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Outline for today’s class

gOverview of this course

2. What makes biomedical data unique

3. Introduction to distributed language
representations

4. Introduction to NLP in clinical settings



What will you learn In this course?

= Key data modalities
= Clinical data
= Networks, graphs, and multimodal datasets
= |Language and text
= |mages

= Cutting-edge algorithmic principles underlying Al
= Self-supervised learning and transfer learning
= [arge-scale pre-training and efficient fine-tuning
= Multimodal learning
= (Generative Al

= Broader impacts:
= Model evaluation, benchmarking, and deployment
= Privacy, safety, and copyright issues of Al
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Course staff

= Marinka Zitnik (Instructor)
= Biomedical Informatics at HMS
= Kempner Institute at Harvard University
= Broad Institute of Harvard and MIT
= https://zitniklab.hms.harvard.edu

. . ;\ k—
= Grey Kuling (Curriculum Fellow) A
= Curriculum Fellow in Medical Al =7


https://zitniklab.hms.harvard.edu/

Course staff

= Yasha Ektefaie

= PhD student in BIG program
= yasha ektefaie@q.harvard.edu

= Yepeng Huang
= PhD student in BBS program
= yepeng@fas.harvard.edu

= Courtney A Shearer
= PhD student in SSQB program
= courtney.shearer@gmail.com
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Dates, times and format

Course website:
= hittps://zitniklab.hms.harvard.edu/AIM2

= BMIF 203 runs jointly with BMI 702. Refer to
https://canvas.harvard.edu/courses/151093

Tuesdays, 2:00 PM-4:00 PM ET

= No class or assignments due: Week of March 17

Location:
= TMEC 227 (except week 1 in room 128)

Office hours:

= Mon, 12-1pm (Zitnik)

= Mon, 4-5pm (Shearer)
= Thu, 1-2pm (Ektefaie)
= Thu, 2-3pm (Huang)



https://zitniklab.hms.harvard.edu/AIM2
https://canvas.harvard.edu/courses/151093

Key components of this course

Weekly lectures

Focused tutorials

Research project

Weekly reading assessments

Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine

AIM 2

Home

Syllabus

Course Project
Focused Tutorials
Calendar

L1 - NLPI

L2 - NLP 1l

L3 - Generative Al

L4 - Agentic Al

L5 - Medical Imaging |
LE - Medical Imaging lI
L7 - Trustworthy Al

L8 - Networks |

L9 - Networks li

L10 - Molecular Al

L11 - Multimodal Al
L12 - Ethical & Legal
L13 - Time Series & Sensors
Staff

Schedule

~



Focused tutorials

= Practical tutorials are designed to give you hands-
on experience applying Al technigues to real-world

healthcare problems

= Core Al applications: NLP, medical image analysis,
graph neural networks, generative models, LLMs,
biological and clinical foundation models

Tutorial 1: NLP in Medicine

Tutorial 2: Generative Al in Medicine

Tutorial 3: Medical Image Analysis

Tutorial 4: Al in Genomics

Tutorial 5: Biomolecular Structure Modeling with AlphaFold3, Boltz-1, and Chai-1 Foundation Models
Tutorial 6: Protein Language Models for Clinical Variant Effect Prediction

Tutorial 7: Modeling Single-Cell Perturbations with Foundation Models
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Research projects

Research project:
= |dentify a medical question aligned with your area of interest
= |dentify one or more dataset to study the question
= Develop, apply or adapt one or more Al models for the dataset
= Run experiments, benchmark models, share findings and results

Project proposal (due in week 3)
Mid-term project presentation (week 7)
Final presentations and report (week 13)

Form groups:
= BMIF 203: Groups of size 1-2 students
= BMI 702: Groups of size 2-3 students

We will provide Google Colab subscriptions
Check out our project ideas and open medical datasets

https://zitniklab.hms.harvard.edu/AlM2/course_project/



https://zitniklab.hms.harvard.edu/AIM2/course_project/

Weekly reading assessments

Weekly quizzes based on ~2 medical Al papers

These readings are essential for building a strong

understanding of the concepts we will discuss in
class

Quizzes are graded on completion, so if you
submit thoughtful responses, you will receive full
credit

You will also receive model answers to compare
with your own, helping you check your
understanding of course materials



Grading

Component Percentage Description
A 2-page proposal outlining your project's research question, methodology, dataset,
Project Proposal 5% and contingency plans, evaluated for clarity and feasibility. A third page is allowed for
figures and tables. Unlimited space for references.
Peer-Reviewed £ Constructive feedback is provided to peers, following the criteria for effective research
(1]
Feedback on Proposal review.
Midt Broject A presentation summarizing your progress, baseline results, and challenges. Assessed
idterm Projec i . . .
p tati 10% for clarity, engagement, and preparedness for feedback. Presentation file submitted
resentation
through Canvas.
) . A comprehensive, NeurlPS-style report detailing your research question, methods,
Final Project Report 50% i L
results, and conclusions. Assessed for depth, accuracy, and insights.
Final Proiect A conference-style presentation summarizing your project’s outcomes, strengths, and
Inal Frojec . . . . . . .
p tati 13% limitations. Evaluated on clarity, organization, and professionalism. Presentation file
resentation
submitted through Canvas.
Focused Tutorials and 5% Participation in hands-on tutorials and lectures, demonstrating engagement with
Lectures ’ coding and model application exercises.
Weekly Reading 19% Completion of weekly assessments following assigned readings, ensuring ongoing
(V]

Assessments

engagement and comprehension. 1 point per quiz; there is no quiz for Lecture 1.

We Want You to Succeed!
You are welcome to visit our office hours and talk with us. We know graduate school
can be stressful and we want help you succeed
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Course culture and attendance

= Course culture and collaboration:
= Students taking this course come from diverse
backgrounds

= All members of this course are expected to treat each
other with courtesy and respect

= You can collaborate with others but we ask that you
write your solutions individually in your own words

= Attendance:
= \We ask students to attend all classes

= You are encouraged to attend focused tutorials. We
expect that students will attend at least some of them



Policles

= We support using LLMs, genAl and coding copilots:

= Responsibility for content: Students who use LLMs and
generative Al tools in their assignments take full responsibility
for the content they submit

= Acknowledgment of Al use: Clearly acknowledge any use of
LLMSs, specifying the nature and extent of assistance received
from Al. Make sure to perform critical thinking, analysis, and
synthesis of information

= Ethical use and originality: Follow the principles of academic
Do not use Al to plagiarize, misrepresent original work, or
fabricate data

= |nstructor discretion: We may specify assignments where
LLMs and generative Al use is encouraged or prohibited



Outline for today’s class
V./ Overview of this course
What makes biomedical data unique

3. Introduction to distributed language
representations

4. Introduction to NLP in clinical settings



Al In medicine
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Al scientists” as generative Al agents

A long-standing ambition for biomedical Al is the development of

Al systems that can make major discoveries with the potentie’ Reasoning with feedback for alternative experimental
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Physician

Clinical
task

Al In healthcare

Operational
task

Temporal (OVR) AUC

Temporal (OVR) AUC

In ital mortality pr
How likely is the patient to die in the hospital before discharge?

Binned comorbidity index imputation
Without structured ICDS, how sick/chronically ill is the patient?

30-day all ission pi
How likely is the patient to come back within 30 days of discharge?

Binned LOS predi
How long will the p

ient stay in the hospital?

Insurance denial prediction
How likely is the patient's insurance claim to be denied?
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Health system-scale language models are all-
purpose prediction engines, Nature 2023

Insurance denial LOS

Medical question answering benchmark PaLM
(540B)
HealthSearchQA
\4 Prompting
LiveQA MedQA Instruction
TREG 2017~ MultiMedQA < (USMLE) — tuning
- <
MedicationQA MedMCQA Instruction
PubMedQA MMLU prompt tuning
Flan-PaLM 61.9% +——
Flan-PaLM | [16.1%
Med-Pal.M l13-7%
Clinician |14%
Flan-PaLM 47.6%

mea-paLm [Ji82%

Clinician I11-1%

Flan-PaLM 29.7%
Med-paLM [89%
Clinician |97 %
Flan-PaLM | 19.4%
Med-PalL.M |2-3%

Clinician l s
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MedQA (USMLE) accuracy (%)

Automated and human evaluation Fldn-£ab
(5408)
- "67.6
¥
60 +17%
55 PubMed GPT,
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50 BiolInkBERT  (360M) _— 50,3
" @aom) ____—47¢

PUbMedBERT " 45.1

*33.3
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Q: How long does it take for newborn jaundice to go away?

[Med-PaLM: Newborn jaundice is when a newbom baby’s skin and eyes look yellow. It is
caused by a buildup of a substance called bilirubin in the baby’s blood. Biliubin is a
[byproduct of the normal process of red blood cells breaking down. Newborn jaundice is
|common and typically harmiess, but it can be a sign of a more serious condition. The
jaundice typically goes away on its own within a few weeks. In some cases, it may last
longer or require treatment. The time it takes for the jaundice to go away can vary
depending on the cause and the severity of the jaundice. If the jaundice is severe or
lasts longer than a few weeks, the doctor may recommend testing or treatment to
determine the cause and prevent complications.

Med-PalLM performs encouragingly
on consumer medical question answering

Scientific consensus
No consensus
Opposed to consensus
Aligned with consensus

Inappropriate and/or incorrect content
Yes, great clinical significance

Yes, little clinical significance

No

Missing content

Yes, great clinical significance
Yes, little clinical significance
No

Extent of possible harm
Death or severe harm
Maderate or mild harm
No harm

Likelihood of possible harm
High

Medium

Low

Large language models encode clinical
knowledge, Nature 2023
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“Al doctors”: Conversational medical Al
optimized for diagnostic dialogue
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Key algorithmic advances
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What makes biomedical data so
different?

= Life or death decisions
= Need robust algorithms
= Checks and balances built into ML deployment
= (Also arises in other applications of Al such as autonomous
driving)
= Need fair and accountable algorithms
= Many questions are about unsupervised learning

= Discovering disease subtypes, or answering question such
as “characterize the types of people that are highly likely to
be readmitted to the hospital”?

= Many of the questions we want to answer are causal
= Naive use of supervised machine learning is insufficient



What makes biomedical data so
different?

ML models are increasingly deployed in real-world
applications and implemented in clinical settings:

= |tis critical to ensure that these models are behaving
responsibly and are trustworthy

Accuracy alone is no longer enough

Auxiliary criteria are important: High-stakes decisions
= Explainable predictions and interpretable models
» Fair and non-discriminatory predictions
* Privacy-preserving, causal, and robust predictions

This broad area is known as trustworthy ML



What makes biomedical data so
different?

= Very little labeled data

= Recent breakthroughs in Al depended on lots of
labeled data!

Large, diverse data ——  Broad generalization
(+ large models)

Figure 1: The Transformer - model architecture.

G PT"Z Vaswani et al. ‘18

Radford et al. ‘19

Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine
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What if you don’t have a large dataset?

medical imaging robotics personalized education,
translation for rare languages recommendations

What if you want a general-purpose Al system in the real world?
Need to continuously adapt and learn on the job.
Learning each thing from scratch won’t cut it.

What if your data has a long tail?
big data

e
/

objects encountered

LindAvranda e va N NS

These settings break the superwsed Iearnmg paradigm.
T driving scenarios

# of datapoints
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What makes biomedical data so
different?

= Very little labeled data
= Motivates semi-supervised and self-supervised learning

= Sometimes small numbers of samples (e.g., a rare
disease)

= Learn as much as possible from other data (e.g., from
healthy patients)

= Model the problem carefully

= |ots of missing data, varying time intervals,
censored labels



What makes biomedical data so
different?

= Difficulty of de-identifying data:
» Need for data sharing agreements and sensitivity
= Difficulty of deploying ML:
= Commercial electronic health record software is difficult

to modify

= Data are often in siloes; everyone recognizes need for
interoperability, but slow progress

= Rigorous testing and iteration are needed

= Difficulty of correcting for biases and inequities:

= Consideration of ethical and legal issues

= Health data on which algorithms are trained are likely to
be influenced by many facets of social inequality



Outline for today’s class

V./ Overview of this course

J(Nhat makes biomedical data unique

3., Introduction to distributed language

é representations

4. Introduction to NLP in clinical settings



Distributed word representations

“apple” is a polysemic word...

Google

grow an apple Q. buy an apple|

Sparse Dictionary Leaming Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022
On Knowingyarfaraeit AR shapHieEH iy PathssisealiGe nenronciion, Biaficws tems 2024
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Distributed word representations

... whose particular meaning is resolved via sentence context

grow an apple

grow an apple tree

grow an apple tree from seed
grow an apple tree in a pot
grow an apple tree indoors

Google

buy an apple|

buy an apple watch
buy an apple gift card
buy an apple tv

’

Sparse Dictionary Leaming Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022
On Knowingyarfaraeit AR shapHieEH iy PathssisealiGe nenronciion, Biaficws tems 2024
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Distributional hypothesis

The Distributional hypothesis is that words that
occur in the same contexts tend to have similar
meanings (Harris, 1954).

The underlying idea that "a word Is characterized
by the company it keeps" was popularized by Firth
(1957).



Distributional hypothesis
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B Distributional Hypothesis of Distributional Hypothesis of

Word Meaning Gene Function

1. I mainly use my Apple iPhone to make phone calls.

2. The Apple MacBook Pro is a computer with a powerful processor.
3. | use an Apple computer to write emails and create documents.
4. | picked a red apple from the tree in the backyard.

5. The planted seeds in the orchard produced several apple trees.

6. Apples are my favorite type of fruit.
Etc.

Technology

apple

computer

phone seed
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etc Agriculture

Word Polysemy
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i
NRASMUT
SHOC2
NRAS
MAPK7
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Sparse Dictionary Leaming Recovers Pleiotropy from Human Cell Fitness Screens, Cell Systems, 2022
On Knowingafaraei: AR stabHkEsH iy pathssissalCe nentenchion. aficps tems 2024
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INntuition

“Probability of a sentence” = how likely is it to occur in natural language

Example 1 Syntax and grammatical properties

p(the cat purrs) > p(cat purrsthe)

Example 2: Semantic properties

p(the cat purrs) > p(the cat smokes)

What about the probability of "the Archaeopteryx winged jaggedly amidst foliage"?

[B_aS_Qd_Qﬂ_Ed_QaLdD_BQDIJ'_S_SlLdB_S] Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine
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https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides

Probabilistic model of language

Probability model:

. p(Ui_ &) = Y. p(&) if £1,&,,... is a countable sequence of
~ disjoint sets of P (L), the power set (=set of all subsets) of L.

L
3. (Conditional probability) p(X) — p(iﬂo) Hp(ﬂ%;\l’h e 75131'—1)
i=1

L
log p(x) = logp(xq) Z logp(z;|zy,...,2i-1)
i=1



https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides

Example

6
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white S

9
" knight p(knight | white)p(white) = 3 - 5
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%
/
PR — knight p(knight | dark)p(dark) =% -3
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dark

9
- materials p(materials | dark)p(dark) = % : %

S~
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Estimation

We assume there is some true p* which we estimate/approximate with a (parametric)
estimator) p which is an element of {ps | 0 € O},

This is done by learning from data D — {X1, . 7Xn} C L, e.g. by minimizing some loss:
A A .

f = arg mingce £(0, 6*)

Since the optimal model is unknown, we use the data as an estimate:

1l Ixp=x%

0 else

5 i
1
Dox ~ ﬁ Z 5xi(X) 5xz.(x) =
1=1

[Based on Edoardo Ponti's and Jonathan Richard Schwarz’s slides] Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine 34
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How to learn a model from the data?

A suitable loss function is the KL-Divergence (divergence between prob. distributions):

KL(pgr, pg) = — > xcr, Por(X) log py(x) + por(x)1

Cross-Entropy

Justification: constant wrt. model param.

From Information Theory: Measures the excess number of bits we pay by encoding our data
with a sub-optimal model. The optimum is just the entropy (Shannon, 1948).

[Based on Edoardo Ponti’s and Jonathan Richard Schwarz’s S|dQS] Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine 35
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N-Gram models

We can obtain a very simple form for {pg ] 0 e @} by making the Markov assumption:

P == U » 5 55300
= Wl B9, 5 e Birn—1 )0 L1 | BT BB, 5 vy B3] 1 » + PLEL)
~ P(Tn|Tn—2, Tn—1)P(Tn—1|Tn-3, Tn—2) . .. p(T1)

This is a tri-gram model (history of two). Assumes all of these are equal:

— p(slept|the cat)
— p(slept|after lunch the cat)

— p(slept|the dog chased the cat)
— p(slept|except for the cat)

[Based on Edoardo Ponti's and Jonathan Richard Schwarz’s slides] Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine 36


https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides

Word2vec, node2vec,
sentence2vec, and many others
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Transformer architecture
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Probably the most influential ML paper since Backpropagation (1986) Thear
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https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides
https://arxiv.org/pdf/1706.03762.pdf

Transformer building block

1. Attention Mechanism

2. Position Encodings

3. Residual connections + Normalization

Linear

P(yt|Y1:t—1)

[}
( )
Add & Norm

Feed
Z Forward
4 1 ~\ | Add & Norm |::
Zgd e Ton Mult-Head
Feed Attention
Forward 7 7 Nx
 —
Nx Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
At VO,

\_ J \_ ——' )
Positional D ¢ Positional
Encoding Encoding

Input Output
Embedding Embedding
X Yiit—1

ide r]mka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine
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https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides
https://arxiv.org/pdf/1706.03762.pdf

Attention mechanism

H =(Attention(QW<, KW* VW)

K V Think of this as a soft "look-up" operation in an
associative memory using dot-products as a

Q similarity measure.

WQ e Rdmodelek, WK 6 Rdmodelek, WV e Rdmodelefu

§ ide ﬂmka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine
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https://arxiv.org/pdf/1706.03762.pdf

Dot-product attention mechanism
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https://git.ecdf.ed.ac.uk/anlp/course_materials/-/tree/main/2023/slides
https://arxiv.org/pdf/1706.03762.pdf

Encoder-decoder transformer

Output
Probabilities

Keys & Values taken from

Encoder output
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Outline for today’s class

V./ Overview of this course

J(Nhat makes biomedical data unique

w ntroduction to distributed language
representations

‘g Introduction to NLP in clinical settings



General vs. personalized medicine

Treatment Approaches

[
Standard-of-care

@ ¥
m Therapeutic Space

|
Precision Cardiology

Multi-Omic
Information

(linical Evaluation v o s Machine Learnin
Beta-blocker ~ K* sparing diuretic 9
D /‘ s o
Standard |o y QL v M/Z:j\»{x § Data-driven disease subtyping
Algorithm |5 y Propanolgl - o — andpatentttication
0 ’ ~~_ Amiloride ’*‘
O / - o el
/" ACEinhibitor e *
l dr s e OD/:L # *'H’
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- (linician Review and Decision

e

Colesevelam

Johnson et al., JACC Basic Transl Sci, 2017
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Precision medicine goals

Personalized healthcare helps us move towards providing

the right the right the right at the right
patient drug dose time

http://hitconsultant.net/2014/04/03/infographic-the-rise-of-personalized-medicine/
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Why are these goals relevant?
Problem: Underrepresentation in clinical research

Genomics Clinical Trials
PERSISTENT BIAS Participation in Cancer Clinical Trials
T o kbt Race-, Sex-, and Age-Based Disparities

Groups of other ancestries continue to be very poorly represented.

Table 1. Participants in National Cancer Institute Cooperative Group Breast, Colorectal,

2009 2016 Lung, or Prostate Cancer Therapeutic Trials, 1996-2002 (N = 75215)*
3?3' studies 2.5.1.1 studies Proportion of
1.7 million samples 35 million samples Trial Participants, Incident Cancer Proportion of
Characteristic No. (%) Patients, %t US Population, %t
0 0 Race/ethnicity
9 6 /0 81 /0 White non-Hispanic 64 355 (85.6) 83.1 75.7
European European -
ancestry ancestry Hispanic 2292 (3.1) 3.8 9.1
Asian Black 6882 (9.2) 10.9 10.8
Other o Asian/Pacific Islander 1446 (1.9) 2.0 3.8
European American Indian/Alaskan Native 240 (0.3) 0.2 0.7
Murthy et al., JAMA, 2004.
49, Non- 19% Non-
European European
ancestry ancestry

Popejoy and Fullerton, Nature, 2016

inferential gap
J

Most clinical decisions involve bridging the inferential gap: Clinicians are required to “fill in” where they lack
knowledge or where no knowledge yet exists:

Misdiagnoses, medical errors, prescription errors, surgical errors, under-treatments, over-treatments,

unnecessary lab tests can be due to inferential gaps
Late diagnosis of cancer can be due to the inferential gaps at the primary care

Crisis caused by misuse, underuse, or overuse of antibiotics is in part due to serious inferential gaps



Precision medicine
requires a multi-level
understanding

of health and

Transcriptome

Metabolome
Microblome

Epigenome

Social graph
Biosensors

disease...

Inputs

Social, behavioral
Genomics and -omic layers
Biosensors

Immune system

Gut microbiome

Anatome

Environmental

Physical activity, sleep, nutrition
Medication, alcohol, drugs
Labs, plasma DNA, RNA
Family history
Communication, speech
Cognition, state of mind

All medical history

World’s medical literature,
continually updated

& G AN
RN R /0
N'® 70N 70\ W/
NGNS
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Virtual health guidance

Topol, Nature Medicine (2019)
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..und understanding how health and
disease states evolve

Individualized genomic medicine
From prewomb to tomb
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Topol, Cell, 2014
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This all-encompassing dataset does no
t...

exiS
“The Quantified Self’

g osition

Environment

Demographics
+ Sex
* Race
» Age

. but real-world data

can serve as proxy

Electronic Health Records

Family History '
\ . 3
| |
Pollutants Q ‘
& Toxins s \
ne* facﬁon Chemicals & h
Ge™ e Exposures Lifestyle
yle | A
J
— ]
|
Ny

+ Transcriptome

+ Microbiome
+ Eipgenome
* Proteome

Dynamics

System

Artificial Intelligence
Machine Learning

Output

Interventional Therapies
Risk Factor Identification

Therapeutics

y

Patient Monitoring

|

¥

Patient Outcomes |

Disease Monitoring
Patient Monitoring e
A
Therapeutic Stratification G
Marinka Zitnik - marin

ﬁ

Next: How are electronic

health records used for
research?
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Electronic health records

The digitized paper charts
The underlying goal/purpose of EHRs is

billing/infrastructure

Contains any data collected during an individual’s

interaction with a medical system

Different software vendors (e.qg., EPIC, Cerner)

ﬁ

Data type examples:

Clinical

o Diagnoses

o Procedures

o Lab test results
o Imaging

o Medications

o Notes

Non-clinical

o Demographics
o Insurance

o Location

o Lifestyle



https://www.javatpoint.com/data-warehouse-what-is-star-S

EHR data types and formats

Made available by data warehouses
Are often encounter-based

Typically separated by modality (e.g.,

demographics table, lab table)

Often in star-schema format

Dimension Table

=

day

Year

time_key

day_of_the_week

month
Quarter

Dimension Table

o]

branch_key
branch_name

branch_type

Dimension Table

ﬁ

| Patient Visit
item_key
Sales Fact Table item_name
time_key
type
item_key supplier_type
branch_key
location_key Dimension Table
unit_sold locnlonl
dollars_sold location_key
street
city
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®
m
Name
Address
Telephone
Sex

Date of Birth
Ethnicity

Complete Blood Count
Hemoglobin A1C
Chemistry Panel

Full Blood Panel
Metabolic Panel
Electrolyte Panel
Urinalysis

Chief Complaint
Family History
Vital Signs
Blood Pressure
Pulse
Temperature

Medications
Allergies

Sample Collection
Date

Stained Samples
Genetic Marker(s)
Pathology Diagnosis
Secondary Findings

Laboratory

Pathology
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EHR data structure

= Structured: labs,
medications, etc.

= Semi-structured:
smartforms,
radiology
Impressions, echo
reports

= Unstructured:
clinical notes

= Note: It does not
have all data!

Wei-Qi, W. & Denny, J.C. Genome Medicine, 2015.

NLP Tools

Required

0.16

( Diagnosis codes Problem lists:
-— Medications known to be
Fake ID ENTRY_DAT CODE prescribed.
Keppra 750 mg 1/2 tab qam
34068 5/13/2001 41.85 and pm
Dexilant 60 mg by mouth daily
37660 8/6/2002 79.99 aspiin 325 mg 1 tablet by
mouth daily
140680 8/31/2003 79.99 idogrel 75 mg tablet 1
23315 5/14/2003 112 tablet by mouth daily
75936 7/9/2004 17.9 -~ Known adverse and allergic
drug reactions:
Sulfa Drugs
Lab tests -— known significant medical
diagnoses.
Fake ID TEST ENTRY DAT VALU Seizure disorder
Aneurysm
3536 pO2  1/23/1996 314 Heartbum
72921 LDL  2/5/1996 34 G
102460 pCO2 1/26/1996 45 operative and invasive
procedures.
135043 HDL 1/25/1996 35 2003 Appendectomy
2005 Stents put in **DATE
135432 MonAb 1/24/1999

 [Aug 29 05]

' Clinical notes

EXAM. BILATERAL DIGITAL SCREENING
MAMMOGRAM WITH CAD, **DATE[Mar 16 01].
COMPARISON: **DATE[Jul 01 01)
TECHNIQUE: Standard CC and MLO views of
both breasts were obtained. FINDINGS: The
breast parenchyma is heterogeneously dense.
The pattern is extremely complex with
postsurgical change seen in the right upper outer
quadrant and scattered benign-appearing
cakification seen bilaterally. A possible
asymmetry is seen in the superior aspect of the
left breast. The parenchymal pattem otherwise
remains stable bilaterally, with no new distortion
or suspicious cakifications. IMPRESSION:
RIGHT. No interval change. No current evidence
of malignancy.. LEFT. Possble developing
asymmetry superior aspect left breast for which
further evaluation by true lateral and spot
compression views recommended. Ultrasound
may also be needed.. RECOMMENDATION.
Left diagnostic mammogram with additional
imaging as outlined above.. A left breast
ultrasound may also be needed. BI-RADS
Category 0. Incomplete Assessment - Need
additional imaging evaluation. IMPRESSION.
RIGHT. No interval change. No current evidence

of malignancy. ...

Structured

Semi-structured

Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine

Unstructured
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Types of research using EHRS?

= Characterize co-morbidities & epidemiological trends
= |dentify disease sub-phenotypes

= |dentify unknown drug adverse events

= Find symptom clusters

= Predict medication response

= Anticipate disease flare-ups

= (Guide triage decisions

= [rack treatment progression and sequelae

= Couple with other patient data modalities: genetics,
Images, notes, biosignals, etc.

+ countless more...



Goals of ML for healthcare
using EHR

CENTRAL ILLUSTRATION: Role of Artificial Intelligence in Cardiovascular

Medicine
) Population
Clinical Practice Health

)

Research and

Development

Optimized
Resource Allocation

O

Novel Therapeutic Al-aided Therapy
Agent Discovery Diagnosis Selection

I

Intelligence

Continuous
Remote Monitoring
and Diagnostics

Precision

Disease Stratification

titt** Integration Extension of

Physician Effici
of Multi-omic Data ysa'?: réfﬁcaccsncy

Johnson, K.W. et al. J Am Coll Cardiol. 2018;71(23):2668-79.
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Typical ML workflow for EHR data

Gather (identify relevant feature)

QC values (wrong unit?)

Check for/address missingness
Phenotype and design cohort

Define outcome (label) and study period
Use relevant ML techniques
Pre-process data to fit the ML technique
Refine and repeat

Johnsonetal., JACC, 2018



Typical ML workflow for EHR data

Feature
Engineering

Data Sources
» Formatting

& Experimental QQQ Biological » Cleaning
« Normalization
« Cell Lines * Genome « Scaling
« Animal Models » Gene Expression * Unsupervised Learning
« Histology * Protein Expression * Deep Learning

« Clinical Trials

§ Environmental

» Weather

« Air Quality

* Toxins

« Pollutants

» Census Data

« Epigenome
» Microbiome

ﬁ.‘ Clinical

» Family History

« Vital Signs

« Laboratory Tests
» Medications

:

Machine Learning

Algorithm Selection

* Regression - _ _

« Disease History * Decision trees - - _\_1‘: =3
j; ))) Wearables « Surgical History - Support o

» Clinician Notes Vector machines - -~~~
» Smart Phone Apps s
S. : gp » Neural networks -~ _-
« Biomedical Devices -
» Fitness Devices

« Biosensors |

o~ Ensemble
- :};. Methods

-

-

» Deep Learning -~

—> Model 1

- , 7 7 7 y, #
===== Model 3
=====| ™ Development & EI;,r ael:jjiacfc'izz/ _Tl

« Parameter Tuning
« Feature Selection
« Error Analysis

Johnson et al., JACC, 2018
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« Optimization
« Cross Validation
« Decision Process

New Observations



What Is a disease?

= A disease is not easily defined in EHRS!

= Many ways in which a disease can be represented
(and often wrong)

= Phenotyping algorithms and standardized concepts to
the rescue: accurately identify patients with a specific
observable trait from imperfect EHR data




How well do various data types define
a disease? (1/3)

= (oal: Evaluate phenotyping performance of major EHRs
= Diagnosis codes
= Primary notes
= Medication lists

= Approach:

= Select ten diseases: atrial fibrillation, Alzheimer’s disease, breast
cancer, gout, human immunodeficiency virus infection, multiple
sclerosis, Parkinson’s disease, rheumatoid arthritis, and T1D/T2D

= For each disease, classify patients into seven categories based on
the presence of evidence for disease in a) diagnosis codes, b)
primary notes, and c¢) specific medications

= For each disease, select 175 patients for manual chart review

= Use review results to estimate positive predictive value (PPV) for
each EHR data type alone and in combination

Wei et al., JAMIA, 2016



How well do various data types define
a disease? (2/3)

= PPV is the ratio of patients that truly have the disease according to manual
chart review to all patients who had been identified as having the disease

= PPVs on single data types were inadequate for accurate phenotyping (0.06-0.71)
= Using two or more |ICD codes improved the average PPV to 0.84

Positive prediction values of various categories based on chart review results

Disease ICD-90nly PNOnly MedsOnly ICD-9+Meds ICD-3+PN Meds+PN ICD-9+both ICD-9 Meds PN =21CD-95 =2 Components
AFIB 0.52 0.72 0.08 0.72 1.00 1.00 1.00 0.72 0.35 0.96 0.88 0.84
Alzheimer's 0.28 0.20 0.00 0.80 0.88 0.92 0.88 0.69 0.40 0.32 074 0.88
Breast CA 0.12 0.72 0.04 0.88 0.96 1.00 1.00 0.45 0.81 0.84 1.00 0.97
Gout 0.56 0.84 0.00 0.92 1.00 1.00 1.00 0.81 0.69 091 093 1.00
HIV 0.52 0.00 0.00 0.92 0.84 0.88 1.00 0.81 0.69 0.20 0.89 0.95
MS 0.20 0.08 0.12 0.88 0.88 0.88 1.00 0.78 0.93 041 0.86 0.94
Parkinson 0.48 0.16 0.04 0.84 1.00 0.88 0.96 0.89 0.87 0.33 094 0.98
RA 0.36 0.20 0.00 0.64 0.76 0.88 0.84 0.68 0.73 027 077 0.78
T1DM 0.28 0.12 0.04 0.16 0.92 0.84 0.76 0.59 0.49 045 0.62 0.91
T2DM 0.36 0.68 0.24 0.60 0.80 1.00 0.84 0.65 0.65 0.80 0.73 0.81
Average 0.37 0.37 0.06 0.74 0.90 0.93 0.93 0.711 0.66 0.55 0.84 0.91
Standard Deviation  0.15 0.32 0.08 0.23 0.09 0.06 0.09 0.13 0.20 029 0.12 0.08

: Wei et al., JAMIA, 2016
PN L) prl ma ry nOteS Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine 63



How well do various data types define
a disease? (3/3)

= Multiple data types provide a more consistent and
higher performance than a single one

= Use multiple EHR data types for disease phenotyping

Wei et al., JAMIA, 2016
Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine



External replication Is necessary but
not easy to facilitate

ﬁ Cerner
E r )

Original Site Replication Site




It Is challenging to capture health state

€l

Patient

from EHR

Break down

Reconstruct

~ -
Seao "
—y
h-‘-- —'-_“
i ——— -

-

-

Name
Address

TH

Patient Visit

Complete Blaod Count
Hemoglobin A1C

Chemistry Panel
Full Blood Panel
Metabelie Panel
Electralyte Panel
Urinalysis

Sex

Date of Birth
Ethnicity
Race
Religion
Insurance

Demographics
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Tissue Type
Sample Collection
Date

Stained Samples
Genetic Marker(s)
patholagy Diagnosis
Secondary Findings

Chief Complaint
Family History
Vital Signs

Blood Pressure
Pulse
Temperature
Medications
Allergies
Disease History
Nurse & Clinican Notes

Encounter
CT Scans
Yeray
Ultrasound
MRl

Radielogist Report
Secondary Findings

"y

Laboratory

Pathology

EHR

Radiology



ML models can learn the wrong
Information

RESEARCH £ 05 8
g
@@ oren access  Biases in electronic health record data due to processes within -~ = o
the healthcare system: retrospective observational study E 0.3
Denis Agniel, Isaac S Kohane,"? Griffin M Weber"? 0.2
0.1
RESULTS
The presence of a laboratory test order, regardless 0
of any other information about the test result, has 2 1.00 =
a significant association (P<0.001) with the odds of s o a‘;‘;’t?;ft“‘ and emargen ¢y depaxtment
survival in 233 of 272 (86%) tests. Data about the $ 095 e =
timing of when laboratory tests were ordered were a \ / "\
more accurate than the test results in predicting B f\\\ // e
survival in 118 of 174 tests (68%). " 085 \ \\ i e e //
CONCLLSIONS e St
Healthcare processes must be addressed and 00 \.\,/'/
accounted for in analysis of observational health data. 0.75
12am 3am 6am 9am 12pm 3pm 6pm 9pm 12am

Ithout careful consideration to context, EHR data are
unsuitable for many research questions. However, if
explicitly modeled, the same processes that make EHR Fig 4 | White blood cell count by hour of the day. Note
data complex can be leveraged to gain insight into that (b) was smoothed using a three point running

; . average
patients’ state of health.

Hour of the day
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ML models can “cheat” (1/3)

= QObijective: Hip fractures are a leading cause of death
and disability among older adults

= Most commonly missed diagnosis on pelvic radiographs
= Delayed diagnosis leads to higher cost & worse outcomes

Deep learning predicts hip fracture using confounding
patient and healthcare variables

Marcus A. Badgeley, John R. Zech, Luke Oakden-Rayner, Benjamin S. Glicksberg, Manway Liu, William

Gale, Michael V. McConnell, Bethany Percha, Thomas M. Snyder & Joel T. Dudley

= Data: Collect 23,602 hip radiographs from 9,024
patients, patient and hospital process EHR data:
= Prevalence of fracture is 3% (779/23,602)

= Patients with fractures were more likely to report a recent fall
and less likely to report pain

= Features: image (IMG), disease (fracture) class, 5 patient
(PT) features, 14 hospital process (HP) features

Badgeley et al., NPJ Digital Medicine, 2019
Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine




ML models can “cheat” (2/3)

= ML model: Train a neural network on radiographs to
classify fracture

= Results: Fracture is predicted:
= Moderately well from the IMG data alone (AUC = 0.78)
= Better when combining IMG + PT (AUC = 0.86)
= Better when combining IMG + PT + HP (AUC =0.91)

= Follow-up analysis:

= Test ML model whether it can directly detect fracture versus
indirectly predict fracture by detecting confounding variables
associated with fracture

= On a test set with fracture risk balanced across PT and HP
variables, fracture detector is no better than random
(AUC =0.52)

Badgeley et al., NPJ Digital Medicine, 2019
Marinka Zitnik - marinka@hms.harvard.edu - - AIM 2 - Al in Medicine



ML models can

On test set with fracture risk
balanced across PT and HP
features, fracture detector is
no better than random
(AUC=0.52)

Confounding variable (e.g., time
since prior lab order, or which
scanner in a hospital is used to

acquire a radiograph) is associated
with both:

= Qutcome (mortality, or the likelihood of

Explanatory variable (acuity of a
patient’s illness, or a patient’s clinically
predicted risk of fracture)

a radiograph’s pixels containin
patterns suggestive of fracture

&

“cheat” (3/3)

Y

Classification Target

Technician 4 ! T:‘t':
Scanner Model 1 e
Age wg -
Radiologist | L
Department - i 4_&
Fall { -
Time to Final Interp. 4 ;F'
Order Priority 4 =5 4+
Scanner Manufacturer - - .—t‘é—
Imaging Wait Time - ==
Time to Initial Interp. 1 o —
Gender HE=
BMI{ | == L.
Order Time 1 fi
Order Weekday *ﬁr
Radiation Dose | =gty
Pain 1 5 =y
Laterality| | %= _|,
Order Date  * :"; ,;,,
S - =
. P(fx|v+)
Odds Ratio PxIv-)
Test Cohort

Cross Sectional

Case Control, no matching
< Case Control, matched Age, Gender

Badgeley et al., NPJ Digital Medicine, 2019
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Case Control, matched PT
Case Control, matched PT + HP
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Limitations & biases of EHR

= Diseases are not easily defined in EHRS!
= External replication is not easy to facilitate
= |tis challenging to capture health state from EHR

= M
= M
= M

_ d
_ d

_ d

gorit
gorit
gorit

nms can learn the wrong information
nMs can “cheat”

nms can fail on other patient populations

= Biased real-world data can lead to real-world
conseqguences

Ben Glicksberg, Mount Sinai



Fine print of using EHRS

In USA (and elsewhere), the healthcare is fragmented and EHRs do not
extend beyond specific health system

EHRs capture only data that is entered and how it is entered: “Garbage in,
garbage out”

EHR systems are messy, redundant, incomplete, heterogenous,
erroneous, etc.

Interfacing with EHR data is challenging and requires domain expertise
Biases are propagated through!

Poorly encoded key information: i.e., social determinants of health

The “missing phenome”™

Diagnosis Follow-up Medication switch
=) =
¥ B%) K)
L Gap | Gap ____ | _____. Missingdata_______ >

Glicksberg*, Johnson*, and Dudley: Human Molecular Genetics (2018)
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Understanding recruitment of patients
to clinical trials

= Nearly 80% of all clinical studies fail to finish on
time, and 20% of those delayed are for six months
or more

= 85% of clinical trials fail to retain enough patients

= The average dropout rate across all clinical trials is
around 30%

= Qver two-thirds of sites fail to meet original patient
enrollment for a given trial

= Up to 50% of sites enroll one or no patients in their
studies

Cote, Chapter 12 - Minimizing TrialCosts.hvhceeletating and Jmproving Enrollment and Retention



“Leaky pipe” framework for
understanding patient recruitment

Overall Conversion Ratio:

100 Patients Identified or Available |dentify 12 Patients to

e Randomize 1

31 || PreScreen 13 Enrolled or
=t Qualified Consented g8 pandomized

== [ = .
E Drop-Out After
Pre-Screening Consent Process Screening N

| L_ |T ;
4 Roosen 1 (con 0 ‘ . aron 1 feom ¢ & Reasen | oo ‘ Baveon ) I

| i

s

Lo 1 feox

‘ wlluence or ‘ ‘
contred) ‘ e

‘ & Reawen 2 oo ‘ & 9F Contro

4 Reosen 3

‘ Reowon 2 (oo

W 0 ——
& Feosen ) - O -3] % 2] O
-69%* = 58%
# Completed Patients —_—

© CPP, Inc. 1996 — 2020; Benchmark data CPP & PhESi
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What Is patient-trial matching?

Goal: Find qualified patients for a clinical trial given
patient data and trial eligibility criteria (EC) described
as both inclusion and exclusion criteria

Gender: Male Inclusion Criteria
Age: 34 Age > 18
0,0 Lung cancer Patient with cancer
U . Receiving porphine
) Z gnoocrg;':j Exclusion Criteria
Match Pregnant
After surgical
V(\ﬂ o Xray treatment
Patient Record Clinical Trial Eligibility Criteria

Patient data can come from longitudinal EHRs or
Screening or surveys

COMPOSE: Cross-Modal PsgeudozSiamese.Network.for Patient Trial Matching, KDD 2020



Challenges of patient-trial matching

1. Varying concept granularity
= Eligibility criteria encode general diseases
= EHRSs use specific medical codes

2. Many-to-many matching

= Every patient might enroll in more than one trial and
vice versa

= Aligning patient embeddings to multiple trial
embeddings can confuse the embedder

3. Handling explicit inclusion/exclusion criteria

= Criteria describe desired and unwanted characteristics
of target patients

COMPOSE: Cross-Modal PggudorSiamese.Network.for Patient Trial Matching, KDD 2020



COMPOSE: Method overview (1/6)

/ Trial EC ""‘;)Eh T =
(Inclusion and n- = < S S
Exclusion criteria) '} l/blm s 3
| i < <

e N : 4 % — % —
Q= d 37 _'\-@] & =
Q= BERT =1 S8 o
&— ' t_____lm -

Patient Data [y 1
(EHR)

Taxonomy Guided Multi-granularity
\Medical Concept Embedding

Erase Add

G G e . Matching
I .
' Trial EC | Matched E Prediction
1 Embedding| Memory t__’g L 3‘,
|
— I | .
\ 75
P N
Lq |: [I \
1 L !
L Q ? Inclusion |
—> | 0.1 | criteria !
‘-" Pull :
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COMPOSE: Method overview (2/6)

* Use BERT to learn contextual embeddings for EC sentence [wy, ...,
¢ =[wi, ... wn | = BERT([w1, ..., wn )

* Use different kernel sizes to capture different granularity semantics
x = [Conv(c, ky),

* Use highway network and max pooling to obtain the final EC embedidng
u = o(Conv(x, k))
v=u-Conv(x,k)+x-(1—u) :/%

|

e = MaxPool(v

Conv(c, k2), Conv(e, k3), Conv(c, ky)|

/" Trial EC

(Inclusion and
Exclusion criteria)

' > l-‘ﬂ
F BERT -
1

r

'
|

o
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1
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¥JOMIaN AemydiH

5

Trial EC
Embedding

o
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Taxonomy guided patient embeddings
(3/6)

* Use medical concept taxonomy to divide each v 1 P e
. . N ’ seases
concept into four levels
#7 7\ Acute N
» the Uniform System of Classification (USC) Lv.2 ( }_,' :!efsr;idrato:;‘)\,"
nrections
* Three memory networks to store diagnosis, Lv.3 ( ™, L ™
medications and procedures j ~ Sinusitis]”
Lv. 4 d} Ethmoidal
Sinusitis
Medical Concept
Taxonomy

lvvlilv.2Llv.3Lv.4

m = [mgp, mo, Illo])l
= [Myy. oMy My Mgy, Mgy, M | Demographic

|
Dlagn05|s Medlcation Procedure
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Taxonomy guided patient embeddings

(4/6)

* Augment medical codes with textual description:
* Code 692.9 -> “Contact dermatitis and other eczema”

gt = MaxPool(BERT (| wy, ..., wr]))

* Update memories at each visit
* Erase-followed-by-add:

Patient Data | 1 () iy
» (EHR) e, S
erase; = 0(Wegh |+ be), 122 { Joaptetsf, }
~k —_— LV.3 5~ ’: '-\ } :‘ ‘:
. add[ e tanh(Wagt + ba) " Slousitis §
- B e Lv. 4 Pthmoidal
Medical Concept
Taxonomy
m’(‘; - m’é; ® (1 — erase;) + add; Taxonomy Guided Multi-granularity
Medical Concept Embedding G

— I

EHR Memory
Network
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COMPOSE: Method overview (5/6)

* Let each EC correspond to the sub-memories

e mmmmm—————————— " Matching

Trial EC Matched Prediction

« Attentional matching : |
: Embeddi\ng Memory —
I |
| |

« Trial EC embedding -> Query

* Matched memory -> Response \__{_Q_ug;y _____ ‘ ____ /

~~

o4

T -
- expimg MLP il S —
; s .
er{D.O.P} Z,‘:l exp(m).~ MLP(e)) —— @
+

. - —

m = Z Z a,-‘xpnf\,
xe{D,0,P} i=1 EHR Memory Attentively

o Network READ
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COMPOSE: Method overview (6/6)

sClassification loss: @@ @ = 3z =%  seeessesaeeies .

= —(y’rlog(y) + (1 - y)T[og(l -y))

[ |
| |
| H |
: \ Inc!usuf)n :
_ , ' v criteria |
* Inclusion/Exclusion loss: ; Pull l
' Memory '
- P I I
r 1 —d(e,myp)), => 0 if eisej i Duth ’
" max(0,d(e,mg) —a), if eiseg : / EXC'USIOD:
>= QL | criteria :
|
\ I
. /
* Final loss: e e e .
L=Lc+Ly Composite Similarity
Loss Term
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COMPOSE: Patient-trial matching
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Experimental setup: Data

= Clinical trials:

= 590 trials from publicly available data source
(clinicaltrials.gov)

= 12,445 criteria-level EC statements

= Patient EHR dataset:
= 83,731 patients from 2012 to 2018

COMPOSE: Cross-Modal PggudorSiamese.Network.for Patient Trial Matching, KDD 2020



Results: Criteria-level matching

Model Accuracy AUROC AUPRC
LSTM+GloVe 0.722+0.010  0.789+0.009  0.784+0.009
Baselines LSTM+BERT 0.834+0.008  0.845+0.007  0.840+0.007
DeepEnroll 0.869+0.012  0.936+0.013  0.947+0.011
COMPOSE-MN 0.899+£0.012  0.955+0.013  0.960+0.010
Reduced COMPOSE-Highway 0.912+0.007  0.965+0.007  0.967+0.009
COMPOSE-L 4 0.939+0.010 0.976+0.009  0.973+0.007
Proposed COMPOSE 0.945+0.008 0.980+0.007 0.979+0.008
Model Phasel Phase Il Phase III
LSTM+GloVe 0.0008 0.5865 0.3743
LSTM+BERT 0.0025 0.6045 0.4862
Criteria2Query  0.3025 0.6433 0.5870
DeepEnroll 0.2034 0.7493 0.6329
COMPOSE 0.5189 0.8939 0.8005
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Results: Trial-level matching

Model Accuracy
LSTM+GloVe 0.4294+0.010
LSTM+BERT 0.5460+0.008
Baselines Criteria2Query 0.6147+-
DeepEnroll 0.6737+0.021
COMPOSE-MN 0.7833+0.011
Reduced COMPOSE-Highway 0.8102+0.009
COMPOSE-L 4 0.821240.010
Proposed COMPOSE 0.8373+0.012
Model Chronic Diseases Oncology Rare Diseases
LSTM+GloVe 0.1793 0.0000 0.0000
LSTM+BERT 0.2062 0.0000 0.0000
Criteria2Query 0.5103 0.2722 0.2292
DeepEnroll 0.3345 0.0000 0.0000
COMPOSE 0.5931 0.6370 0.6875

COMPOSE: Cross-Modal PsgeudozSiamese.Network.for Patient Trial Matching, KDD 2020 o



. received temozolomide therapy
. receiving warfarin (or other

Tral on Cabozantinib, which treats
grade |V astrocytic tumors

Attention weights on the memory slots for
the Cabozantinib trial for treating grade IV
astrocytic tumors

coumarin derivatives)

3. acute intracranial/ 0.6
intratumoral hemorrhage. -
4. pregnant or breast-feeding @ 0.4
5. serious intercurrent illness . 0.2
6. inherited bleeding diathesis or .
coagulopathy 0.0

LvlILv2Lv3Lv4 LvlLv2 Lv3 Lv4 Lvl Lv2 Lv3 Lv4Demo
Diagnosis Medication Procedure
COMPOSE successfully matches this trial (94%
matching) while all baselines fail (< 50% matching)
COMPOSE: Cross-Modal PgewdazSiamese.Network.fok Patignt Trial Matching, KDD 2020 .



Trial for early-stage non-small cell lung
cancer

#NCT02998528

o [;: Early stage IB-IIIA, operable non-small cell lung cancer,

confirmed in tissue
e [5: Lung function capacity capable of tolerating the proposed Match 0.8

lung surgery
e [3: Eastern Cooperative Oncology Group (ECOG) Perfor-

mance Status of 0-1
e I;: Available tissue of primary lung tumor Mismatch
e E;: Presence of locally advanced, inoperable or metastatic

disease
e Ey: Participants with active, known or suspected autoim- Unknown 0.2
mune disease
e E3: Prior treatment with any drug that targets T cell co-
1 2 3 4 1 2 3

stimulations pathways (such as checkpoint inhibitors)

An example of a trial for which it is difficult to find matching
patients. All models achieve a lower than 50% accuracy
score for this trial. Shown are prediction results for

COMPOSE and a case patient. The results show that

. S COMPOSE successfully matches |; and E; to the patient but
and exclusion criteria as E; classifies other ECs to unknown

COMPOSE: Cross-Modal PggudorSiamese.Network.for Patient Trial Matching, KDD 2020 o
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Outline for today’s class

V./ Overview of this course

J(Nhat makes biomedical data unique

w ntroduction to distributed language
representations

‘;ﬂntroduotion to NLP in clinical settings
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