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Time series are everywhere

Irregularly sampled with varying time intervals between successive readouts,
complex dynamics and various sensors observed at different time points

Climate Healthcare Space systems
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Domain Adaptation for Time Series Under Feature and Label Shifts, ICML 2023
Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022
Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022
Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023




Time series In healthcare

Dynamic
forecasting

Survival
analysis

Clustering &
phenotyping

Treatment
effects

Screening &
monitoring

Early
diagnosis

Mihaela van der Schaar



Time series In healthcare

= Multiple streams of measurements

» Measurements are sparse, irregularly and informatively sampled

= Multiple outcomes of interest (various events of interest, various morbidities)
» True clinical states are unobserved (e.g., onset of diseases)

= Many possible patterns (heterogeneous phenotypes, comorbidities)
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Time series data come in different forms

= Time series consist of | NM S—
= Data pomt§ ordered |.n time TREND l WW
= Preferably in regular intervals , -N

= Typically, 1 or more components/channels/dimensions

= Time axis not strictly needed but helpful to
» Order data
» Perform analysis and forecast future readouts

= Temporal resolution of the time series depends on the use-case
= Often in minutes, hours, days, weeks, month, ...



Today's lecture

QTime series tasks in healthcare
QSeIf-supervised pre-training for time series

QLearning representations of regular and
iIrregular time series

) Understanding time series models
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Time series forecasting: Predicting the future

Univariate forecasting

Single time series forecasting (with time)

The future may be forecasted just by looking
at the past

Analysis and ML forecasting methods for this
are widely researched

Simple methods like moving average,
regression, and general neural networks can
often be sufficient, depending on the
accuracy required

Multivariate forecasting

Target time series

Forecasting with multiple time series

Access to conditional past and future data,
both continuous and categorical

Accurate forecasting is a difficult task

= Dependency on multiple covariates
Long-range dependencies
Inherent uncertainty in input/target data
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Time series forecasting: Predicting the future

» Build disease progression models

» Understand and model carefully the available data!

» Learn the model parameters from available EHR data (Training time)
» [ssue dynamic forecasts for the patient at hand (Test time/Run-time)

» Unravel new understanding of disease progression
= Population
= Sub-groups of patients
= Personalized

Input data (Disease progression ) Dynamic
(time-series) model forecasts
\_ M ,

Observational EHR data +
clinical knowledge
Mihaela van der Schaar



Disease progression models: Formalism

Markov models P(Z,1|Hy, ) =P(Z,11|Z))
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Disadvantages: Population-level representation of
* Observable models disease states

« One disease at a time
“Average” patient
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Disease progression models: Formalism

Hidden Markov Models (HMMs)

Introducing latent (hidden/unobservable) disease states

Hidden states

Observations

Mihaela van der Schaar



Disease progression models: Goals

History matters! One size fits all!
Ignore history Only capture population-level
- Previous states transitions across progression stages
- Order of states Ignores individual clinical trajectories

- Duration in a state

Goal A: Accurately forecast individual-level disease trajectories

What are the risks of mortality, relapse, comorbidities, complications, etc. in
the future?

Goal B: Understand disease progression mechanisms

Underlying latent structure of disease evolution

Patients’ subgroup analysis

Refined phenotypes

Mihaela van der Schaar



Clustering & phenotyping: How should we

Example of 3 patients diagnosed with breast cancer (BC)
Should we group patients based on similarity in the time-series observations?
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Key idea: similarity in time-series observations

(e.g. dynamic time warping, auto-encoders)
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Autoencoder-based approaches



Clustering & phenotyping: How should we

group patients?

Example of 3 patients diagnosed with breast cancer (BC)

What if both Patient A and C will have an adverse event (e.g., death) that can be expected by
increases in cancer antigen and mammographic density

no adverse outcomes
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- Predictive of similar future outcomes
- Doctors and patients can actively plan

- Learn representations of past observations (time-series data) that

best describe future events and outcomes
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Personalized screening and monitoring

Who to screen?
When to screen?
Observations What to screen?

- Whatis the value of various information over time for this event for
this individual?

Mihaela van der Schaar



Personalized screening: Formalism

Observations

2
Lab test cvent  Who to screen?
of When to screen?

Interest What to screen?
 Deep Sensing [Yoon, Jordon, vdS, 2018]
 Disease Atlas [Yoon, Jordon, vdS, 2019]
« Clairvoyance [Jarrett et al, 2021]

Mihaela van der Schaar



thebmj
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Early prediction of diagnosis

N Ic National Institute for
Health and Care Excellence

The production and distribution of this pester was suppored by NICE
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Early prediction of diagnosis

= Risk prediction
= Segments individuals using population-based risks, usually based on few
variables

= Rarely uses longitudinal data usually only calculated once

» Risk scores then lead to guideline-driven management of patients
often rigid
* Many diseases lack guidelines and protocols

= This is all predicated upon a quantitative understanding of disease
progression



How can we detect disease early?

« Early diagnosis is more than just event prediction/forecasting
* |tinvolves unravelling and dissecting thellmderlvi_ng states of disease)
progression towards the event of interest

Patient’s progression
through hidden states

Healthy Emerging pre- Pathology Disease
malignant conditions present progresses

Clinical observations

Genetic Early signs Non-specific Specific
“offset” etc. and indicators symptoms symptoms

Window for risk- Window for detection Window for early-stage i ;
i . 1 " - Late-stage diagnosis based
based mitigation or based on early signs and diagnosis based on non-specific S
1 e . on specific symptoms
prevention indicators signs or symptoms

A quantitative understanding of disease progression is needed!

Mihaela van der Schaar



Early diagnosis: How?

Emerging Pre-malignant

Healthy Conditions (Dysplasia)

(Vs

b

(48]

»

c

Q

o

O

2

Observations glon-stpecific
Genetic ymptoms
“Offset”

Mihaela van der Schaar



Early diagnosis: How?

Health Emerging Pre-malignant Pathology Disease
ealthy Conditions (Dysplasia) Present Progresses
3 o
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Observations Non-specific Early diagnosis Diagnosis
: Symptoms
Genetic Made Made
“Offset” (with ML support)
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Treatment effect prediction

Estimate

counterfactual

trajectories

v

Electronic Health
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Treatment effect prediction

How to treat?

When to give treatment?

©®  Chemotherapy
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(a) Decide treatment plan
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(b) Decide optimal time of treatment

Tumor volume

When to stop treatment?

A

Patient history Counterfactual
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(c) Decide when to stop treatment

23



Causal effect inference from longitudinal
patient observational data

m_ongitudinal patient \ Electronic Health

features:

b test Records Longitudinal patient observational data

Treatments
-
—

Breast cancer administered

patient * Symptoms
*  Hospttal visits

) \\ CTscans //
\ Trai A
%} \ i m Time-dependent treatments: A; = (A1, ... A}) where

I
1 Causadl inference
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Diagnosis i
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information

m Static patient features:

= Time-dependent patient features: X; = (X1,...X})

Tumor volume

Past > _ _ ! _ _ _
Current time  Time - Patient history: H, = (X4, A;_1,V)

Observed (factual) outcome for treatment A, given patient history H, : Y+ 11
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Challenges in using longitudinal observational
data for estimating treatment outcomes

The patient history H, = (X;, A;,_;, V) contains time-dependent confounders
which bias the treatment assignment A in the observational dataset.

Patient covariates - affected by past treatments which then influence future treatments and outcomes

e

X()—>AO——> Xl——>A1 — Y2

>

Uy - Uy
\

Bias from time-dependent confounders.

Mihaela van der Schaar
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Today's lecture

QTime series tasks in healthcare
QSeIf-supervised pre-training for time series

QLearning representations of regular and
iIrregular time series

) Understanding time series models



Pre-training on time series

» Question: How to process a time series dataset so as to greatly improve
generalization to new time series coming from a different dataset

Self-supervised
pre-training

m

One-to-many independent fine-tuning

Scenario 1 Scenario 2 Scenario 3
Gesture recognition Fault detection Seizure diagnosis
{Cr:);} “\w Ayl J\ w g—} V\/\/\\/J\,\,
@ WFW e H‘,

PN

= (Goal:

hIdd §2 M & B

* Transfer a model to new datasets without explicit retraining or minimal adaptation
» Resulting performance > SoTA model on target dataset alone

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022
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Why is this challenging?

» Expecied performance aains are often not realized:

= S Scenario 1 Scenario 2 Scenario 3

Gesture recognition Fault detection Seizure diagnosis
= Pro @mwb» sepwipipes @ S
= Lar TN O "

= Var different
de

“%bé'}ﬁ*@@fb @@ @@ f} @

| For e ‘ . . . . : quenCy
com What inductive biases could facilitate such generalizable &
P ron
tasks _representations of time series?

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022



Do time series datasets
represent unique challenges?

= Jarget datasets are not available in pre-training
* Pre-trained model must capture a latent shared property that can apply to
an unseen dataset
» Need to identify a shared property universal to different time series
datasets to enable transfer from pre-training to target datasets

Vision Language Time series
;v friends school
' ‘t . : ? Smecte  \ e e
—— -~ Zl met went  ohlique
* ;‘é T /E\?agtll::l Grammar 1  met friends went to school
WGP — N
; impossible ~ Grammar2  met friends went school  to
R
- ‘:‘?Eginfe' Grammar 3 friends met schgol/_\l;/:ent .
' P L% s
- irrar|§o°srsible Grammar4  friends met to  school went
Shapes, edges, texture Word order, grammar

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022



Time-frequency consistency (TF-C)

Representational Time-Frequency Consistency (TF-C). Let be given a time series sample x;.
Then in a model F satisfying TF-C, time-based representation z; and frequency-based representation
z; learned from x; by F, and representations learned from local augmentations of x; are close
together in the latent time-frequency space.

Time series
A .

Time-based Frequency-based
contrastive encoder contrastive encoder

/ ' Time-Frequency !’ '
T F
| @z , Consistency (TF-C) ; Z @ :l
7 \

\ y \ /
~ . ~
~ ” ~ ,,

~
.-'_"" ...-l'——"

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022 o



Overview of TF-C approach
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Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022
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Datasets

SleepEEG: 371,055 univariate brainwaves (100 Hz) collected from 197
individuals. Samples are labeled by 5 sleeping stages

Epilepsy: Brain activity of 500 subjects recorded by single-channel EEG (174
Hz). Samples are labeled by epilepsy seizures

FD-A: Vibration from rolling bearing of a mechanical system aiming at fault
detection. Every sample has 5,120 timestamps and an indicator for one out of
three mechanical device states

FD-B: Same as FD-A but the rolling bearings are performed in different working

conditions (e.q., varying rotational speed) o o

QW \
HAR: 10,299 9-dimensional samples recording 6 daily activities Jos
GESTURE: 440 accelerometer samples on 8 hand gestures ”

ECG: 8,528 single-sensor ECG recordings sorted into four classes based on
human physiology

EMG: 163 EMG samples with 3-class labels implying muscular diseases

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022
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Baselines and experimental setup

= SiX pre-training methods:
= 1S5-SD, TS2vec, CLOCS, Mixing-up, TS-TCC, SImCLR

= To examine utility of pre-training:
= Non-deep learning KNN model applied directly to fine-tuning datasets
» Random initialization approach to randomly initialize fine-tuning model

» Performance metrics: accuracy, precision (macro-averaged), recall,
F1 score, AUROC, and AUPRC

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022



Results: One-to-one transfer learning

* Pre-train a model on a pre-training dataset and fine-tune the model
on one target dataset only

= HAR — GESTURE: 6 types of human daily activities measured by an 8-
channel time series — 8 hand gestures measured by 1 channel

7.2% margin over
the best baseline

Models Accuracy Precision Recall F1 score AUROC AUPRC

Non-DL (KNN) 0.6766+0.0000 0.6500+0.0000 0.6821+0.0000 § 0.6442+0.0000 § 0.8190+0.0000 0.5231+0.0000
Random Init. 0.4219+0.0865 0.4751+0.0925 0.4963+0.1026 § 0.4886+0.0967 § 0.7129+0.1206 0.3358+0.1194
TS-SD 0.6937+0.0533 0.6806+0.0496 0.6883+0.0525 f§ 0.6785+0.0495 § 0.8708+0.0305 0.6261+0.079
TS2vec 0.6453+0.0260 0.6287+0.0339 0.6451+0.0218 § 0.6261+0.0294 § 0.8890+0.0054 0.6670+0.0118
CLOCS 0.4731+0.02290 0.4639+00432 0.4766+0.0266 § 0.4392+0.0198 § 0.8161+0.0068 0.4916+0.0103
Mixing-up 0.7183+0.0123 0.7001+0.0166 0.7183+0.0123 f§ 0.6991+0.0145 § 0.9127+0.0018 0.7654+0.0071
TS-TCC 0.7593+0.0242 0.7668+0.0257 0.7566+0.0231 § 0.7457+0.0210 § 0.8866+0.0040 0.7217+0.0121
SimCLR 0.4383+00652 0.4255+0.1072 0.4383+0.0652 § 0.3713+0.0919 § 0.7721+0.0559 0.4116+0.0971
TF-C (Ours) 0.7824+0.0237 0.798210.0496 0.8011+0.0322 f§ 0.7991+0.0296 §| 0.9052+0.0136 0.7861+0.0149

On average, our TF-C model claims a large margin of 15.4% over all baselines. Further, the strongest
baseline varies across scenarios (i.e., TS-TCC in FD-A — FD-B; Mixing-up in SleepEEG — Epilepsy)

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022
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Results: One-to-many transfer learning

» Pre-train a model on a dataset and use it across a broad range of
tasks across many target datasets from diverse domains

» SleepEEG — {EPILEPSY, FD-B, GESTURE, EMG}

Scenarios  Models Accuracy Precision Recall F1 score AUROC AUPRC

Non-DL (KNN)  0.8525:00000  0.8639400000  0.6431 co0mo 06791200000 0.6434200000  0.6279-00000 o Pre_training and ﬁne_tuning datasets

Random Init. 0.8983+00656  0.9213+01360  0.7447+0.1135  0.7959+01208  0.8578+02153  0.6489+0.1926

SLEEPEEG TS-SD 0.8952+00522  0.8018+02244  0.7647x0.1485  0.7767+0.1855 g;ggigz;: 8;2;313:)%: SleepEEG RN {FD_B’ GESTU RE, EMG}

TS2vec 0.9395+00044  0.9059+00116 0.9039+00118  0.9045:x0.0067

+ CLOCS 0.9507+00027  0.9301+00067 0.9127+0.0165 0.9206-0.0066 0.9803+00023 0.9609-+0.0116 H H
EPILEPSY  pfiving-up 080210000 0.401100000 0.5000z00m0 0.4451200000 0.9743 200081  0.9618+0.0104 are diverse. This gap leads to poor
TS-TCC 0.9253+00008  0.9451+00040  0.8181+00257  0.8633+00215 0.9842+00034  0.9744+0.0043 .
SimCLR 0.9071+00324 0.9221+00166 0.7864x0.1011  0.8178+00998 0.9045+00539 0.9128:+0.0205
TF-C (Ours) 0.9495+00249  0.9456+0.0108 0.8908+00216 0.9149+00s34 09811100237  0.9703+0.0199 ba se II ne pe rfo rma nce

Non-DL (KNN) 0.4473+00000 0.2847+00000 0.3275+00000 0.2284+00000 0.4946+00000 0.3308+0.0000
Random Init. 04736100623 04829100529  0.5235+0.1023 0491100590 0.7864x00349  0.7528+00254

TS-SD 0.5566+00210  0.5710+00535 0.6054+00272  0.5703+00328 0.7196x00113  0.5693:+0.0532 ° TF-C has high tolerance tO diverse

SLEEPEEG TS2vec 0.4790+00113  0.4339+00002 0.4842+00197  0.4389+00107  0.6463x00130  0.4442+0.0162

+ CLOCS 0.4927+00310  0.4824+00316  0.5873+00387  0.4746+0085  0.6992+00099  0.5501-+0.0365
Fp-8 Mixing-up 0.6789+00246  0.7146+00343  0.7613+0.0198  0.7273+00228  0.8209+00035  0.7707-+0.0042 datasets and Can Can Serve as a
TS-TCC 0.5499+00220  0.5279+00203  0.6396+0.0178  0.5418+00338 0.7329:00203  0.5824:+0.0468 .
SimCLR 0.4917x00437  0.5446x01024  0.4760x00885 0.4224+01138  0.6619x00219  0.5009:£0.0477 un |Ve rsal mOdel When nO releva nt pre =
TF-C (Ours) 0.6938+00231  0.7559+00349 0.7202+0.0257 0.7487r0.0268 0.8965+0.0135 0.7871+0.0267 . . .
Non-DL (KNN) 0.6833:00000 0.650100000  0.6833:0000 0.6443:00000 0819000000 0.5232500000 traini ng datasets are available
Random Init. 0.4219+00629  0.4751+00175  0.4963+00679  0.4886+00459  0.7129+00166  0.3358+0.1439
SLEEPEEG TS-SD 0.6922:00444  0.6698+00472 0.6867+0.0488 0.6656:£00443 0.8725:00324  0.618510.0966 . .
TS2vec 0.6917+00333  0.6545+00358 0.6854+00349 0.6570+00392 0.8968+0.0123 0.6989-+0.0346 rm
G CLOCS 0.4433+00518  0.4237+00794 0.4433+00518 0.4014t00602  0.8073:00109 0.4460-+0.0384 ° TF_C IS the beSt perfo er In 1 4/1 8
ESTURE Mixing-up 0.6933+00231  0.6719+00232  0.6933+00231  0.6497+00306 0.8915x00261  0.7279+0.0558 tt. .th 8 4cy rf .
TS-TCC 0.7188+00349  0.7135+00352  0.7167+00373  0.6984t00360 0.9099:00085 0.7675:+0.0201 r ' r ] ( :e
SimCLR 0.4804+00594  0.5946+01623 0.5411+01946 0.4955+01870 0.8131+00521  0.5076:+0.1588 Se Ings WI an - Y pe O a n gal n

TF-C (Ours) 0.7642 00196  0.7731+0.03s5  0.7429+0.0268 0.7572+0.0311  0.9238+0.0159  0.7961+0.0109
Non-DL (KNN)  0.4390+00000 0.3772+00000 0.5143x00000 0.3979+0.0000 0.6025+00000 0.4084-+0.0000

Random Init. 0.7780+00729  0.5909+00625 0.6667+00135 0.6238+t00267 0.9109+01239  0.7771:+0.1427 ° TF'C ConSIStently OUtperformS KNN and

TS-SD 0.4606+00000  0.1545+00000  0.3333+00000 0.2111+00000 0.5005+00126 0.3775+00110 . .
SLEEPEEG  Tgavec 0.7854+00318  0.8040+0.0750 0.6785+00396 0.6766+00501  0.9331+0.0164  0.8436+0.0372 Ra ndo m | n It R by a |a rge m a rgl n Of 4 2 R 8%
EhJJIG CLOCS 0.6985+00323  0.5306+00750 0.5354+00201 0.5139+00400  0.7923:+00573  0.6484+0.0680
Mixing-up 0.3024+00534  0.1099+00126  0.2583+0.0456  0.1541+0024  0.4500+01718  0.3660+0.1635 a nd 25 ‘I 0/
TS-TCC 0.7889+00192  0.5851+00974 0.6310+00991 0.5904+00952  0.8851+00113  0.7939+0.0386 . o
SimCLR 0.6146+00s82  0.5361+01724 0.4990+0.1214 0.4708+0.1485  0.7799+0.1344  0.6392+0.150

TF-C (Ours) 0.8171+0.0287 0.7265+00353 0.8159+0.0289 0.7683+0.0311 09152100211 0.8329+0.0137

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022



Is TF-C principle needed for
pre-training time series models?

» Removing Lrr_c, L7, and Lg result in performance degradation of
6.1%, 7.2%, and 6.7%

performance gain cannot be simply explained
by contrastive loss; time-frequency consistency is crucial

» Lrp_coutperforms Lyr_- and Lpp_ by 5.3% and 7.2%

Accuracy Precision Recall F1 score
W/o L¢ and Lt 0.7159+-0.0128  0.7211+-0.0428 0.7246+-0.0428 0.7239+-0.0429
W/o L¢ and Ly 0.7327+-0.0328 0.7246+-0.0311 0.7339+-0.0307 0.7317+-0.0356
W/o L¢ 0.7428+-0.0297  0.7289+-0.0278  0.7451+-0.0263  0.7377+-0.0308

Replace L¢ with Lgg_ ¢
Replace L¢ with L11.¢
Full Model (TE-C)

0.7259+-0.0072
0.7124+-0.0091
0.7642+-0.0196

0.7319+-0.0256
0.7256+-0.0169
0.7731+-0.0355

0.7338+-0.0133
0.7231+-0.0197
0.7429+-0.0268

0.7341+-0.0194
0.7296+-0.0209
0.7572+-0.0311

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022




Self-supervised pre-training: Recap

* Pre-training for time series poses unique challenges due to potential
mismatches between pre-training and target domains, e.g., shifts in
temporal dynamics, evolving trends, and long-range and short effects

« Self-supervised approach: TF-C uses contrastive learning to inject TF-
C into a pre-training model, bringing the encoded time-based and
frequency-based representations and their local neighborhoods close
together in the latent space

« Strong generalization: Our findings have implications for building
broadly generalizable pre-training models for time series

Self-Supervised Contrastive Pre-Training For Time Series via Time-Frequency Consistency, NeurlPS 2022



Sequence-to-sequence neural models:
Beyond natural language understandmg

= State-of-the-art for sequence
modeling

= Self attention

= No-recurrent units, allowing parallel
computation

= Widely used in almost all language
tasks now

= Machine translation
» Text generation
= Question answering




Transformer architectures for time series

Autoformer — decomposing the time series components

Informer — for long term time series forecasting

............. | ——

¢ Concatenated Feature Map ;

--------------------------------

Multi-head
ProbSparse
Self-attention
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..and many more
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Transformer architectures for time series

Temporal Fusion Decoder

QuantileForecasts{ Ut+1(0.1) §41(0.5) 941(0.9) wev Gt47(0.1) Yt4(0.5) Yr4+(0.9)

Dense

Dense

Position-wise
Feed-forward

Temporal
Self-Attention

Static
Enrichment

Static
Covariate

Encoders

Variable
Selection

S

Static
Metadata

LSTM
Encoder

Variable
Selection

LSTM
Encoder

Variable
Selection

Residual

- Dropout
Connection
External
Primary Context
Input

(Optional)

Gated Residual Network (GRN)

Decoder

Variable
Selection

Decoder

Variable
Selection

Past I'nputs

Temporal fusion transformer

| |
l:EH“ 1 o Tt4+Timar J

Y
Known Future Inputs

my

Z 11)5

Variable
Selection
Weights

(1) (my)
51 £ X

t t ;

L Y J :
Transformed Inputs “ :
(Linear/Embedding) Flla;;f:t‘:d Eéf::::tl

(Optional)

Variable Selection Network
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Transformer architectures for time series

Transformer Block TSMixer Block

4

( Time-Mixing }
I

Feed Forward
(Feature-Mixing)

I , N
J \\4{ Add & Norm / oa xi
'xN

; Mixing Layer

Multi-Head
Attention

Time Domain

Align Stage

Feature Domain Mixing Stage

Fully-Connected

1

Forecasted

Time Series arXiv:2303.06053

TSMixer — An all MLP architecture for time series forecasting
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Today's lecture

QTime series tasks in healthcare
QSeIf-supervised pre-training for time series

QLearning representations of regular and
iIrregular time series

) Understanding time series models



Irregular vs. regular time series

Regular time series

(=)
45 Blood pressure

53 Blood pressure

Irregular time series

f Blood glucose

f Blood glucose

% Heart rate % Heartrate
/y Temperature — l 4!39 Temp-erature
Y ‘ Y
B O IO S A O L s O R o = S tr L.
t_T ze "1z [T]1T4 .,k t_T Ty
t t t t t
ﬁ3- z. |-| xp Ty F--{xy t3| Lo |[-----mmimmemeeeeees
t
A ta || Lt Lo i L 2ot 2
tﬁ Le T Tg Ly t2 Ly
. t . 5]
tl . mgl - :Ei' - :Egl --- :ﬂf;l tl """ Ly |-

Timestamps

Observations

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022
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Why are irregular time series challenging?

Prevailing methods: 4 Blood pressure
Assume aligned measurements ¢ Blood glucose
: : : Q’ Heart rate
Assume fixed-sized input data ; 5
Impute or fill-in missing values /2 Temperature — l v v
t.T -------------- 113? ........
Irregular time series: :
Observations across sensors are not aligned R
7 Y 22

Varying times among adjacent observations
Arbitrary length: different samples have varyin t1------ !
Different subsets of sensors recorded

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 15



Problem definition

Input:
» Dataset D of irregular time series samples
= Every sample S; can have multiple sensors

= Every sensor can have arbitrary number of
irregularly sampled observations/readouts

(Section 3.5)
Sample

S

(Section 3.4)
Sensor
U

I‘ I mt
I T,U

Observation

(Section 3.3)

» Raindrop learns a function f: S; = z; that maps S; to a fixed-length
representation z; suitable for downstream tasks of interest, such as

classification
» Using learned z;, one can predict label y; € {1, ..., C} for S;

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022
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Model irregularity by leveraging sensor
dependencies

= Sensors are not independent of each other:
* |Inter-sensor dependencies contain useful information about time series
» |dea: Leverage relational structure among sensors

» | earn latent graph structures from multivariate time series and model time-
varying inter-sensor dependencies through neural message passing

» Model sample-varying and time-varying relational structure in irregular time
series

Next: What motivates the use of

inter-sensor dependencies?

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022



Raindrop: Observations
as “raindrops” hitting a “surface”

» Observations (raindrops) hit the sensor graph (surface)
asynchronously and at irregular times

= Observations are processed by passing messages to neighboring
sensors (creating ripples), taking into account learned sensor
dependencies

$D Blood pressure '
f Blood glucose ,_"
qip '3 Heart rate " i £
gl 2
f Temp:erﬂture —* ﬁ o ~ n

...................

Next How to learn mter-sensor dependencnes that
can vary across samples and time?

_._. _regularly Sampled Multival



Sensor dependency graphs

Node Emvl

features 0

Message 5 VU E

va?) O

Ly = f(x‘vla L2 x‘v?))

Generate embedding of node u by capturing node
dependencies through message passing

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022




Sensor dependency graphs

Health status €——1

Sensor dependency graph

Node: Sensor

Edge: Sensor interactions

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022
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Passing messages between
neighboring sensors in every sample

$® Blood pressure
ﬁ Blood glucose

w Heart rate
l Y

}9 Temp‘erature —+

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022



Passing messages between
neighboring sensors in every sample

$® Blood pressure
ﬁ Blood glucose

‘-u? Hear_t rate
l Y

/;9 Temp‘erature —W

Health status | €—— L ;
' e

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022



(Section 3.5)

Overview of Raindrop

Hierarchical learning (SSA

= Step 1: Construct sensor dependency graphs i
= For every sample, initialize a fully-connected graph EE 1
= During training, update neighbors & edge weights:

= Graphs are time-sensitive _ r_olsféf;ﬁon 1
» Graphs are sample-sensitive (Section 3.3)

I —

= Similar graphs for similar samples |
= Step 2: Sensor u is activated = its value is observed
» Use message passing to generate observations for neighbors of active sensor u
= Step 3: Sensor embeddings
= For sensor u, aggregate observation embeddings across all timestamps into u’'s embedding

= Step 4: Sample embedding

» (Gather embeddings across all sensors into a representation of sample S; using a readout
function

Y el P

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 53



Datasets & evaluation setup

= P19: PhysioNet Sepsis Early Prediction
= 40,336 patients, 34 sensors mo
» Classification: Sepsis occurring or not ﬂ

= P12: PhysioNet Mortality Prediction

= 11,988 patients, 36 sensors @

» Classification: Length of stay in the ICU (>3 days or not)

» PAM: PAMAP2 Physical Activity Monitoring
» 5,333 samples, 17 sensors ‘
» 8-class classification: 8 activities of daily lives

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022



Setting 1/3: Time series classification

Given irregular sensor readouts of a given sample, predict a label for it

P19 | P12 | PAM
Methods . .
AUROC AUPRC | AUROC AUPRC | Accuracy Precision Recall F1 score

Transformer  83.2 £ 1.3 47.6 £ 3.8 65.1£56 957+16 835+ 15 848 £ 1.5 86.0 12 85.0+£13
Trans-mean 84.1+17 474+14 66.8+42 959+1.1 83.7+23 849 + 2.6 86.4 + 2.1 85.1 24
GRU-D 839 +1.7 46.9 £+ 2.1 67.2+3.6 959+2.1 833+16 846+12 852 +16 848+12
SeFT 787 +24 311 +£28 66.8 + 0.8 96.2 +£ 0.2 67.1+22 700+24 682+15 68.5 + 1.8
mTAND 80.4 £+ 1.3 324418 653+ 1.7 96.5 + 1.2 746 4.3 743 +£40 795 1+ 2.8 76.8 £ 3.4
IP-Net 846+ 1.3 38.1 £3.7 725+24 96.7+0.3 743 + 3.8 75.6 2.1 779 £22 766 £2.8
DGM?2-0 86.7+34 447+ 11.7 712 +2.5 969 + 0.4 824 +23 852+ 1.2 839 + 23 843 + 1.8
MTGNN 819+62 399489 67.5 + 3.1 96.4 + 0.7 834+ 19 852+ 1.7 86.1 + 1.9 859+24
RAINDROP 87.0+23 51.8+%5.5 | 721+13 97.0+ 04 | 885+ 1.5 89.9 + 1.5 899 +0.6 89.8+ 1.0

» Raindrop achieves strong performance across three benchmarks
= |n binary classification (P19 and P12), it outperforms baselines by 5.3% in AUROC and 4.8% in AUPRC

» |n a challenging 8-way classification (PAM), it outperforms baselines by 5.7% in accuracy and 5.5% in F1 score

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 .



Setting 2/3: Leave-sensors-out

Dataset P19:

" 38,803 patients, 34 sensors 10%

® Label: Sepsis or not

® Missing sensors: 10-50%

Larger missing rate = Large

improvement in performance

&a Bl Ssure

/ Blood glucose

'{’ Hear_t rate
}’ Te rrxﬂure —+

Oeceseeeeees 0

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022

Fa |edt$n§dr5"""'"l

Missing rate  Model | Accuracy Precision Recall F1 score
Transformer 603+24 578 £9.3 598+ 54 57.2 + 8.0
Trans-mean 604+112 618+149 6024138 58.0 4+ 15.2
GRU-D 654 + 1.7 72.6 + 2.6 643+ 53 63.6 + 04
SeFT 589+ 23 625+ 1.8 59.6 2.6 59.6 + 2.6
mTAND 588 +2.7 59.5 5.3 644 +29 61.8 +4.1
RAINDROP e 421 823+ 1.1 784 + 1.9 75.2 + 3.1
Transformer 63.1 =76 X7 62.2 + 8.2 63.2 + 8.7
Trans-mean 61.2+ 30 742 + 1.8 635+ 44 64.1 +4.1
20% GRU-D 646 + 1.8 73.3 + 3.6 635+ 46 648 + 3.6
SeFT 357405 42.1 +438 38.1+ 1.3 350+ 22
mTAND 33.2+5.0 36.9 + 3.7 37.7 + 3.7 373+ 34
RAINDROP 66.5 + 4.0 72.0 + 3.9 679 + 5.8 65.1 +7.0
Transformer 31.6 + 10.0 264 +9.7 24.0 £ 10.0 19.0 + 12.8

Trans-mean 425 + 8.6 453 + 9.6 370+ 79 339 + 8.2
30% GRU-D 45.1 £ 29 51.7 1 6.2 42.1 + 6.6 472 + 39
SeFT 327+23 279+ 24 345+30 280+ 1.4
mTAND 275+ 45 312473 306 +4.0 308 +5.6
RAINDROP 524+ 28 609 + 3.8 513+ 7.1 484 + 1.8

Transformer 230+ 35 74+ 6.0 145+ 26 69+ 26

.......... Trans-mean 25.74+25 9.14+23 185+ 14 99 4+ 1.1
, x_:-,r 40% GRU-D 464 + 25 64.5 + 6.8 426+ 74 43+79
! SeFT 263 + 0.9 299 + 4.5 2731+ 1.6 223+ 19
*-- mTAND 194+ 45 15.1 £44 20.2 + 3.8 170 + 34
RAINDROP 525+ 3.7 534 +56 48.6 + 1.9 4.7 + 34

Transformer 214+ 1.8 2.7+0.2 125+ 04 44+ 03

Trans-mean 213+ 1.6 28+ 04 125 £ 0.7 46 £ 0.2
50% GRU-D 373+ 27 296 £5.9 328+ 4.6 26.6 +£5.9
SeFT 247+ 1.7 159 +£2.7 253126 182+ 24
mTAND 16.9 + 3.1 126 +£5.5 17.0 £+ 1.6 139 + 4.0
RAINDROP 46.6 + 2.6 445 + 2.6 424 + 39 38.0 + 4.0

56



Setting 3/3: Group-wise classification

= Split by age: Patients older than 65 years vs. younger patients
= Split by gender: Male vs. female patients

» Use one group as training set and randomly split the other group into
validation (50%) and test set (50%)

Generalizing to a new patient group

Model
Train: Young — Test: Old | Train: Old — Test: Young | Train: Male — Test: Female | Train: Female — Test: Male
AUROC AUPRC | AUROC AUPRC | AUROC AUPRC | AUROC AUPRC

Transformer  76.2 & 0.7 305 £ 4.8 76.5 £ 1.1 33.7 £5.7 77.8 £ 1.1 26.0 £ 6.2 752 £ 1.0 303 £55
Trans-mean 80.6 =14 398+42 784 £ 1.1 35.8 £29 80.2 £ 1.7 32119 76.4 £ 0.8 325433
GRU-D 76.5 £ 1.7 205+£23 79.6 £ 1.7 352+t 4.6 785 £ 1.6 319 £ 4.8 76.3 £ 2.5 31.1 £2.6
SeFT 775 £ 0.7 26.6 = 1.2 789+ 1.0 327+27 78.6 £ 0.6 31,1 £ 1.2 769 0.5 264 + 1.1
mTAND 79.0 £ 0.8 288 +23 794+06 298+1.2 78.0 £ 0.9 265+ 1.7 789 +£1.2 2924+20
RAINDROP 83.2+16 43.6+4.7 820+44 443-+3.6 850+ 14 452 +29 81.2 + 3.8 40.7 £ 2.9

Strong results in across-group scenarios; e.9., Raindrop outperforms strongest baseline by 4.8% in AUROC and
13.1% in AUPRC when asked to generalize to female patients

Raindrop can generalize to new samples unseen during training:
Sensor dependency graphs are sample-specific and estimated using a sample’s observations
Raindrop can adaptively generate sensor dependencies based on readouts of a test sample

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022
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Can Raindrop learn dynamics of sensors?

Nodes: sensors

Nodes 1 (pulse oximetry), 5 (diastolic
BP), and 12 (partial pressure of carbon

dioxide from arterial blood) have
lower weights in patients with no sepsi

Patients with no sepsis Patients who develop sepsis
Sensor dependency graphs averaged across Sensor dependency graphs averaged across
negative samples positive samples

Distinguishable patterns between graphs of negative and positive samples = Raindrop learns

dynamics of sensors purely from observational data

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 s



Can Raindrop learn dynamics of sensors?

AR .‘/-- _\" 75N
— (26) ‘\2_§ |\2f/_. o,

~ @)= @)
Edges from node 3 (systolic BP) to node 13 (oxygen saturation 2 : "*»-23’",-‘
from arterial blood) and node 6 (respiration rate) to node 25 P 2y y 20' :
(potassium) are informative for distinguishing between w/ and (3) 2 :fi:
w/o sepsis XV 4 $¥ o2
(19)
) e
&) Y 0
(17)
Node 0 (heart rate) is not connected to any others sensor, ( / N (16)
indicating that heart rate carries little predictive value for /
the onset of sepsis (4) , (1)

Show is differential inter-sensor graph between patients who will likely develop sepsis and those who
won't

Edges are colored by the divergences; darker colors denote sensor dependencies that are more
crucial to patient classification

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022 0



Irregular time series: Recap

 Irregular time series: Raindrop addresses the complexity of time
series, e.g., misaligned observations, varying time gaps & varying
numbers of observations per sensor

 Inter-sensor structure: Raindrop adopts neural message passing to
model inter-sensor dependencies in irregular time series

« Great generalization: Raindrop has excellent performance in
challenging settings, including setups where a subset of sensors
malfunction (i.e., have no readouts at all)

Graph-Guided Network for Irregularly Sampled Multivariate Time Series, ICLR 2022



Today's lecture

QTime series tasks in healthcare
QSeIf-supervised pre-training for time series

QLearning representations of regular and
iIrregular time series

) Understanding time series models



Intrinsic vs. post-hoc interpretability

Intrinsic (e.g.linear models, trees, attention)

Input Time Series Model

Output
f(XX)

\ Explanation

Post-Hoc (e.g. LIME, SHAP)

f

0

0

[ Input Time Series
: XX = RTde
0

0

0

0

0

0

Black Box
f

Explainer

Mihaela van der Schaar



Standard feature importance scoring methods

Highlight most important features for the model

* Integrated Gradient [Sundararajan et al. 2017] ‘ ‘ - Image f(zx)

classifier Dog
1

a;(f,x) = (x; —x?) X f

0

f[x° + t(x —x9)] "
axi

« SHAP [Lundberg et al. 2017]

IS|! (dim X — |S| —1)

a(f,x) = (dim 20)!

sc[dim X]\{i}

[f (xsugy) — F(xs)]

“Standard” feature importance methods perform poorly for time-series
[Ismail et al., NeurlIPS 2020]

Mihaela van der Schaar



Challenges for explaining time series

= Not easily visually interpretable

| | | |
= Noisy samples ol M 1 ] |
= Dense informative features, unlike Eo sy A 9
imaging and text modalities : ° ] { :
= Temporal patterns £ o]

= Only show up when looking at time -
segments and long-term behaviors & { o
= Perturbations matter e % T &S e

= Setting a value to zero does not
ignore that time point

» Temporal dependencies cannot be
ignored

time points Omranian et al., 2015

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023
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What makes time series datasets different?

A

price;
Time induces a context
Sell Explanations should take
O ¢ this context into account °
Wait o . @
[
O
O Buy @
O O
O
t

Mihaela van der Schaar



How to detect salient features?

Perturbation based detection

price;
Premise: salient features affect the model’s prediction
® Bull
Detect salient features by feature perturbations o C
Salient
Feature perturbation affects prediction - Salient feature °

Mihaela van der Schaar



How to take the time context into account?

Window perturbation:

Time context matters i
@
Typical saliency methods treat each inputx; ; as a feature ¢ o
o
. .. . L d L ° ° ° ° °

= Time dependency is ignored by the saliency method o i ° .

-ttt
Dynamic Perturbation Operator v
Idea: perturb each x:-; by using neighbouring times: 4 ce(t,i)

Perturbed input .., Linear combination

T[(Xt*,i;t*:i)= Z ce(t%,1) X X o0 L o o

t=t* —W1

— Time dependency is integrated in perturbation

[Crabbé, van der Schaar, ICML 2021] N



How to take the time context into account?

Past window perturbation:

Time context matters i
@
Typical saliency methods treat each inputx; ; as a feature ¢ o
o
o o ° L ° ® e

= Time dependency is ignored by the saliency method o i °

-+ttt
Dynamic Perturbation Operator v
Idea: perturb each x:-; by using neighbouring times: 4 ce(t*,0)

Perturbed input .., Linear combination
T[(Xt*,i ;t*, 1) = Z Ct(t*, l) X Xt,i e © o L
t=t* -W,
—p—p—

— Time dependency is integrated in perturbation

[Crabbé, van der Schaar, ICML 2021]
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Input Time Series
X € RTde

feature

v

Mask

M € [0,1]T*dx

Dynamask

Black Box
f

Perturbation Perturbed

Operator Output
[y f oIy (X)

[Crabbé, van der Schaar, ICML 2021]

Backpropagate
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How to make saliency masks parsimonious?

Useless:

What do we mean by parsimonious?

:time
Masks should not highlight more features than necessary

= We need to enforce feature selection

How to enforce parsimony? feature

Useful:
The user selects the fraction a of most important features

We add a regularization to enforce sparsity:

Setsthe (1 —a) XT Xdy

coefficients to zero

[Crabbé, van der Schaar, ICML 2021]



How to avoid quick variation in
the saliency mask?

Quick time variations of the saliency

Might want to avoid quick time variations of the saliency

This can be a prior belief or a preference of the user v
feature l

How to avoid this?

We add a regularization to penalize saliency jumps over time:

T-1 dy

L(M) = Z Zlmt+1,i - mt,i|

t=1 i=1

[Crabbé, van der Schaar, ICML 2021]



Dynamask - Example

Example number 5

Method = Dynamask - Mask Entropy = 13. .
Dynamask saliency

True salienc
. ChN [Cha
True saliency sz 3
o™ o™ Mask1 0
1 21 41 61 81 '
Time Time
d Fit - Mask Entro
B~ l JII 2~
"&‘ N
Ly | I '|
Time
Method = AFO - Mask Entropy = 203 06
9\—
Lo nl 1 | |
| ' 0.4

Method = Retain - Mask Entropy = 290 Method = Int. Grad. - Mask Entro

BN | | LI
| win 1T

61 81
Time

Feature
3 2 1

Baseline saliency
1 21 41

Time
= 164 Method = Lime - Mask Entro

Method = GradSHAP - Mask Entro

1

Feature
3 2

Time

l» 1}
| I El
4 61

Time

72
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Existing time series explainers are inadequate

Time—y. Dynamask, ICML 2021

a Perturbations are continuous
= Can deform shape of samples

b

<«—Feature _
[]

Give only instance-based

B

explanations
= Cannot relate patterns across _ - _ - O
Samples Desiderata for time series explanations
« Temporally connected and visually digestible
e Fail to match performance of - ldentify the location of predictive time series
generic exp|ainers signals and underlying interpretable patterns
« Connect explanations across samples

= Post-hoc methods suffer from a lack
of faithfulness and stability

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023
73



TimeX Is a time-series consistency explainer

Pretrained model’s |
latent space

= Surrogate model to mimic the

behavior of a pretrained time v
series model I’p‘t’t\:’:
= TimeX makes inferences on | |
masked samples ’ Bl
* Model behavior consistency — | —
» Enforces faithfulness at the level of ~J | |
the latent Space Identify what signals L 1 5 | J
. the model uses and a \/\‘ \ EPA
» | earns a flexible latent space of where they are +/ Identify landmarks that explain
eXplanationS model behavior +/

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023



TimeX learns highly-faithful explanations

SeqComb-MV LowVar
Method AUPRC AUP AUR AUPRC AUP AUR
IG 0.32984+0.0015  0.7483+0.0027  0.25814+0.0028 | 0.8691+0.0035  0.4827+0.0029 0.816540.0016
Dynamask 0.3136£0.0019  0.5481+£0.0053  0.1953+0.0025 0.13911+0.0012  0.16404+0.0028  0.2106+£0.0018
WinlT 0.280940.0018  0.7594+0.0024  0.2077+0.0021 0.16674+0.0015  0.1140+0.0022  0.3842+0.0017
CoRTX 0.3629+0.0021 0.562540.0006  0.345740.0017 | 0.498340.0014  0.328140.0027 0.471140.0013
SGT + Grad | 0.4893+0.0005 0.497040.0005  0.4289+0.0018 | 0.344940.0010 0.21334+0.0029  0.3528+0.0015
TIMEX 0.687810.0021 0.83261+0.0008  0.3872+0.0015 | 0.8673+0.0033  0.54514+0.0028  0.9004-+0.0024

ECG

Method AUPRC AUP AUR

IG 0.418240.0014 0.5949+0.0023 0.32044-0.0012

Dynamask | 0.328040.0011 0.524940.0030 0.1082-+0.0080

WinlIT 0.304940.0011 0.4431+0.0026 0.34744-0.0011

CoRTX 0.373540.0008 0.4968+0.0021 0.30314-0.0009

SGT + Grad | 0.31444+0.0010 0.424140.0024 0.263940.0013

TIMEX \ 0.47214+0.0018 0.5663+0.0025 0.445740.0018

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023
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Landmarks learn important patterns in ECG
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Latent Space of Explanations
Landmarks partition the latent space of explanations into interpretable temporal patterns

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023



Explanations through self-supervised model
behavior consistency: Recap

TimeX is a SOTA time series Pretrained models
. atent space
explainer

STEs learn discrete masks that
represent explanations and prevent k
shortcut learning l

TimeX latent
space

Model behavior consistency
preserves faithfulness across latent
spaces

II —_—
22 |

Landmarks flnd Important commaon Identify landmarks th.at e);p]ain
temporal patterns to increase model hehavior
interpretability

Encoding Time-Series Explanations through Self-Supervised Model Behavior Consistency, NeurlPS 2023



Today's lecture

QTime series tasks in healthcare
QSeIf-supervised pre-training for time series

QLearning representations of regular and
iIrregular time series

) Understanding time series models



Thank you for an incredible semester!

Final project presentations: See you all tomorrow (Wed) from 9am-12pm

AlM 2

Home
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Course Project

Focused Tutorials

Calendar
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2=

L3

L4 -

L5 -

L6 -

L7 -

L8

L9 -

L10 -

L1

L2 -

L13 -

NLP 1

NLP 1l

- Generative Al

Agentic Al
Medical Imaging |
Medical Imaging Il

Trustworthy Al

- Networks |

Networks I

Molecular Al

- Multimodal Al

Ethical & Legal

Time Series & Sensors

Staff

Schedule

Q) search AIM 2 Canvas BMIF 203 Canvas BMI 702 Harvard DBMI Zitnik Lab

Artificial Intelligence in Medicine ||
Harvard - BMIF 203 and BMI 702, Spring 2025

Advances in Al will have a broad and profound impact on science and medicine, offering new approaches to transform
medical research and practice. This course provides a comprehensive overview of cutting-edge Al paradigms, including
self-supervised learning, generative models, and multimodal technigues that integrate diverse data types. Beyond
foundational methods, the course dives into a range of real-world applications in natural language processing, medical
image analysis, relational and structure understanding, and longitudinal patient data.

FACULTY INSTRUCTOR

Marinka Zitnik

marinka@hms.harvard.edu
~ Office Hours: Mon, 12pm - 1pm, Countway 309
T

https://zitniklab.hms.harvard.edu/AIM2

This is just the beginning

You now have the tools to bridge Al and
medicine to ask deeper questions, to build more
powerful models, and to reimagine what is
possible for human health

The future of Al in medicine will be shaped by
those who think critically, work collaboratively,
and innovate responsibly. Keep pushing the
boundaries of what we know. Stay grounded in
science, but never lose sight of imagination

The discoveries you make can change lives

| look forward to seeing the breakthroughs you
will create
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