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Outline

• Human-interpretable features + machine learning

• Deep learning methods
• Multi-modal foundation models
• Model interpretation

• Clinical applications in cancer pathology diagnoses
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Method 1: Image Analyses by 
Human-Interpretable Features
• Define human-interpretable features
• e.g., size and shape of an object

• Extract these features computationally

• Connect these features with outcomes of interest

3Image credit: Wikipedia
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Basic Features

• Size and shape (two-dimensional)
• Area

• Number of pixels in the region of interest
• Perimeter

• The total number of pixels around the boundary of each region

• Size and shape (three-dimensional)
• Volume

• Number of voxels in the region of interest
• Surface area

• The total number of voxels around the boundary of each region in the image

4Image credit: Wikipedia
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Basic Features

• Form factor
• 4 ∗ 𝜋 ∗ 𝐴𝑟𝑒𝑎/𝑃𝑒𝑟𝑖𝑚𝑒𝑡𝑒𝑟!
• Form factor of a perfect circle = 1

• Intensity metrics
• Mean intensity

• Mean of pixel intensity values in the region/image
• Median intensity, standard deviation of intensity values, median absolute 

deviation of pixel intensity values

• Saturation metrics
• Percent of pixels at the maximum/minimum intensity value of the image

5Image credit: Francisco Guilhien Gomes Jr et al.
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Texture Features

• Quantify the spatial arrangement of pixel intensities

• Example: Haralick texture features
• Goal: to distinguish between rough and smooth patterns
• Method: compute summary statistics of the gray-level co-

occurrence matrices (GLCM; next slide)

6Image credit: Wikipedia
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Gray-Level Co-occurrence Matrix (GLCM)

• Example: 

7

Left-right pairs of adjacent pixels:
Left

Right

Image credit: CVExplained
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Gray-Level Co-occurrence Matrix (GLCM)

• Four directions of adjacency:

• Construct GLCMs for each direction

8Image credit: CVExplained
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Haralick Texture Features

• Notation
• 𝑅: The sum of all entries in a GLCM
• 𝑝(𝑖. 𝑗): 𝑖. 𝑗 th entry in a normalized GLCM

• 𝑝 𝑖. 𝑗 = 𝑃(𝑖. 𝑗)/𝑅

• Texture features for each GLCM
• Angular second moment

• ∑!∑"(𝑝(𝑖, 𝑗))#

• Sum of squares
• ∑!∑" 𝑖 − 𝜇 #𝑝(𝑖, 𝑗)

• Inverse difference moment
• ∑!∑"

$
$% !&" ! 𝑝(𝑖, 𝑗)

• ... and 10 other features
9

𝑃(𝑖. 𝑗)

Haralick RM et al. IEEE Transactions on systems, man, and cybernetics. 1973 Nov(6):610-21.

• Finally, concatenate the features 
from each of the 4 GLCMs
• Or simply take their average
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Zernike Shape Features

• Characterize the distribution of intensity across 
the object
• Zernike polynomials: a sequence of polynomials that 

are orthogonal on the unit disk (a set of point whose 
distance from a given point P is less than 1)
• We can decompose a region of interest into a 

weighted sum of a sequence of Zernike polynomials

• An example
• Zernike (1,1): a prototype with a low intensity on one 

side and high on the other

• Note: these features are rotationally invariant
10

Zernike F. Monthly Notices of the Royal Astronomical Society 94 (1934): 377-384.
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Clinical Applications

• Dermatology
• Melanoma screening

• Ophthalmology
• Diabetic retinopathy assessment using fundus photographs

• Radiology
• Automated region of interest identification

• Pathology
• Cancer diagnosis and subtyping

11
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Example: Human Interpretable Pathology Features 
Diagnose Cancers
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(B) Identifying lung 
squamous cell carcinoma

(A) Identifying lung 
adenocarcinoma

AUC=0.73-0.85 AUC=0.77-0.88

Top features: Textures (pixel correlations, intensity variance) of the nuclei

Yu KH et al. Nature Communications. 2016 Aug 16;7:12474.
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Clinical Baseline: Stage and Grade are Often 
Insufficient to Predict Patient Survival

P<0.01

P=0.06

(A) Survival stratified by stage

Dissimilar survival outcomes among stage I patients
Pathology grade did NOT significantly correlate with survival

(B) Stage I patient survival stratified by grade
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Image Features Predicted Prognosis in 
Stage I Lung Adenocarcinoma Patients

P=0.0023

(B) Validated in an 
independent validation set

P=0.028

(A) Image features predicted the 
prognosis of stage I patients

Quantitative features predicted survival, validated in TMA
Top features: Zernike shape features of the nuclei

Yu KH et al. Nature Communications. 2016 Aug 16;7:12474.
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Method 2: Deep Learning Approaches for 
Medical Image Analyses
• Reusing the neural network architectures for nature image analyses + 

fine-tuning
• Convolutional neural networks

• AlexNet, VGGNet, ResNet, DenseNet, EfficientNet
• Vision transformers

• Designing specific models for the tasks/image types of interest
• Automated hyperparameter search for model optimization
• Pathology/radiology foundation models

15
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Foundation Models

• Machine learning models trained on vast datasets and can be applied 
across a wide range of use cases

• Examples of foundation models:
• GPT series
• BERT
• DALL-E (image generation)

16
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Early Foundation Models for 
Pathology Imaging
• Vision-focused: CTransPath
• A transformer-based feature extractor for pathology images

• Vision-language: Pathology language-image pretraining (PLIP)
• A multimodal model trained with pathology images and natural language 

descriptions

• Other tile-level pathology foundation models
• Lunit, Phikon, UNI, Virchow, etc.

17Review article: Chanda D et al. arXiv preprint arXiv:2408.14496. 2024 Aug 23.
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A Frequently-Employed Module in Image 
Foundation Models: Contrastive Learning
• Goal: Enhances the model performance by 
• Maximizing the differences between samples of different categories
• Minimizing the differences between samples of the same category

18Image credit: v7labs
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Self-Supervised Contrastive Learning

• What can we do if we don’t have a lot of labeled data?
• Use augmented data as the positive instances!

19Image credit: v7labs
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Loss Functions for Contrastive Learning

• Contrastive loss
• Maximize the agreement between positive pairs (instances from the same 

category) in the embedding space
• Minimize the agreement between negative pairs (instances from different 

categories) in the embedding space

• Triplet loss
• Triplets of instances: an anchor instance, a positive sample (similar to the anchor), 

and a negative sample (dissimilar to the anchor)
• Goal: Distance (anchor, positive sample) <  Distance (anchor, negative sample) + 𝜀

• …

20Image credit: Enosh Shrestha
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Example: Clinical Histopathology Imaging 
Evaluation Foundation (CHIEF) Model

21
Wang X et al. Nature. 2024 Oct;634(8035):970-978.

Number of slides

15 M image patches +
60,530 slides

19 anatomical sites
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CHIEF’s Image Feature Aggregation Framework

ℒ!"!#$ 	= 	ℒ%&$  + 𝜆' ∗ 	ℒ&()!#(*+,$+-+$  + 𝜆. 	 ∗ 	ℒ/01,$+-+$

Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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Cancer Cell Detection
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Weakly-Supervised Foundation Models Identified 
Cancer Cells Without Pixel-Level Segmentation

Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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Cancer Origin Identification

25
Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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?

• Is there hidden information in histopathology images?
• e.g., genomic variations?

26
Image from: Gregory RL. Phil. Trans. R. Soc. B 2005; 360,1231–1251.
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Prediction of genes related to targeted therapy
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Predicting the Mutation Statuses of 
Clinically Important Genes

Mutations related to targeted therapiesPrevalent mutations

Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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Identifying Molecular Profiles Related to 
Responses to Immune Checkpoint Blockade

28

Microsatellite instability 
(MSI) prediction for 
colorectal cancers:

Held-out partition of TCGA-LGG Independent test set: MUV-LGG Independent test set: HMS-LGG

Held-out partition of TCGA-COAD Independent test set: PAIP2020 Independent test set: CPTAC-COADb

a

* P-value < 0.05
** P-value < 0.01
*** P-value < 0.001

Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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CHIEF Predicts Cancer Patients’ 
Survival Outcomes

29

PLCO-Colon (Independent)

a TCGA-COADREAD (Held-out)

CPTAC-LUSC (Independent)
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Held-out Test Sets (Stage I-II) Independent Test Sets (Stage I-II)b

CPTAC-RCC (Independent)TCGA-RCC (Held-out) BWH-RCC (Independent)

PLCO-LUAD (Independent)

Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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Tumor Microenvironment Patterns 
Associated with Survival Outcomes

30
Wang X et al. Nature. 2024 Oct;634(8035):970-978.
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Multimodal transformer with Unified 
maSKed modeling (MUSK)

31Xiang J et al. Nature. 2025 Feb;638(8051):769-778.
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Prov-GigaPath

32Xu H et al. Nature. 2024 Jun 6;630(8015):181-8.
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Interpreting Deep Learning 
Models

33
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Approaches for Model Interpretation

• Visualize image patches that maximally activated neurons
• Visualize the “feature” space
• Visualize the convolution filters
• Occlusion
• Attention maps
• “Deconv”
• Optimize to image
• …

34
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Method 1: Visualize Image Patches that 
Activate the Selected Neurons

35Girshick R et al. CVPR. 2014:580-587.
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Method 2: Visualize the “Feature” Space

• Treat the values in the fully-connected layer as “features”

36

Features

Krizhevsky A et al. Advances in Neural Information Processing Systems 2012:1097-1105.
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Method 2: Visualize the “Feature” Space

• Principal component analysis
• Convert a set of features into a set 

of linearly uncorrelated variables

• t-SNE (t-distributed stochastic 
neighbor embedding)
• Similar objects have a high 

probability of being picked as 
neighbors

37Van Der Maaten L. JMLR. 2014 Jan 1;15(1):3221-45.

t-SNE
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Method 2: Visualize the “Feature” Space

• U-Map (Uniform Manifold 
Approximation and Projection)
• Assumptions

• The data is uniformly distributed on 
a Riemannian manifold

• The Riemannian metric can be 
approximated as constant locally 

• The manifold is locally connected
• Preserves more global structure
• Faster than t-SNE

38McInnes L et al. arXiv preprint arXiv:1802.03426. 2018 Feb 9.
Figure credit: Leland McInnes
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Method 3: Visualize the Convolutional Filters

39Luan S et al. IEEE Transactions on Image Processing. 2018 Sep;27(9):4357-66.

• Show the raw weights of the filters
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Method 4: Occlusion

40Zeiler MD and Fergus R. ECCV. 2014 Sep 6;818-833.
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Method 5: Attention Maps
• Saliency map
• Visualize how the output category would change if we tweak the input image 

pixels (i.e., visualize the gradient with respect to the output category)

• Class activation map
• Visualize the gradient with respect to the layer right before the fully 

connected layer

41Simonyan K et al. arXiv preprint arXiv:1312.6034. 2013 Dec 20.
Image credit: Raghavendra Kotikalapudi
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Method 6: “Deconv”

• Feed image into a CNN
• Pick a layer, set the gradient of 

that layer to be [0, 0, …, 1, …, 0] 
• Backprop to image

42
Image

Zeiler MD and Fergus R. ECCV. 2014 Sep 6;818-833.

Output
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Method 6: “Deconv”

43

Image

Zeiler MD and Fergus R. ECCV. 2014 Sep 6;818-833.
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Method 6: “Deconv”

44

Image

Note: “Deconv” consists of a single 
backward pass

Zeiler MD and Fergus R. ECCV. 2014 Sep 6;818-833.
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Method 7: “Optimize” the Image

• Start with a neutral image
• Do
• Set the gradient of the score 

vector to be [0, 0, …, 1, …, 0]
• Backprop to the image
• Forward the image through the 

network

45Simonyan K et al. arXiv preprint arXiv:1312.6034. 2013 Dec 20.

Image
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Method 7: “Optimize” the Image

• Start with a neutral image
• Do
• Set the gradient of the score 

vector to be [0, 0, …, 1, …, 0]
• Backprop to the image
• Forward the image through the 

network

46Simonyan K et al. arXiv preprint arXiv:1312.6034. 2013 Dec 20.
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How Can AI Assist in Real-World 
Clinical Settings?
1. Real-time brain cancer evaluation during surgery
2. Multi-omics prediction for personalized colorectal cancer treatments
3. Multi-task AI for genomic profile identification

47
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Example 1: The Challenge of Intra-Operative 
Neuropathology Diagnosis

Siegel RL et al. CA Cancer J Clin. 2023 Jan 1;73(1):17-48.
48

Tumor sample

Diagnostic results 
guide surgery

Costly
Human Error

Pathologist

“Frozen Section” Diagnosis

Physician Burnout

Brain cancer: 204,000 death/year



DEPARTMENT OF

Biomedical Informatics
Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.

AI-Based Cryosection Histopathology 
Assessment and Review Machine (CHARM)
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Identifying Malignant Cells in 
Cryosection Samples

50

Cancer Identification

Cancer Identification

Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.
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High-grade

CHARM Successfully Differentiated 
Histological Grades

51
Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.

Histological Grade 
Classification

Low-grade

High histological grade: dense glioma cells and necrosis 
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However, the updated WHO Classification Included 
Molecular Profiles in the Definition of Glioma Grades

52

Low grade

High grade

Can AI infer IDH 
mutation status from 
pathology images?
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Predicting IDH Mutation Status 

53
Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.

IDH mutant: highly edematous specimens with lower cellularity
IDH wild-type: greater cellularity and atypia
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Predicting WHO CNS5 Classification

Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.



DEPARTMENT OF

Biomedical Informatics

Predicting Key Genomic Profiles 
Related to Prognosis

Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.

ATRX: cortical 
infiltration by the tumor

CDKN2A/2B 
homozygous deletion: 
greater atypia and 
cellularity
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Associating Histology Findings with 
Tumor Mutation Burden (TMB)

56

High TMB astrocytoma Low TMB astrocytoma

High TMB: greater cellularity and atypia, 
with less edematous regions

Nasrallah M et al. Med. 2023 Aug 11;4(8):526-540.
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Example 2: Multi-Omics Multi-cohort Assessment (MOMA) 
Platform for Molecular and Prognostic Prediction

• The Cancer 
Genome Atlas 
(TCGA)

• PLCO Cancer 
Screening Trial

• Nurses’ Health 
Study (NHS)

• Health 
Professional 
Follow-Up Study 
(HPFS)

Whole-slide images

Tissue microarray images

57Tsai PC et al. Nature Communications. 2023 Apr 13;14(1):2102.
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AI Predicts Overall Survival and Disease-Free Survival 
of Colorectal Cancer Patients in Multiple Cohorts

The Cancer Genome Atlas

NHS and HPFS

P=0.02

P<0.005

Tsai PC et al. Nature Communications. 2023 Apr 13;14(1):2102.
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AI Predicts Multi-Omics Profiles from 
Pathology Images
• MSI prediction • Copy number alteration

59

The Cancer Genome Atlas

NHS and HPFS

Deletion                                                  Amplification

Tsai PC et al. Nature Communications. 2023 Apr 13;14(1):2102.

AUC=0.88

AUC=0.76
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OS: Overall survival
DFS: Disease-free survival
MS: Microsatellite instability

Tiling

Color normalization
Patches selection

Multiple-instance learning

Vision
Transformer

Vision
Transformer

…

…
…

…

Cluster 1

Cluster N

Hierarchical module

α

β

Weibull module

Multi-omics 
characterization

Feature extraction

…

…

f11 f12 f1k… f31 f32 f3k…

f31 f32 f3k…f31 f32 f3k…

f21 f22 f2k…

Survival 
prediction

Positive bagNegative bag

Multiple-instance learning

Bags of image patches from 
a longer-term survivors

Bags of image patches from 
a shorter-term survivors

Prediction

Prediction

A B

Overall survival prediction

…

Weight map

MSI prediction

BRAF mutation prediction

Model prediction 

Multi-Label 
Classification Model

• Cancer-associated stroma (STR) : %

• Lymphocytes (LYM) : %

• Mucus (MUC) : %

• Colorectal adenocarcinoma epithelium (TUM) : %

• Tissue debris (DEB) : %

• Smooth muscle (MUS) : %

• Adipose tissue (ADI) : %

Results of 7 conceptsC

D

• Connecting pathology knowledge 
with AI-derived features using the 
weight map 

Tsai PC et al. Nature Communications. 2023 Apr 13;14(1):2102.

Explainable AI Describes Novel Imaging 
Patterns Using Pathology Concepts
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Summary

• Human-interpretable features + machine learning

• Deep learning methods
• Multi-modal foundation models
• Model interpretation

• Clinical applications in cancer pathology diagnoses

61


