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Outline for today’s class

1. Overview of this course

2. What makes biomedical data unique

3. Introduction to distributed language 

representations

4. Introduction to NLP in clinical settings
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What will you learn in this course?

▪ Key data modalities
▪ Clinical data

▪ Networks, graphs, and multimodal datasets

▪ Language and text

▪ Images 

▪ Cutting-edge algorithmic principles underlying AI
▪ Self-supervised learning and transfer learning

▪ Large-scale pre-training and efficient fine-tuning

▪ Multimodal learning

▪ Generative AI

▪ Broader impacts:
▪ Model evaluation, benchmarking, and deployment

▪ Privacy, safety, and copyright issues of AI
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Course staff

▪ Marinka Zitnik (Instructor)

▪ Biomedical Informatics at HMS

▪ Kempner Institute at Harvard University

▪ Broad Institute of Harvard and MIT

▪ https://zitniklab.hms.harvard.edu 

▪ Grey Kuling (Curriculum Fellow)

▪ Curriculum Fellow in Medical AI
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Course staff

▪ Yasha Ektefaie 

▪ PhD student in BIG program

▪ yasha_ektefaie@g.harvard.edu

▪ Yepeng Huang

▪ PhD student in BBS program

▪ yepeng@fas.harvard.edu  

▪ Courtney A Shearer

▪ PhD student in SSQB program

▪ courtney.shearer@gmail.com 
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Dates, times and format

▪ Course website:
▪ https://zitniklab.hms.harvard.edu/AIM2 

▪ BMIF 203 runs jointly with BMI 702. Refer to 
https://canvas.harvard.edu/courses/151093 

▪ Tuesdays, 2:00 PM – 4:00 PM ET
▪ No class or assignments due: Week of March 17

▪ Location:  
▪ TMEC 227 (except week 1 in room 128)

▪ Office hours:
▪ Mon, 12-1pm (Zitnik)

▪ Mon, 4-5pm (Shearer)

▪ Thu, 1-2pm (Ektefaie)

▪ Thu, 2-3pm (Huang)
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Key components of this course

▪ Weekly lectures

▪ Focused tutorials

▪ Research project

▪ Weekly reading assessments
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Focused tutorials

▪ Practical tutorials are designed to give you hands-

on experience applying AI techniques to real-world 

healthcare problems

▪ Core AI applications: NLP, medical image analysis, 

graph neural networks, generative models, LLMs, 

biological and clinical foundation models
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Research projects

▪ Research project:
▪ Identify a medical question aligned with your area of interest

▪ Identify one or more dataset to study the question

▪ Develop, apply or adapt one or more AI models for the dataset

▪ Run experiments, benchmark models, share findings and results 

▪ Project proposal (due in week 3)

▪ Mid-term project presentation (week 7)

▪ Final presentations and report (week 13)

▪ Form groups:
▪ BMIF 203: Groups of size 1-2 students

▪ BMI 702: Groups of size 2-3 students

▪ We will provide Google Colab subscriptions

▪ Check out our project ideas and open medical datasets

https://zitniklab.hms.harvard.edu/AIM2/course_project/ 
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Weekly reading assessments

▪ Weekly quizzes based on ~2 medical AI papers 

▪ These readings are essential for building a strong 

understanding of the concepts we will discuss in 

class

▪ Quizzes are graded on completion, so if you 

submit thoughtful responses, you will receive full 

credit

▪ You will also receive model answers to compare 

with your own, helping you check your 

understanding of course materials
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Grading

11

We Want You to Succeed! 

You are welcome to visit our office hours and talk with us. We know graduate school 

can be stressful and we want help you succeed
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Course culture and attendance

▪ Course culture and collaboration:

▪ Students taking this course come from diverse 

backgrounds

▪ All members of this course are expected to treat each 

other with courtesy and respect

▪ You can collaborate with others but we ask that you 

write your solutions individually in your own words

▪ Attendance:

▪ We ask students to attend all classes

▪ You are encouraged to attend focused tutorials. We 

expect that students will attend at least some of them
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Policies

▪ We support using LLMs, genAI and coding copilots:

▪ Responsibility for content: Students who use LLMs and 

generative AI tools in their assignments take full responsibility 

for the content they submit

▪ Acknowledgment of AI use: Clearly acknowledge any use of 

LLMs, specifying the nature and extent of assistance received 

from AI. Make sure to perform critical thinking, analysis, and 

synthesis of information

▪ Ethical use and originality: Follow the principles of academic 

Do not use AI to plagiarize, misrepresent original work, or 

fabricate data

▪ Instructor discretion: We may specify assignments where 

LLMs and generative AI use is encouraged or prohibited
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Outline for today’s class

1. Overview of this course

2. What makes biomedical data unique

3. Introduction to distributed language 

representations

4. Introduction to NLP in clinical settings
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AI in medicine

15

Input AA 

sequence

108 molecular

compounds

Graph

learning

Search of new 

antibiotics

3D coordinates of

amino acids in a protein

Self-supervised

learning

Ligand-target 

binding affinity

New fundamental results in molecular dynamics

Geometric

learning

Scientific discovery in the age of 
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A long-standing ambition for biomedical AI is the development of 

AI systems that can make major discoveries with the potential to 

be worthy of a Nobel Prize—fulfilling the Nobel Turing Challenge

Empowering Biomedical Discovery with AI Agents, Cell 2024

“AI scientists” as generative AI agents
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AI in healthcare

Health system-scale language models are all-

purpose prediction engines, Nature 2023

Large language models encode clinical 

knowledge, Nature 2023
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“AI doctors”: Conversational medical AI 

optimized for diagnostic dialogue

Towards Conversational Diagnostic AI, arXiv:2401.05654 18Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - AI in Medicine



19

Key algorithmic advances

Scientific discovery in the age of 

artificial intelligence, Nature 2023

Geometric learning Self-supervised learning Generative AI
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What makes biomedical data so 

different?

▪ Life or death decisions 

▪ Need robust algorithms 

▪ Checks and balances built into ML deployment 

▪ (Also arises in other applications of AI such as autonomous 

driving) 

▪ Need fair and accountable algorithms

▪ Many questions are about unsupervised learning 

▪ Discovering disease subtypes, or answering question such 

as “characterize the types of people that are highly likely to 

be readmitted to the hospital”? 

▪ Many of the questions we want to answer are causal

▪ Nai ̈ve use of supervised machine learning is insufficient 
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What makes biomedical data so 

different?

▪ ML models are increasingly deployed in real-world 

applications and implemented in clinical settings:

▪ It is critical to ensure that these models are behaving 

responsibly and are trustworthy 

▪ Accuracy alone is no longer enough

▪ Auxiliary criteria are important:

▪ Explainable predictions and interpretable models

▪ Fair and non-discriminatory predictions 

▪ Privacy-preserving, causal, and robust predictions

▪ This broad area is known as trustworthy ML
21

High-stakes decisions
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What makes biomedical data so 

different?

▪ Very little labeled data

▪ Recent breakthroughs in AI depended on lots of 

labeled data!
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What makes biomedical data so 

different?

▪ Very little labeled data 

▪ Motivates semi-supervised and self-supervised learning 

▪ Sometimes small numbers of samples (e.g., a rare 

disease) 

▪ Learn as much as possible from other data (e.g., from 

healthy patients) 

▪ Model the problem carefully 

▪ Lots of missing data, varying time intervals, 

censored labels 
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What makes biomedical data so 

different? 

▪ Difficulty of de-identifying data: 
▪ Need for data sharing agreements and sensitivity 

▪ Difficulty of deploying ML: 
▪ Commercial electronic health record software is difficult 

to modify 

▪ Data are often in siloes; everyone recognizes need for 
interoperability, but slow progress 

▪ Rigorous testing and iteration are needed 

▪ Difficulty of correcting for biases and inequities:

▪ Consideration of ethical and legal issues

▪ Health data on which algorithms are trained are likely to 
be influenced by many facets of social inequality 
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Outline for today’s class

1. Overview of this course

2. What makes biomedical data unique

3. Introduction to distributed language 

representations

4. Introduction to NLP in clinical settings
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“apple” is a polysemic word…

Distributed word representations

Sparse Dictionary Learning Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022

On Knowing a Gene: A Distributional Hypothesis of Gene Function, Cell Systems 2024Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - AI in Medicine 27



Distributed word representations

Sparse Dictionary Learning Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022

On Knowing a Gene: A Distributional Hypothesis of Gene Function, Cell Systems 2024

… whose particular meaning is resolved via sentence context
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Distributional hypothesis

The Distributional hypothesis is that words that 

occur in the same contexts tend to have similar 

meanings (Harris, 1954). 

The underlying idea that "a word is characterized 

by the company it keeps" was popularized by Firth 

(1957).
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Distributional hypothesis

30

Sparse Dictionary Learning Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022

On Knowing a Gene: A Distributional Hypothesis of Gene Function, Cell Systems 2024Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - AI in Medicine



Intuition

31[Based on Edoardo Ponti's slides]

“Probability of a sentence” = how likely is it to occur in natural language

Example 1: Syntax and grammatical properties

Example 2: Semantic properties

What about the probability of "the Archaeopteryx winged jaggedly amidst foliage"?
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Probabilistic model of language
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[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

Example
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[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

Estimation

We assume there is some true w which we estimate/approximate with a (parametric) 

estimator) which is an element of .

This is done by learning from data . , e.g. by minimizing some loss:

g

Since the optimal model is unknown, we use the data as an estimate:
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[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

How to learn a model from the data?

A suitable loss function is the KL-Divergence (divergence between prob. distributions):

Justification:

From Information Theory: Measures the excess number of bits we pay by encoding our data 

with a sub-optimal model. The optimum is just the entropy (Shannon, 1948).

constant wrt. model param.

Cross-Entropy
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[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

N-Gram models

We can obtain a very simple form for by making the Markov assumption:

This is a tri-gram model (history of two). Assumes all of these are equal:
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Word2vec, node2vec, 

sentence2vec, and many others

Mikolov et al., Efficient estimation of word representations in vector space, 2013 (50,000 citations)Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - AI in Medicine 37



Transformer architecture

38[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

[Vaswani et al. "Attention is all you need", 2017]

Probably the most influential ML paper since Backpropagation (1986)

→ Over 150K citations since 2017

→ Essentially replaced RNNs for most purposes

A simple sequence to sequence model mapping an input 

(tokenized and "embedded") into a continuous

based on which the 

autoregressively, i.e.

representation 

decoder produces 

one symbol at a time.
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Transformer building block

39[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

[Vaswani et al. "Attention is all you need", 2017]

1. Attention Mechanism

2. Position Encodings

3. Residual connections + Normalization
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Attention mechanism

40[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

[Vaswani et al. "Attention is all you need", 2017]

Think of this as a soft "look-up" operation in an 

associative memory using dot-products as a 
similarity measure.
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Dot-product attention mechanism

41[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s slides]

[Vaswani et al. "Attention is all you need", 2017]

Long-distance dependencies?
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Encoder- Decoder

Keys & Values taken from 

Encoder output

[Jayakumar et al. "Multiplicative Interactions and where to find them", 2019]

Encoder-decoder transformer
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Outline for today’s class

1. Overview of this course

2. What makes biomedical data unique

3. Introduction to distributed language 

representations

4. Introduction to NLP in clinical settings
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General vs. personalized medicine

44

Johnson et al., JACC Basic Transl Sci, 2017
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Precision medicine goals
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Why are these goals relevant?
Problem: Underrepresentation in clinical research

46

Most clinical decisions involve bridging the inferential gap: Clinicians are required to “fill in” where they lack 
knowledge or where no knowledge yet exists:
• Misdiagnoses, medical errors, prescription errors, surgical errors, under-treatments, over-treatments, 

unnecessary lab tests can be due to inferential gaps
• Late diagnosis of cancer can be due to the inferential gaps at the primary care
• Crisis caused by misuse, underuse, or overuse of antibiotics is in part due to serious inferential gaps
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Precision medicine 

requires a multi-level 

understanding

of health and 

disease…
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…und understanding how health and 

disease states evolve
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This all-encompassing dataset does no 

exist…

… but real-world data 

can serve as proxy

49

Next: How are electronic 
health records used for 

research?
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Electronic health records

▪ The digitized paper charts

▪ The underlying goal/purpose of EHRs is 

billing/infrastructure 

▪ Contains any data collected during an individual’s 

interaction with a medical system 

▪ Different software vendors (e.g., EPIC, Cerner) 
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EHR data types and formats

▪ Made available by data warehouses 

▪ Are often encounter-based 

▪ Typically separated by modality (e.g., 

demographics table, lab table) 

▪ Often in star-schema format 
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EHR data structure

▪ Structured: labs, 

medications, etc. 

▪ Semi-structured: 

smartforms, 

radiology 

impressions, echo 

reports 

▪ Unstructured: 

clinical notes 

▪ Note: It does not 

have all data! 
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Types of research using EHRs?

▪ Characterize co-morbidities & epidemiological trends 

▪ Identify disease sub-phenotypes 

▪ Identify unknown drug adverse events 
▪ Find symptom clusters 

▪ Predict medication response 
▪ Anticipate disease flare-ups 

▪ Guide triage decisions 

▪ Track treatment progression and sequelae 
▪ Couple with other patient data modalities: genetics, 

images, notes, biosignals, etc. 

+ countless more... 
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Goals of ML for healthcare 

using EHR 
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Typical ML workflow for EHR data

▪ Gather (identify relevant feature) 

▪ QC values (wrong unit?) 

▪ Check for/address missingness 

▪ Phenotype and design cohort 

▪ Define outcome (label) and study period 

▪ Use relevant ML techniques 

▪ Pre-process data to fit the ML technique

▪ Refine and repeat 

59
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Typical ML workflow for EHR data

60

Johnson et al., JACC, 2018
Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - AI in Medicine



What is a disease?

▪ A disease is not easily defined in EHRs!

▪ Many ways in which a disease can be represented 
(and often wrong)

▪ Phenotyping algorithms and standardized concepts to 

the rescue: accurately identify patients with a specific 
observable trait from imperfect EHR data
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How well do various data types define 

a disease? (1/3)

▪ Goal: Evaluate phenotyping performance of major EHRs
▪ Diagnosis codes

▪ Primary notes

▪ Medication lists

▪ Approach: 
▪ Select ten diseases: atrial fibrillation, Alzheimer’s disease, breast 

cancer, gout, human immunodeficiency virus infection, multiple 
sclerosis, Parkinson’s disease, rheumatoid arthritis, and T1D/T2D

▪ For each disease, classify patients into seven categories based on 
the presence of evidence for disease in a) diagnosis codes, b) 
primary notes, and c) specific medications

▪ For each disease, select 175 patients for manual chart review

▪ Use review results to estimate positive predictive value (PPV) for 
each EHR data type alone and in combination

62

Wei et al., JAMIA, 2016
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How well do various data types define 

a disease? (2/3)
▪ PPV is the ratio of patients that truly have the disease according to manual 

chart review to all patients who had been identified as having the disease
▪ PPVs on single data types were inadequate for accurate phenotyping (0.06–0.71)

▪ Using two or more ICD codes improved the average PPV to 0.84

63PN, primary notes Wei et al., JAMIA, 2016
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How well do various data types define 

a disease? (3/3)

▪ Multiple data types provide a more consistent and 

higher performance than a single one

▪ Use multiple EHR data types for disease phenotyping

64

Wei et al., JAMIA, 2016
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External replication is necessary but 

not easy to facilitate
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It is challenging to capture health state 

from EHR
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ML models can learn the wrong 

information
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ML models can “cheat” (1/3)

▪ Objective: Hip fractures are a leading cause of death 
and disability among older adults
▪ Most commonly missed diagnosis on pelvic radiographs

▪ Delayed diagnosis leads to higher cost & worse outcomes

▪ Data: Collect 23,602 hip radiographs from 9,024 
patients, patient and hospital process EHR data: 
▪ Prevalence of fracture is 3% (779/23,602)

▪ Patients with fractures were more likely to report a recent fall 
and less likely to report pain 

▪ Features: image (IMG), disease (fracture) class, 5 patient 
(PT) features, 14 hospital process (HP) features

68
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ML models can “cheat” (2/3)

▪ ML model: Train a neural network on radiographs to 
classify fracture

▪ Results: Fracture is predicted:
▪ Moderately well from the IMG data alone (AUC = 0.78) 

▪ Better when combining IMG + PT (AUC = 0.86) 

▪ Better when combining IMG + PT + HP (AUC = 0.91)  

▪ Follow-up analysis: 
▪ Test ML model whether it can directly detect fracture versus 

indirectly predict fracture by detecting confounding variables 
associated with fracture

▪ On a test set with fracture risk balanced across PT and HP 
variables, fracture detector is no better than random 
(AUC = 0.52)

69
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ML models can “cheat” (3/3)

▪ On test set with fracture risk 
balanced across PT and HP 
features, fracture detector is 
no better than random 
(AUC=0.52)

▪ Confounding variable (e.g., time 
since prior lab order, or which 
scanner in a hospital is used to 
acquire a radiograph) is associated 
with both:
▪ Explanatory variable (acuity of a 

patient’s illness, or a patient’s clinically 
predicted risk of fracture) 

▪ Outcome (mortality, or the likelihood of 
a radiograph’s pixels containing 
patterns suggestive of fracture) 

70
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Limitations & biases of EHR

▪ Diseases are not easily defined in EHRs!

▪ External replication is not easy to facilitate

▪ It is challenging to capture health state from EHR

▪ ML algorithms can learn the wrong information

▪ ML algorithms can “cheat”

▪ ML algorithms can fail on other patient populations

▪ Biased real-world data can lead to real-world 

consequences

71
Ben Glicksberg, Mount Sinai
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Fine print of using EHRs

▪ In USA (and elsewhere), the healthcare is fragmented and EHRs do not 
extend beyond specific health system 

▪ EHRs capture only data that is entered and how it is entered: “Garbage in, 
garbage out” 

▪ EHR systems are messy, redundant, incomplete, heterogenous, 
erroneous, etc. 

▪ Interfacing with EHR data is challenging and requires domain expertise 

▪ Biases are propagated through! 

▪ Poorly encoded key information: i.e., social determinants of health 

▪ The “missing phenome” 
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Understanding recruitment of patients 

to clinical trials

▪ Nearly 80% of all clinical studies fail to finish on 

time, and 20% of those delayed are for six months 

or more

▪ 85% of clinical trials fail to retain enough patients

▪ The average dropout rate across all clinical trials is 

around 30%

▪ Over two-thirds of sites fail to meet original patient 

enrollment for a given trial

▪ Up to 50% of sites enroll one or no patients in their 

studies
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“Leaky pipe” framework for 

understanding patient recruitment
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What is patient-trial matching?

75COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching, KDD 2020

Patient data can come from longitudinal EHRs or 
screening or surveys

Goal: Find qualified patients for a clinical trial given 

patient data and trial eligibility criteria (EC) described 

as both inclusion and exclusion criteria
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Challenges of patient-trial matching

76COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching, KDD 2020

1. Varying concept granularity

▪ Eligibility criteria encode general diseases

▪ EHRs use specific medical codes

2. Many-to-many matching

▪ Every patient might enroll in more than one trial and 

vice versa

▪ Aligning patient embeddings to multiple trial 

embeddings can confuse the embedder

3. Handling explicit inclusion/exclusion criteria

▪ Criteria describe desired and unwanted characteristics 

of target patients
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COMPOSE: Method overview (1/6)
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COMPOSE: Method overview (2/6)
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Taxonomy guided patient embeddings 

(3/6)
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Taxonomy guided patient embeddings 

(4/6)
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COMPOSE: Method overview (5/6)
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COMPOSE: Method overview (6/6)
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COMPOSE: Patient-trial matching
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Experimental setup: Data

▪ Clinical trials:

▪ 590 trials from publicly available data source 

(clinicaltrials.gov)

▪ 12,445 criteria-level EC statements

▪ Patient EHR dataset:

▪ 83,731 patients from 2012 to 2018
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Results: Criteria-level matching
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Results: Trial-level matching
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Trial on Cabozantinib, which treats 

grade IV astrocytic tumors

87COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching, KDD 2020

Attention weights on the memory slots for 

the Cabozantinib trial for treating grade IV 

astrocytic tumors

COMPOSE successfully matches this trial (94% 
matching) while all baselines fail (< 50% matching)
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Trial for early-stage non-small cell lung 

cancer

88COMPOSE: Cross-Modal Pseudo-Siamese Network for Patient Trial Matching, KDD 2020

Inclusion criteria are denoted as Ii 

and exclusion criteria as Ej

An example of a trial for which it is difficult to find matching 

patients. All models achieve a lower than 50% accuracy 
score for this trial. Shown are prediction results for 

COMPOSE and a case patient. The results show that 

COMPOSE successfully matches I1 and E3 to the patient but 
classifies other ECs to unknown 

#NCT02998528
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Outline for today’s class

1. Overview of this course

2. What makes biomedical data unique

3. Introduction to distributed language 

representations

4. Introduction to NLP in clinical settings
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