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Outline for Today’s class

* Variational Autoencoders

* Generative adversarial Networks

* Generative Al

* LLMs and Multimodal LLMs

* Grounding and RAG

* Healthcare Applications of Generative Al
* Synthetic data Generation

* Data Privacy



Autoencoders

* An autoencoder is a feed-forward neural
net whose job it is to take an input x and
reconstruct x.

* To make this non-trivial, we need to add
a bottleneck layer whose
dimension is much smaller than the
input.

* Basically, what is happening here, we are
reducing 784 dimension input to only 20
dimension.

* We are compressing features, only trying to
keep important ones

* Next we are trying to reproduce that using
only those important ones
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784 units

code vector

100 units
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784 units
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How Autoencoders Works

>'q D units
UT decoder
* X: Input vector or array -
« X: Output vector or array K units
* V: A matrix of weights. For example VT encoder
if D has 3 neurons, K has 2 neuron,
for every connection there will be a X D units

weight and itis a 3 * 2 weight matrix
* U: Another matrix of weights. For

example if D has 3 neurons, K has 2 °
neuron, for every connection there ‘la\(e
will be a weight and itisa 2 * 3 K=
weight matrix ‘0 ()




How it works

* Vx: A matrix multiplication project D X D units
dimensional x to k dimensional plane. Shown for
3 to 2. Dimensionality Reduction UT q
ecoder
* Ux: Project k dimensional hidden unitto D ,
dimensional X K units
e Overall Outputis: ¥ = UVx[A linear function]
. V encoder
* How it learn: T
* Learn the U, V matrix or all weights so that we get :
minimum loss & & X D units

e L(x, %) = ||lx — X||?
* We minimize L to learn UV



Why Autoencoders?

* Map high-dimensional data to two dimensions for visualization
 Compression

* Learn abstract features in an unsupervised way so you can apply
them

to a supervised task
* Unlabeled data can be much more plentiful than labeled data

* Learn a semantically meaningful representation where you can,
e.g.,
interpolate between different images.



Some limitations of autoencoders

* They’re not generative models, so they don’t define a distribution
* How to choose the latent dimension?



Generative Models

* One of the goals of unsupervised learning is to learn
representations of images, sentences, etc.

* A generative model is a function of representation z.
e X=G(z) [Gisthe generator function]

* Example: VAE, GAN

sample

code vector




Variational Autoencoder (VAE)

* Key idea: make both the encoder and the decoder probabilistic.

* |l.e., the latent variables, z, are drawn from a probability
distribution depending on the input, X, and the reconstruction is
chosen probabilistically from z.

y4 y4
Encoder q{z|x) Decoder p,(x|z)

f !

Data: x Reconstruction: X

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE Encoder

* The encoder takes input and returns parameters for a probability

density (e.g., Gaussian): l.e., go(z | z)gives the mean and co-variance
matrix.

* We can sample from this distribution to get random values of the
lower-dimensional representation z.

* Implemented via a neural network: each input x gives a vector mean
and diagonal covariance matrix that determine the Gaussian density

* Parameters 0 for the NN need to be learned — need to set up a loss
function.

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE Decoder

* The decoder takes latent variable z and returns parameters for a

distribution. E.g.,ps(z|2)gives the mean and variance for each
pixel in the output.

* Reconstructionz is produced by sampling.

* Implemented via neural network, the NN parameters ¢ are
learned.

y4 y4
Encoder q{z|x) Decoder p(x|z)

f !

Data: x Reconstruction: X

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

* Loss function for autoencoder: L, distance between output and
input (or clean input for denoising case)

* For VAE, we need to learn parameters of two probability
distributions. For a single input, x;, we maximize the expected

value of returning x;or minimize the expected negative log
likelihood.

_Ezwqo(z m;)[logqu(mi | z)]

* This takes expected value w.r.t. z over the current distribution gs(z|z;)
of the loss —logpy(z:|2)

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

* Problem: the weights may adjust to memorize input images via z.

l.e., input that we regard as similar may end up very differentin z
space.

* We prefer continuous latent representations to give meaningful

parameterizations. E.g., smooth changes from one digit to
another.

* Solution: Try to forcegs(z|z;)to be close to a standard normal (or
some other simple density).

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

* For a single data point x; we get the loss function
1i(0,9) = —E.ngo(zfei) 108 Ps(@i | 2)] + KlL(gs(2 | ;) || p(2))

* The first term promotes recovery of the input.

* The second term keeps the encoding continuous — the encoding is
compared to a fixed p(z) regardless of the input, which inhibits
memorization.

* With this loss function the VAE can (almost) be trained using
gradient descent on minibatches.

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

* For a single data point x; we get the loss function
Li(0,0) = —E.gy(zlz;) 108 Ps(i | 2)] + KL(go(z | ;) |[ p(2))

* Problem: The expectation would usually be approximated by
choosing samples and averaging. This is not differentiable w.r.t. 6

and ¢.
7 .
0 ONN L samping [ | | ONN |

Encoder Decoder

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb



VAE loss function

* Reparameterization: If zis N(u(x;), 2(x;)), then we can sample z
using z = u(x;) + V(2(x;)) €, where € is N(0,1). So we can draw
samples from N(0,1), which doesn’t depend on the parameters.

L
CNN CNN

i sampling
Encoder e Decoder

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb



VAE generative model

o After training,%(z|"3i)is close to a standard normal, N(0,1) —easy to
sample.

* Using a sample of z from%(z|z:)as input to sample from
gives an approximate reconstruction of x;, at least in expectation.

* If we sample any z from N(0,1) and use it as input to to sample
fromp,(z|z)then we can approximate the entire data distribution

p(x). l.e., we can generatemévsamples that look like the input
but aren’tin the input.



How VAE Learn Distribution

 VAE based on variational inference
* Decoder does is calculate p(z|x)= p(x,z)/p(x)

* What generator part does is:
* p(x) = [ p(Dp(x|z)dz
* A noisy observation model is learnt

* p(x|z) = N(x; Gg(2),n])
e 0 ispand alearnt by the decoder

18



How VAE Learn Distribution

* Direct computation of p(x) is costly

* Iltintroduce a further function to approximate the posterior distribution
as
* qp(z]x) = pg(z|x)
* Approximate q(z) which is known to p(z|x)
* theideaistojointly optimize the generative model parameters 6 to reduce the

reconstruction error between the input and the output and ¢ to make q4(z|x) as
close as pg(z|x)

* Min Dg(q4 (- [)]Ipe (- %))

* [tuses KL divergence to make the parameters similar and define new
loss function using ELBO method that does both task at the same time

* Lo (x) = logpg(x) — D1 (q¢ (- [0)Ipe (- %))

19



Generative Adversarial Networks (GANS)

* VAEs approximate P(X) using latent variables z, with the mapping
between X and z pushed through a NN function approximation
that ensures that the transformed data can be well represented by
a mixture of Gaussians

* But approximating P(X) directly is complicated, and approximating
it well in the space of an arbitrarily defined reconstruction error

does not generalize well in practice
* GANs go about approximating P(X) using an indirect approach



Adversarial training

* Two models are trained — a generator and a

discriminator )
* The goal of the discriminator is to correctly D- FD |

judge whether the data it is seeing is real, or | rendom noise = =0
Sy nt h et IC Discriminator

* Objective function is to maximize classification Dm—'
error

* The goal of the generator is to fool the
discriminator

* |t does this by creating samples as close to real
data as possible

* Objectively tries to minimize classification error
* No longer reliant on reconstruction error for
quality assessment
]

Realistic Fake




GANSs
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GAN outputs

* The latent space learned in
GANSs is very interesting

* People have showed that
vector additions and
subtractions are meaningful in
this space

* Can control novel item
compositions almost at will

* A big ‘deepfakes’ industry is
growing up around this

b=
-
<
S
smiling neutral neutral smiling man
woman woman

man

Example of Vector Arithmetic on Points in the Latent Space for Generating Faces With a GAN.

Taken from Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.

https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/



Deep Learning

» Specialized DL (Before BERT/Elmo in 2018)
* Design specialized model architectures.
* Leveraging task-specific features.
* Train the specialized models with limited data.

* Transfer DL (Between 2018 - 2021)

* Train a model with large amount of training data.

* Use the features of the trained model to initialize part of the architecture
* Design specialized modules on top of the trained features.
* Train the partially specialized model with limited data.

* Foundation Model (After 2021)

* Train a single huge model on astronomical amount of data
* Prompt the single model for everything



Pros and Cons of Specialized DL

* Pros
* The model considers the inductive bias for architecture design
* The model can be effectively trained with limited amount of data
* The modelis normally smallin size, easy to deploy for applications

* Cons
* Each task requires lots of expertise for architecture design

* Each task requires annotating specialized dataset

* The model cannot benefit from other annotated data, it needs to start
from scratch literally to gain its skill

* Hosting many specialized models incur high costs



Transfer Learning

 We can train our model on massive amount of data to learn neural
representation or initialize certain part of the weights.

* Then transfer to new tasks by adding layers on on top of the
learned neural representation.

* This can leverage some cross-task similarity to enhance model
performance across different tasks.



Transfer Learning in Vision
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Transfer Learning in BERT

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAl GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERT L ArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.



Transfer Learning in Vision

(1) Contrastive pre-training
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Pros and Cons of Transfer DL

* Pros:
* The model shows much stronger capability than Specialized DL
* The model can generalize to unseen cases
* The model requires very few fine-tuning

e Cons:

 The model’s performance is still not perfect.
* There is still fine-tuning needed for the downstream tasks



GPT-2 (Radford et al. 2019)

/Decoder-OnIy Language Modem
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7
)

The dog ate his ...
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The weather today is ...




GPT-2 (Radford et al. 2019)

* Training Objective: next work prediction
* Nothing surprising here, these are the traditional LM loss:

P(wg.n) = HP(Wi|W0:i—1)
i=0

* We want to estimate the probability distribution of sequence of
words (or tokens in general).



GPT-3 (Brown et al. 2020)

Similar model
architectures

&

GPT-1

4

GP1-2

\ 4

GPT-3

\ 4

ChatGPT/GPT-4 «+— Human demonstrations and annotations

- 4.8GB (unfiltered) data

< 40GB human-filtered data

<+— 570GB data filtered from 45TB raw data

Y

Data size T
Data quality T



In-context Learning

Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt



Few-shot Learning

Zero-shot One-shot Few-shot

L L eI CTIEE L T T T

Natural Language
Prompt

175B Params
60

Accuracy (%)

13B Params

1.3B Params

Number of Examples in Context (K)



Emergent Ability (Wei et al. 2022)

* When the model size grows from 0.1B -> 1.5B -> 175B, the model
starts be really good in zero-shot and few-shot tasks

* This is called “emergent abilities”.

—e— LaMDA

—a— GPT-3

Mod. arithmetic

—4— Gopher —A— Chinchilla —@— PalL.M

Multi-task NLU

- = = Random

Word in context

50 70 70
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IS ST = 60
Z 30 z 40 2 55
g £ 30 g 0
5 20 5o |- 5 50
Q Q 20 9
<10 < < 45
10 o
0r 0
1018 102() 102'2 1024 102() 1022 10'24 102() 10'22 1024

Model scale (training FLOPs)



ampling from above

Song, Yang, and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution.” NeurlPS 2019.



Diffusion Models

Text

'

Frozen Text Encoder

Text Embedding

Text-to-Image
Diffusion Model

64 x 64 Image

Super-Resolution
Diffusion Model

256 x 256 Image

Super-Resolution
Diffusion Model

1024 x 1024 Image

“A Golden Retriever dog wearing a blue
checkered beret and red dotted turtleneck.”

— CLIP objective
“a corgi H
playing a
flame |[NCEENNN o | T
throwing ] : -
trumpet” ] 36000
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | QNG
—10+0+>OF—
prior decoder

Figure 2: A high-level overview of unCLIP. Above the dotted line, we depict the CLIP training process,
through which we learn a joint representation space for text and images. Below the dotted line, we depict our
text-to-image generation process: a CLIP text embedding is first fed to an autoregressive or diffusion prior
to produce an image embedding, and then this embedding is used to condition a diffusion decoder which
produces a final image. Note that the CLIP model is frozen during training of the prior and decoder.



Diffusion Models (Videos)




Gemini (Google et al. 2023)

Input

Sequence

N

Aa

(]

—

~—
)

—
0

Image
Decoder

Text
Decoder

I




What can Gemini do?




Parameters of Foundation DL

Parameters Specialized DL Transfer DL Foundation DL

Model Size <100M parameters | 100M->1B 7B -> 1T parameters
parameters

Data Size 10K -> 1M tokens 100M -> 10B tokens 100B -> 30T tokens

Architecture Specialized General General

Generalization None Reasonable Strong




Self-Attention and Transformer
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Language Model Pre-training
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Language Model Pre-training
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What is Large Language Model (LLM)?’

Language models are computational models that have the
capability to understand and generate human language.
Deep learning algorithm that can perform various NLP tasks
Are trained on massive datasets that allow them to recognize,
translate, predict, or generate text or other content
Unsupervised multi-task learners

Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H., Yang, L., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P.S., Yang, Q., & Xie, X. (2023). A Survey on Evaluation of
Large Language Models. ArXiv, abs/2307.03109.

1.



Large Language Models
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Large Language Models
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In-Context Learning

Need for a large dataset for every task limits applicability of
language models - its not practical

Potential to exploit spurious correlations in training data grows
with the expressiveness of the model and narrowness of the
training distribution Language models are few-shot learners
Humans do not require large supervised datasets to learn most
language tasks - a brief directive is sufficient

Meta-learning or zero-shot transfer allows the model to develop
a broad set of skills and pattern recognition abilities at training
time

Not as performant as reinforcement learning from human
feedback (RLHF)



Language model meta-learning”

. Language model develops a broad set of skills and pattern

recognition abilities during training

outer loop

Learning via SGD during unsupervised pre-training \
3 5 7
v

5+8=13 8 gaot => goat 8 thanks => merci 8
3 3 3
- - -
7+2=9 ;3 sakne => snake 2 hello => bonjour 2
= - -
) Y )
. 1+0=1 o brid => bird o mint => menthe o
inner loop 3, 3 3,
3 = 3
3+4=7 Q fsih => fish «Q wall => mur Q

DEHROR=R14 dcuk => duck otter => loutre

9+8=17 cmihp => chimp bread => pain
4 4 4

sequence #1

sequence #2

sequence #3

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.



Language model meta-learning

Task: Remove random symbols from a word

Larger models make increasingly efficient use of in-context info
Params: weights + biases

Eval: GPT-3

Zero-shot One-shot Few-shot
,,/r—/\\' —

! ! - — .

175B Params

Natural Language
60 guag

Prompt
50 \
> 40 =
©
£ \
g 30 No Prompt
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- 1.3B Params

Number of Examples in Context (K)



GPT-3 Architecture & Training Approaches
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The three settings we explore for in-context learning

Zero-shot

The model predicts the answer given only a natural language
description of the task. No gradient updates are performed.

Translate English to French: task description

cheese => prompt

One-shot

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description

sea otter => loutre de mer example
cheese => prompt
Few-shot

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French:
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

task description

Traditional fine-tuning (not used for GPT-3)

Fine-tuning
The model is trained via repeated gradient updates using a
large corpus of example tasks.

sea otter => loutre de mer example #1
peppermint => menthe poivrée example #2
plush giraffe => girafe peluche example #N
cheese => prompt



GPT-3 - Training dataset

Based on raw Common Crawl dataset of up to 1T words

Cleaned up original datasets by:
Filtered Common Crawl based on similarity to a range of high-quality
reference corpora
Performed fuzzy deduplication at the document level
Added known high-quality reference corpora to the training mix

Used final cleaned up data in training



GPT-3 - Training dataset

- Sizes, architectures, and learning hyper-parameters (batch size in
tokens and learning rate) of the models trained
- All models were trained for a total of 300 billion tokens

GPT-3 Small 125M 12 768 12 64 0.5M 6.0x 10
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0x 10*
GPT-3 Large 760M 24 1536 16 196 0.5M 2.5x10%
GPT-3 XL 1.3GB 24 2048 24 128 1M 2.0x10%
GPT-3 2.7B 2.7GB 32 2560 32 80 1M 1.6x10*
GPT-36.7B 6.7GB 32 4096 32 128 2M 1.2x10*
GPT-3 13B 13.0B 40 5144 40 128 2M 1.0x10*

GPT-3 175B or “GPT-3” ' 175.0B | 96 12288 96 128 3.2M 0.6 x 10*




GPT-3 Compute Consumption

Total Compute Used During Training
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GPT-3 Limitations

Limitations in text synthesis

Structural and algorithmic limitations

Poor sample efficiency during pre-training

Lack of interpretability

Can perpetuate and amplify existing biases and unfairness in
society

Multilingualism - majority language model researches are done

in English



LLMs Comparison

Model Name Nparams Nayers  Gmodel Npeads dhead Learning Context Architecture
Rate length
T5 125M 12 768 12 64 1.0x103
Transformer - Encoder-
Decoder
GPT-3175B or “GPT-3” 175.0B 96 12288 96 128 0.6x10*
Transformer - Decoder
CodeX 12B 12B N/A 4k Transformer - Decoder
0.6x10*
Llama-2 70B 70B N/A 1 4k Transformer with Pre-
1.5x10% Normalization, SwiGLU act
ivation, RoPE, GQA
Mixtral 8x7B 13B 32 14436 32 128 32k Transformer with Pre-
active, Normalization, SwiGLU act
47B ivation, RoPE, SWA, and
sparse Mixture of Experts instead
of feed-forward layer
PaLM 540B 118 18432 48 5x10° Transformer - Encoder-

Decoder




Scaling Law

Test Loss

4.2
—— L=(D/5.4-103)"00% | 5.6 —— L=(N/8.8-10!3)70.076
- 3.9 iB
3.6 40
4
3.3 39
3
3.0
2.4
L ={Criinl2.3 - 10%}~0950
) . . . . 2.7 , , . . .
10 1077 1075 1073 10! 10! 108 109 10° 107 109
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

For optimal performance all three factors must be scaled up in tandem. Empirical
performance has a power-law relationship with each individual factor when not
bottlenecked by the other two

Scaling Laws for Neural Language Models, Kaplan et al. 2020



Instruction Tuning & RLHF

Unify all the NLP tasks as instruction following format to enhance its generalization

Multi-task, instruction fine-tuning

Model Instruction fine-tune on many tasks Model

Pre-trained
LLM

B e e e i = el oo
;Rate this review:

Identify the places: _______ 1
Many examples of each [EXAMPLE TEXT]

needed for training [EXAMPLE COMPLETION]

Prompts Dataset

x: A dog is...

Tuned Language \

Initial Language Model Model (RL Policy)

Reinforcement Learning
Update (e.g. PPO)

S0 0+ VeI ()

000 RLHF ~ ®@®®
Base Text °® ®® Tuned Text ®@®®

y: a furry mammal y: man’s best friend

J O\ /
\k<>\

=KL Dk (mppo (y]T) || mhase(ylz))

Reward (Preference)

KL prediction shift penalty




Proximal Policy Optimization (PPO)

* Introduced by OpenAlin 2017 and is
considered as a state-of-the-art policy-based
RL algorithm

* Enhances training stability in policy updates by
limiting the magnitude to prevent large,
disruptive changes

* Balances between exploration and exploitation
by maintaining proximity to proven policies

Explained by Jonathan Hui


https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12

PPO

* Idea: constrain our policy update with a new objective function called
the clipped surrogate objective function that will constrain the policy
change in a small range using a clip

* Designed to avoid destructive large weight updates

Clipped Surrogate Objective Function:

LELIP(9) = B [min(r.(8) A, clip(r(6),1 — €, 1 + €)A¢)]

g (aA¢|S;)
”eold(adst)

r(0) =



InstructGPT

Step 1

Collect demonstration data,
and train a supervised policy.

A promptis
sampled from our B
xplain the moon
prompt dataset. landing to a 6 year old
[
\J
A labeler
demonstrates the @
desired output ;
behavior. Some pet;ple went
to the moon...
[
\/
This data is used SR
to fine-tune GPT-3 .,')?:{\.
with supervised N
learning. 2

Step 2

Collect comparison data,
and train a reward model.

A prompt and
several model e
Explain the moon
outputs are landing to a 6 year old
sampled. o o
Explain gravity. Explain war.

Moon is natural People went to
satellite of. the moon.

A labeler ranks

the outputs from @
best to worst.

This data is used Rt

to train our 2R
reward model. \.\52{/

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

: »
is sampled from Write 8 story
the dataset. about frogs
|
y
The policy .
enerates O
g ./)?0&0
an output. W

|

y
The reward model au
calcul(;a]t(es a ./o)?j:\.
reward for

=J

the output.

|

\J
The reward is
used to update rk

the policy
using PPO.




Supervised Fine-Tuning Model (SFT)

* Initiated by recruiting 40 contractors through a
selective screening process

* Compiled a dataset of human-written
demonstrations of the desired output behaviour
on prompts (mostly English) submitted to the
OpenAl APl and some labeler-written prompts

* Used this dataset as source of supervised
learning training

Step1

Collect demonstration data,
and train a supervised policy.

A prompt is
sampled from our
prompt dataset.

A labeler
demonstrates the
desired output
behavior.

This data is used
to fine-tune GPT-3
with supervised
learning.

Explain the moon
landing to a 6 year old

)

2

Some people went
to the meon...

'

SFT

.0
LRI
oo o
=Y
2

EEE



Reward Model (RM)

* Collected a dataset from human-labeled comparisons
between GPT3 model outputs on a larger collection of
OpenAl APl prompts

Using this dataset a reward model was trained to
predict which model output a human would prefer

Wish to minimize

this loss function:

1
loss(0) = |—=< H

(2)

cemmyp-pl1og (a(ra(e, 3w) = 16 (x,30) )]

x is the prompt, y,, 1s preferred completion and y; is the

unpreferred complet

ion, all from the dataset D

K is the number of outputs to rank, making (g) possible

comparisons

r9(x,y) produces the scalar output of the reward model

Step 2

Collect comparison data,
and train a reward model.

A prompt and

several model :
Explain the moon
outputs are landing to a 6 year old

sampled. : :

the maon

A labeler ranks

the outputs from @
best to worst.

0-0-0-0
|
Y
This data is used RM
t i . _9
o train our A,
reward model. St
0-0-0-0



RLHF

* Using the RM as a reward function the SFT model is
fine-tuned to maximize this reward using the PPO
algorithm

* r9(x, y) is our RM’s scalar reward for the generated
output given the prompt
MAX objective(g)

= E(x,y)NDngL‘[re (x,y) — B log(mg" (v 1x)/mFT (v 1x))]
Ty E(x)"’Dpretrain [log (T[gL (X))]

* KL Penalty to keep policy gradients from deviating far

. ngL is the learned RL policy, w°FT is the supervised trained
model’s policy
* [ is a hyperparameter for the strength of this term

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt »
is sampled from e
the dataset. about frogs

The policy p,;o

enerates 2o
9 o/)?o&o -

an output. \.\52{/

The reward model
calculates a o

reward for AT
7
the output.

The reward is
used to update
the policy
using PPO.



RLHF

* Using the RM as a reward function the SFT model
Is fine-tuned to maximize this reward using the

PPO algorithm

* Wish to maximize this objective function:

objective(¢)

= Ecoyyop, [0 (0 y) = Blog(mg (v [)/m> (y 1x))]

Y E(x)"’Dpretrain [log (n—gL (X))l]

* Mixing pretraining gradients into PPO gradients to
fix the performance regressions on public NLP
datasets controlled by y

Step 3

Optimize a policy against
the reward model using
reinforcement learning.

A new prompt

is sampled from »
Write a story
the dataset. about frogs
The policy =
enerates 2o
2 o/)?o&o N
an output. \.\52{/
(o] upon a tim
The reward model n
. 9
—
Y

the output.

The reward is
used to update
the policy
using PPO.



Multimodal Pre-training

(1) Contrastive pre-training (2) Create dataset classifier from label text
e
Pepper the o
aussie pup > ETeXt o A photo of Text
ncoder l l i l o¢ ? a {object). Encoder
T, | T, | T3 Ty ’
— L LTy | LTy | Ty | | Ty .
(3) Use for zero-shot prediction v y \ v
e = LT | LTy | LTy | . LTy ey T, | T, | Ty - | TN
Image > I T, | 3Ty | IgT Iy T,
» 3 3 3712 S 37IN Image
Encoder g I LTy | 'y | T LT
Encoder 1 111 1712 [ "IN
Lyl Iy | T [T | INTs | o | INTN A pah‘?foy of

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.



Large Multimodal Models

Trained from scratch a very serious cat.

Output: text
. Pretrained and frozen

during Flamingo training

| ——

Perceiver ;ercei\ller n-th GATED XATTN-DENSE
Resampler esampler

;

1st GATED XATTN-DENSE

- >

Processed text

ikimage> This is a very cute dog. <image> This is

Input: text and visual
data interleaved

This is a very cute dog. This is

:

Visual data
processing




Q-Former: Lightweight Querying Transformer to bridge the
modality gap

* Goal:

The queries can learn to extract visual representation that is most informative of the text
Vision-and-Language Vision-to-Language
Representation Learning Generative Learning

Q-Former
Querying Transforme
5 ¥ that goes along this photo.
Love is like a sunset, it’s
00-g80 Text hard to see it coming but
Queries when it does it’s so beautiful.

Bootstrapping Pre-trained Bootstrapping Pre-trained
Image Models Large Language Models (LLMs)

________________________________________________________________________

I
|
I
|
I
I
|
I
:
I
Write a romantic message |
|
I
I
I
I
|
I
I

Q-Former functions as an information bottleneck that feeds the most useful information to the LLM while
removing irrelevant visual information



Emu2: Objective & Architecture

* Unified autoregressive objective:

Predict-the-next-multimodal-element (either visual embeddings or textual tokens)

* Model Architecture EVA-02-CLIP-E-plus

Visual Encoder + autoregressive Multimodal Modeling + Visual Decoder

Connected by mean pooling each image to 8
x 8 image patches, followed by a linear
djaction egg that will hatch into a

<s> [MG]

Encoder

LLaMA-33B . .

| Trained as a detokenizer — can be
= E Generative Multimodal Model trained off-the-self without the

i language model

Decoder

20 2 2 2 v ¥ ¥ VspxLy ¥V Classification Regression

| baby emu [IMG]




Overall Comparison

Contrib.
Flamingo The first LMM
LLaVA Visualinstruction tuning
InstructBLIP Visualinstruction tuning & instruction

aware visual feature extraction

PALI Scaling up the Vision, multilingual

PALI-3 Contrastively trained visual encoder

EMU2 Strong in-context learning ability

InternVL Bridge the gap between vision encoder
and LLM

Gemini Natively multimodal

Zero/few

shot or
fine-tuned

Few shot

Few shot

Fine-tuned

Fine-tuned

Few shot

Zero shot

Zero shot

80B

1.5-
13B

13B

55B

5B

37B

24B

VQAv2

56.3

80.0

86.1

85.2

84.9

77.8

NoCap

121.9
few-shot

126.3
zero-shot

126.2
few-shot

63.3* few-
shot

49.5 f-show

54.2 fine-
tuned

65.1* few-
shot

66.6* few-
shot

TextVQA

36.0 few shot
57.1 fine-tuned

61.3* few-shot

50.7 few-shot

73.06 zero-shot

79.51 fine

66.6* few-shot



LLM & Tool Augmentation

LLM

Ingestion

API’s Input: natural Output: Response + Retrieved

| .' language query Documents
' - o

@ Llamalndex
e Decompose queries

Raw Files
e Interface with

@ i
= Vector Stores unstructured/

° m semi-structured/
‘))) AN ’ '."J) ~N structured data
Jdb
25 o %

e Compose graphs




Two Types of RAG Models

* pRAG—Sequence()’lx) ~ Zzetop—k(p(-lx)) Pn (z|x) HILV po (Vilx, 2, ¥1.i-1)

* Marginalized over each top-k document...
* Generate probability for entire output sequence

* PrAG-Token(V]X) = Hliv Zzetop—k(p(-pc)) Pn (z|x)po (Vilx, Z, y1:i-1)

* For each token...
* Marginalized over each each top-k document...
* Generate distribution for next output token



Implementation: Fine-Tuning

* Joint Fine-Tuning Update:
* Update: Retriever query encoder and generator

* Don’t Update: Retriever document encoder
1. Expensive since document index must be periodically updated
2. Authorsfind itisn’t necessary for strong performance
3. Aside: REALM does this during pre-training

* Fine-Tuning Data: A collection of pairs (xj, yj)

» Objective: Minimize Y. ; —log p(y;|x;) using SGD (via Adam)



Retrieval Augmented Generation

Define "middle ear" (

Question Answering:
Question Query

Barack Obama was
born in Hawaii. (x)

Fact Verification: Fact Query

The Divine
Comedy (x)
Jeopardy Question

Generation:
Answer Query

X)

End-to-End Backprop through q and pg

( Query
Encoder

q(x)

Retriever p,,
(Non-Parametric)

Document
Index

d(z)

24

Generator pD

(Parametric)

Margin-
alize

The middle ear includes
the tympanic cavity and
the three ossicles. (y)

Question Answering:
Answer Generation

supports (y)

Fact Verification:
Label Generation

This 14th century work
is divided into 3
sections: "Inferno",
"Purgatorio" &
"Paradiso" (y)

Question Generation



Motivation: RAG for Black-Box LLMs

* Issue: Fine-tuning LLMs with retrieval requires white-box access
(i.e., access to the LLM parameters)

* To train the model
* To index the datastore

* In Practice: Many LLMs are only accessible via API

* Can’t access model parameters!
e Can’t fine-tune!

©

<Y
Gemini




REPLUG

* Focus: Retrieval-augmentation ~ reviews T
in the black-box setting (no o M ————— .
access to model parameters)
| parents' garage | White-box LM

Jobs is the |, i
. Retriever
* LMis a black box #param. <108

* Retrieveris optionally tunable =

) RE-PLUG 4,
2 =
* How does it work? S rozen
1. Getdocuments from retriever "

Test Context i 777777
Jobs is the Jobs cofounded
2. Erepend documents to LM *Remever \; penns |~ [
input e 008
3. Feedinputto LM

Jobs cofounded
Appleinhis | @j

| parents' garage



REPLUG LSR (LLM-Supervised Retrieval)

Idea: Train retriever to find documents that minimize LM perplexity

1.
2.

Retrieve k relevant documents D' ¢ D

Compute retrieval likelihood of each document
esS@x)/y
° PR(d|x) = Zd,eD, es@nx)/y
Compute LM likelihood of each document (y = ground truth)

ePLM¥1d.x)/B

° QLM(dlx’ y) = Zd,eD/ ePLM(y|dl,x)/B

Minimize KL divergence between retriever and LM (B = contexts)

+ L= 5 Been KL(PR(dIX) | Quu(d]x, 7))



Implementation: Training

* REPLUG: No training, use off-the-shelf retriever (Contriever)
* REPLUG LSR: Use retriever (Contriever) + LM (GPT-3 Curie)

 Sample training queries from Pile dataset (256 tokens x 800K sequences)
* Query splitinto:
* Input context x (128 tokens)
* Ground truth continuation y (128 tokens)
* Sample external documents from Pile (128 tokens x 36M documents)
* Training queries and documents are verified for non-overlapping



REPLUG

Retrieved document d

Jobs cofounded
Apple in his
parents' garage

Retriever

Retrieval

T Document 5‘"

Test Context X
BLack box
Jobs is the | ===
CEO of _

AppLe

d; %
,
Jobs was raisedEobs is the

by adopted... CEO of

passed away... | CEO of

Jobs cofounded | Jobs is the
Apple... CEO of

\

Ensemble

a7
i |

( B
Steve Jobs Ijobs is the

- ;i

i
-@-
—J .

apple
pear

apple
pear

apple

pear
not

apple
pear
not



Self-RAG: Learning to Retrieve, Generate,
and Critique through Self-Reflection

Prompt How did US states get their names? Step 1: Retrieve on demand
% —> US states got their names from a variety of sources. { Retrieve
Step 2: Generate segment in parallel o o o

Prompt + o Prompt + o Prompt + o
2 =0 2

11 of 50 state names

Relevant

i Relevant i ia' i
Imelevant { Texas is named California's name has its

| : : origins in a 16th-century novel
come from persons. Supporied after a Native American tribe. 9 v

Las Sergas de Esplandian. §{ partially

Step 3: Critique outputs and select best segment

------ ©0Ic1] > @ I3 > @ o

¥ : US states got their names from a variety of sources. 11 of 50
—> {F‘e"'e"e —> Repeat.... =™
states names are come from personse 26 states are named

after Native Americans, including Utah.



Problems of RAG Models

* Robustness to Irrelevant Contexts

=

Retriever

World Cup 2022 was the //'
last with 32 teams,
before the increase to

N

- -
——
-
-

"The 2022 FIFA World Cup, also branded as Qatar
2022 was the 22nd FIFA World Cup, the world
championship for national football teams organized

by FIFA."
- -» FIFAWorld Cup 2026 will
:expand to 48 teams. ;
T S l—anguage _____ _ 48inthe 2026
World Cup 2022 was the tournament.
» last with 32 teams, before M Odel

‘the increase to

AN /

"Write an essay of your best summer vacation"

Ram, Ori, et al. "In-context retrieval-augmented language models." arXiv preprint arXiv:2302.00083 (2023).



Discussion

* What types of tasks are not suitable for RAG?
o Lack of expert knowledge (i.e., retrieval coverage)
o Doesn't require factual supports (i.e., writing a fiction)

 What's the down-side of Self-RAG and RePLUG?

o Latency: Processing multiple passages in parallel still bring
up computational cost (depending on the GPU usage).

* What are the pros and cons of different types of RAG?
o Input text concatenation, cross-attention, output interpolation

* Do we need RAG with long-context large language models?
o Lost in the Middle: How Language Models Use Long Contexts



Care Coordination

* Data fragmentation across the healthcare continuum

Poor connection in the healthcare system Generative Al could transform a considerable Leading electronic health vendors are
can spur redundant costs. percentage of tasks. adopting generative Al to advance their
systems.
\/ L1l
5 9 - -
— —
— —
— p—
C = =
\ — o
/\ TTTTT1
A study in the Journal of the American Medical Generative Al has high potential to automate or EHR vendor Epic has integrated with Microsoft's
Association found that “failures in care augment 39% of all working hours in the health Azure OpenAl Service to allow healthcare
coordination” cost between $27.2 and $78.2 industry, per an Accenture study. providers to automatically generate replies to
billion per year. messages and find ways to cut costs.
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GenAl in Healthcare

Patients are fending for themselves over Greater access to health information Healthcare LLMs put patients in the center.
navigating healthcare systems. enables patients to better participate in their

own care. é

S L1 1
- | |
| i |
Nearly 40% of Americans feel unsupported in Patients who can review their physician’s notes are Hippocratic Al is puilding the first safety-focused
understanding their healthcare, while 70% say more likely to adhere to their treatment plan than large language model (LLM) for healthcare,
that the system is hard to navigate, per a study those who cannot. allowing for more solutions to be designed
from Maestro Health. As a result, many patients specifically for patients.

look up their symptoms online, which may lead
to misinformation.
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Providers

* Paperwork and repetitive administrative tasks contribute to
healthcare worker burnout

Providers spend excessive time on Healthcare is facing a staffing shortage as Workflows using generative Al let providers
administrative tasks. many providers consider leaving the industry. focus on what's most important.

= | )
The average physician spends around 15 hours One in four clinicians is thinking about leaving the In healthcare organizations that have already
per week on administrative tasks, according healthcare profession, with 89% naming burnout as implemented Al, 78% of staff say that the
to Medscape's Physician Compensation Report. the main reason, per a Bain and Company survey. technology has improved their workflow,

according to the MIT Technology Review.
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Ethical Behavior

* Al solutions that support algorithmic empathy, synthetic patient data
and greater compliance

Patients Often Prioritize Bedside Manner Companies are working to address Al and Startups walk the talk of ethical Al policies.
Over Quality of Care ethical issues.

(o o } (o ;}
h | |
NN’/ [ 4
v"*‘m—_,ﬁ/ X"’—e‘ﬁ"/
According to an analysis of seven million patient According to the Brookings Institute, roughly 75% of  Over half of companies with such a policy in
reviews by Healthgrades, patients tend to focus Al companies with over 50 employees have a policy ~ place had at least one expensive business
more on personality and the quality of their about ethical Al outcome (such as dismissing an employee or
relationship than the effectiveness of the care turning down business) as a result of following
provider when assessing a doctor the policy, per the Brookings Institute.
(&) Cxy © L)
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Health data

How much health data the average person
generates?

How much data a consumer's smart phone, smart
watch, or fitness tracker generates daily?

The difference between health information and
Protected Health Information (PHI)

Health Insurance Portability & Accountability Act
(HIPAA) provides Covered Entities (plans, providers &
clearing houses) with requirements to protect the
privacy and security of health information and must
provide individuals with certain rights with respect to
their health information

Sources of Health Data
EEG

Smartphone ECG

Medical
Medications
Microbiome
Fitness
tracker DNA data



Risks associated with Al in healthcare

Privacy issues for data used for Al model training ~ Pregnancy app-maker Ovia Health is
selling data to employers

hd Preg na ncy tra Ckl ng a pp OVl a H ealth (E)vialHealth hasla suiute:?f apps t(:(help women keep tabs on their own fertility cycles.
. . e mployers are also getting a pee
» Helpful monitoring tool for millions of users ®6 6
* Monitoring tool for employers . Yhans
Reporter

« Employers could pay the app developer
for access to aggregated data of the users

Privacy experts worry that issues like this
could impact the career path of employees
without their knowledge



Risks associated with Al in healthcare

« Big Tech and startups are investing heavily
in Al health care. They will need vast

amounts of data to stay relevant A hospital algorithm designed to predict a deadly
» For Al to function accurately it needs to condition misses most cases
leverage data, which often is coming from s e
patients themselves
* Some algorithms are biased and scaling ‘Nobody is catching it’: Algorithms used
that bias [Ross 2021] in health care nationwide are rife with
* Achieving generalization in Al requires bias
exposing algorithms to diverse data while
training (e.g., Evaluation of the clinical value @ orommmuss
of the Epic Sepsis Model [Wong, et al.
2021))

https://www.statnews.com/2021/06/21/algorithm-bias-playbook-hospitals/
https://www.theverge.com/2021/6/22/22545044/algorithm-hospital-sepsis-epic-prediction
https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2781307



HIPAA Privacy and Security Rules require healthcare organizations
to adopt processes and procedures



HIPAA compliance

Who has to be HIPAA compliant?

I ST
Ll
€6) 1L

Healthcare Healthcare Healthcare Healthcare
providers plans clearinghouses business associates

HIPAA defines three categories of covered entities:

* Health care providers: Hospitals, clinics, medical laboratories, pharmacies, nursing
homes, doctors, psychologists, dentists, chiropractors, et cetera

* Health care plans: Health insurance and health maintenance companies, government
programs such as Medicare and Medicaid, military healthcare programs

* Health care clearinghouses: Organizations that create, receive, maintain, edit, or
transmit any protected health information (PHI)



Thank you!



