in 

science, but never lose sight of imagination

The discoveries you make can change lives

I look forward to seeing the breakthroughs you 

will create
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