
AIM 2: Artificial Intelligence 
in Medicine II

Generative AI



Outline for Today’s class

• Variational Autoencoders
• Generative adversarial Networks
• Generative AI
• LLMs and Multimodal LLMs
• Grounding and RAG
• Healthcare Applications of Generative AI
• Synthetic data Generation
• Data Privacy



Autoencoders 
• An autoencoder is a feed-forward neural 

net whose job it is to take an input x and 
reconstruct x.
• To make this non-trivial, we need to add 

a bottleneck layer whose
dimension is much smaller than the 
input. 
• Basically, what is happening here, we are 

reducing 784 dimension input to only 20 
dimension.

• We are compressing features, only trying to 
keep important ones

• Next we are trying to reproduce that using 
only those important ones

3



How Autoencoders Works

• x: Input vector or array
• !𝒙: Output vector or array
• V: A matrix of weights. For example 

if D has 3 neurons, K has 2 neuron, 
for every connection there will be a 
weight and it is a 3 * 2 weight matrix
• U: Another matrix of weights. For 

example if D has 3 neurons, K has 2 
neuron, for every connection there 
will be a weight and it is a 2 * 3 
weight matrix

4



How it works

• Vx: A matrix multiplication project D 
dimensional x to k dimensional plane. Shown for 
3 to 2. Dimensionality Reduction
• Ux : Project k dimensional hidden unit to D 

dimensional !𝒙
• Overall Output is: !𝒙 = U𝑉x [A linear function]
• How it learn:

• Learn the U, V matrix or all weights so that we get 
minimum loss

• L(x, !𝒙) = | 𝑥 − !𝒙 |!
• We minimize L to learn U,V

5



Why Autoencoders? 

• Map high-dimensional data to two dimensions for visualization 
• Compression 
• Learn abstract features in an unsupervised way so you can apply 

them
to a supervised task
• Unlabeled data can be much more plentiful than labeled data

• Learn a semantically meaningful representation where you can, 
e.g.,
interpolate between different images. 

6



Some limitations of autoencoders 

• They’re not generative models, so they don’t define a distribution 
• How to choose the latent dimension? 

7



Generative Models

• One of the goals of unsupervised learning is to learn 
representations of images, sentences, etc. 
• A generative model is a function of representation z.
• X= G(z) [G is the generator function]

• Example: VAE, GAN

8



Variational Autoencoder (VAE)

• Key idea:  make both the encoder and the decoder probabilistic.
• I.e., the latent variables, z, are drawn from a probability 

distribution depending on the input, X, and the reconstruction is 
chosen probabilistically from z.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE Encoder

• The encoder takes input and returns parameters for a probability 
density (e.g., Gaussian): I.e.,              gives the mean and co-variance 
matrix.  
• We can sample from this distribution to get random values of the 

lower-dimensional representation z.
• Implemented via a neural network:  each input x gives a vector mean 

and diagonal covariance matrix that determine the Gaussian density
• Parameters 𝜃 for the NN need to be learned – need to set up a loss 

function.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE Decoder

• The decoder takes latent variable z and returns parameters	for a 
distribution.  E.g.,               gives the mean and variance for each 
pixel in the output. 
• Reconstruction    is produced by sampling.  
• Implemented via neural network, the NN parameters 𝜙 are 

learned.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

• Loss function for autoencoder:  L2 distance between output and 
input (or clean input for denoising case)
• For VAE, we need to learn parameters of two probability 

distributions.  For a single input, xi, we maximize the expected 
value of returning xi or minimize the expected negative log 
likelihood.  

• This takes expected value w.r.t. z over the current distribution              
of the loss 

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

• Problem:  the weights may adjust to memorize input images via z.  
I.e., input that we regard as similar may end up very different in z 
space.  
• We prefer continuous latent representations to give meaningful 

parameterizations.   E.g., smooth changes from one digit to 
another.
• Solution:  Try to force             to be close to a standard normal (or 

some other simple density).   

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

• For a single data point xi we get the loss function

• The first term promotes recovery of the input.
• The second term keeps the encoding continuous – the encoding is 

compared to a fixed p(z) regardless of the input, which inhibits 
memorization.  
• With this loss function the VAE can (almost) be trained using 

gradient descent on minibatches.  

https://jaan.io/what-is-variational-autoencoder-vae-tutorial/



VAE loss function

• For a single data point xi we get the loss function

• Problem:  The expectation would usually be approximated by 
choosing samples and averaging.  This is not differentiable w.r.t. 𝜃 
and 𝜙.  

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb



VAE loss function

• Reparameterization:  If z is 𝑁(𝜇 𝑥! , Σ 𝑥! ), then we can sample z 
using 𝑧 = 𝜇 𝑥! +√(Σ 𝑥!) 	𝜖, where 𝜖 is N(0,1).  So we can draw 
samples from N(0,1), which doesn’t depend on the parameters.   

https://nbviewer.jupyter.org/github/krasserm/bayesian-machine-learning/blob/master/variational_autoencoder.ipynb



VAE generative model

• After training,             is close to a standard normal, N(0,1) – easy to 
sample.  
• Using a sample of z from             as input to sample from              

gives an approximate reconstruction of xi, at least in expectation.  
• If we sample any z from N(0,1) and use it as input to to sample 

from              then we can approximate the entire data distribution 
p(x).   I.e., we can generate new samples that look like the input 
but aren’t in the input.  



How VAE Learn Distribution

• VAE based on variational inference
• Decoder does is calculate p(z|x)= p(x,z)/p(x)
• What generator part does is:
• 𝑝(𝑥) = ∫𝑝 𝑧 𝑝 𝑥 𝑧 𝑑𝑧

• A noisy observation model is learnt
• 𝑝(𝑥|𝑧) = 𝑁(𝑥; 𝐺! 𝑧 , η𝐼)
• 𝜃 is μ and α learnt by the decoder

18



How VAE Learn Distribution

• Direct computation of p(x) is costly
• It introduce a further function to approximate the posterior distribution 

as
• 𝑞"(𝑧|𝑥) ≈ 𝑝#(𝑧|𝑥)
• Approximate q(z) which is known to p(z|x) 

• the idea is to jointly optimize the generative model parameters 𝜃 to reduce the 
reconstruction error between the input and the output and ϕ to make 𝑞"(𝑧|𝑥) as 
close as 𝑝# 𝑧 𝑥
• Min 𝐷!"(𝑞#(. |𝑥)||𝑝$(. |𝑥))

• It uses KL divergence to make the parameters similar and define new 
loss function using ELBO method that does both task at the same time
• 𝐿#," 𝑥 = log 𝑝# 𝑥 − 𝐷%&(𝑞"(. |𝑥)||𝑝#(. |𝑥))

19



Generative Adversarial Networks (GANs)

• VAEs approximate P(X) using latent variables z, with the mapping 
between X and z pushed through a NN function approximation 
that ensures that the transformed data can be well represented by 
a mixture of Gaussians
• But approximating P(X) directly is complicated, and approximating 

it well in the space of an arbitrarily defined reconstruction error 
does not generalize well in practice
• GANs go about approximating P(X) using an indirect approach



Adversarial training
• Two models are trained – a generator and a 

discriminator
• The goal of the discriminator is to correctly 

judge whether the data it is seeing is real, or 
synthetic

• Objective function is to maximize classification 
error

• The goal of the generator is to fool the 
discriminator 

• It does this by creating samples as close to real 
data as possible

• Objectively tries to minimize classification error
• No longer reliant on reconstruction error for 

quality assessment

Realistic Fake



GANs
NN

Generator
v1

Discri-
minator

v1

Real images:

NN
Generator

v2

Discri-
minator

v2

NN
Generator

v3

Discri-
minator

v3



GAN - Discriminator

NN
Generator

Real images:

Discriminatorimage 1/0 (real or fake)

Decoder in VAE

Vectors from a 
distribution

1 1 1 1

0 0 0 0

Can be a convnet



GAN - Generator

Discriminator
v1

NN
Generator

v1

Randomly sample a 
vector

0.87

“Tuning” the parameters of generator 

The output be classified as “real” (as 
close to 1 as possible)

Generator + Discriminator = a 
network

Use gradient descent to find the parameters of 
generator 

1.0



GAN outputs

• The latent space learned in 
GANs is very interesting
• People have showed that 

vector additions and 
subtractions are meaningful in 
this space
• Can control novel item 

compositions almost at will
• A big ‘deepfakes’ industry is 

growing up around this

https://machinelearningmastery.com/how-to-interpolate-and-perform-vector-arithmetic-with-faces-using-a-generative-adversarial-network/



Deep Learning

• Specialized DL (Before BERT/Elmo in 2018)
• Design specialized model architectures.
• Leveraging task-specific features.
• Train the specialized models with limited data.

• Transfer DL (Between 2018 - 2021)
• Train a model with large amount of training data.
• Use the features of the trained model to initialize part of the architecture
• Design specialized modules on top of the trained features.
• Train the partially specialized model with limited data.

• Foundation Model (After 2021)
• Train a single huge model on astronomical amount of data
• Prompt the single model for everything



Pros and Cons of Specialized DL

• Pros
• The model considers the inductive bias for architecture design
• The model can be effectively trained with limited amount of data
• The model is normally small in size, easy to deploy for applications

• Cons
• Each task requires lots of expertise for architecture design
• Each task requires annotating specialized dataset
• The model cannot benefit from other annotated data, it needs to start 

from scratch literally to gain its skill
• Hosting many specialized models incur high costs



Transfer Learning

• We can train our model on massive amount of data to learn neural 
representation or initialize certain part of the weights.

• Then transfer to new tasks by adding layers on on top of the 
learned neural representation.

• This can leverage some cross-task similarity to enhance model 
performance across different tasks.



Transfer Learning in Vision



Transfer Learning in BERT



Transfer Learning in Vision



Pros and Cons of Transfer DL

• Pros:
• The model shows much stronger capability than Specialized DL
• The model can generalize to unseen cases
• The model requires very few fine-tuning

• Cons:
• The model’s performance is still not perfect.
• There is still fine-tuning needed for the downstream tasks



GPT-2 (Radford et al. 2019)



GPT-2 (Radford et al. 2019)

• Training Objective: next work prediction
• Nothing surprising here, these are the traditional LM loss:

𝑃 𝑤":$ =	4
%&"

$

𝑃(𝑤%|𝑤":%'()

• We want to estimate the probability distribution of sequence of 
words (or tokens in general).



GPT-3 (Brown et al. 2020)



In-context Learning



Few-shot Learning



Emergent Ability (Wei et al. 2022)

• When the model size grows from 0.1B -> 1.5B -> 175B, the model 
starts be really good in zero-shot and few-shot tasks
• This is called “emergent abilities”.



Sampling from above

Song, Yang, and Stefano Ermon. "Generative Modeling by Estimating Gradients of the Data Distribution.” NeurIPS 2019.



Diffusion Models



Diffusion Models (Videos)



Gemini (Google et al. 2023)



What can Gemini do?



Parameters of Foundation DL

Parameters Specialized DL Transfer DL Foundation DL

Model Size < 100M parameters 100M -> 1B 
parameters

7B -> 1T parameters

Data Size 10K -> 1M tokens 100M -> 10B tokens 100B -> 30T tokens

Architecture Specialized General General

Generalization None Reasonable Strong



Self-Attention and Transformer



Language Model Pre-training



Language Model Pre-training



What is Large Language Model (LLM)?¹

- Language models are computational models that have the 
capability to understand and generate human language.

- Deep learning algorithm that can perform various NLP tasks
- Are trained on massive datasets that allow them to recognize, 

translate, predict, or generate text or other content
- Unsupervised multi-task learners

1. Chang, Y., Wang, X., Wang, J., Wu, Y., Zhu, K., Chen, H., Yang, L., Yi, X., Wang, C., Wang, Y., Ye, W., Zhang, Y., Chang, Y., Yu, P.S., Yang, Q., & Xie, X. (2023). A Survey on Evaluation of 
Large Language Models. ArXiv, abs/2307.03109.



Large Language Models



Large Language Models



In-Context Learning 
• Need for a large dataset for every task limits applicability of 

language models - its not practical
• Potential to exploit spurious correlations in training data grows 

with the expressiveness of the model and narrowness of the 
training distribution Language models are few-shot learners

• Humans do not require large supervised datasets to learn most 
language tasks - a brief directive is sufficient

• Meta-learning or zero-shot transfer allows the model to develop 
a broad set of skills and pattern recognition abilities at training 
time

• Not as performant as reinforcement learning from human 
feedback (RLHF) 



Language model meta-learning⁴

• Language model develops a broad set of skills and pattern 
recognition abilities during training

4. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. Advances in neural information processing systems, 33, 1877-1901.



Language model meta-learning
• Task: Remove random symbols from a word 
• Larger models make increasingly efficient use of in-context info
• Params: weights + biases
• Eval: GPT-3



GPT-3 Architecture & Training Approaches



GPT-3 - Training dataset

• Based on raw Common Crawl dataset of up to 1T words
• Cleaned up original datasets by:

• Filtered Common Crawl based on similarity to a range of high-quality 
reference corpora

• Performed fuzzy deduplication at the document level
• Added known high-quality reference corpora to the training mix

• Used final cleaned up data in training



GPT-3 - Training dataset

- Sizes, architectures, and learning hyper-parameters (batch size in 
tokens and learning rate) of the models trained

- All models were trained for a total of 300 billion tokens

Model Name nparams nlayers dmodel nheads dhead BatchSize Learning Rate
GPT-3 Small 125M 12 768 12 64 0.5M 6.0 x 10-4
GPT-3 Medium 350M 24 1024 16 64 0.5M 3.0 x 10-4
GPT-3 Large 760M 24 1536 16 196 0.5M 2.5 x 10-4
GPT-3 XL 1.3GB 24 2048 24 128 1M 2.0 x 10-4
GPT-3 2.7B 2.7GB 32 2560 32 80 1M 1.6 x 10-4
GPT-3 6.7B 6.7GB 32 4096 32 128 2M 1.2 x 10-4
GPT-3 13B 13.0B 40 5144 40 128 2M 1.0 x 10-4
GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 3.2M 0.6 x 10-4



GPT-3 Compute Consumption



GPT-3 Limitations

• Limitations in text synthesis 
• Structural and algorithmic limitations
• Poor sample efficiency during pre-training
• Lack of interpretability 
• Can perpetuate and amplify existing biases and unfairness in 

society
• Multilingualism - majority language model researches are done 

in English



LLMs Comparison
Model Name nparams nlayers dmodel nheads dhead Learning 

Rate
Context 
length

Architecture

T5 125M 12 768 12 64 1.0 x 10-3

Transformer – Encoder-
Decoder

GPT-3 175B or “GPT-3” 175.0B 96 12288 96 128 0.6 x 10-4

Transformer – Decoder

CodeX 12B 12B N/A
0.6 x 10-4

4k Transformer - Decoder

Llama-2 70B 70B N/A 1
1.5 x 10-4

4k Transformer with Pre-
Normalization, SwiGLU act
ivation, RoPE, GQA

Mixtral 8x7B 13B 
active, 

47B 
sparse

32 14436 32 128 32k Transformer with Pre-
Normalization, SwiGLU act
ivation, RoPE, SWA, and 
Mixture of Experts instead 
of feed-forward layer

PaLM 540B 118 18432 48 5 x10-5 Transformer – Encoder- 
Decoder



Scaling Law

For optimal performance all three factors must be scaled up in tandem. Empirical 
performance has a power-law relationship with each individual factor when not 
bottlenecked by the other two

Scaling Laws for Neural Language Models, Kaplan et al. 2020



Instruction Tuning & RLHF
Unify all the NLP tasks as instruction following format to enhance its generalization 



Proximal Policy Optimization (PPO)
• Introduced by OpenAI in 2017 and is 

considered as a state-of-the-art policy-based 
RL algorithm

• Enhances training stability in policy updates by 
limiting the magnitude to prevent large, 
disruptive changes

• Balances between exploration and exploitation 
by maintaining proximity to proven policies

Source: RL - Proximal Policy Optimization (PPO) 
Explained by Jonathan Hui

https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12
https://jonathan-hui.medium.com/rl-proximal-policy-optimization-ppo-explained-77f014ec3f12


PPO
• Idea: constrain our policy update with a new objective function called 

the clipped surrogate objective function that will constrain the policy 
change in a small range using a clip

• Designed to avoid destructive large weight updates

Clipped Surrogate Objective Function:

𝐿)*+, 𝜃 = 	 +𝔼-[min 𝑟- 𝜃 2𝐴- , 𝑐𝑙𝑖𝑝 𝑟- 𝜃 , 1 − 𝜖, 1 + 𝜖 2𝐴- ]

𝒓𝒕 𝜽 =
𝝅𝜽(𝒂𝒕|𝒔𝒕)
𝝅𝜽𝒐𝒍𝒅(𝒂𝒕|𝒔𝒕)



InstructGPT



Supervised Fine-Tuning Model (SFT)
• Initiated by recruiting 40 contractors through a 

selective screening process

• Compiled a dataset of human-written 
demonstrations of the desired output behaviour 
on prompts (mostly English) submitted to the 
OpenAI API and some labeler-written prompts

• Used this dataset as source of supervised 
learning training



Reward Model (RM)
• Collected a dataset from human-labeled comparisons 

between GPT3 model outputs on a larger collection of 
OpenAI API prompts
• Using this dataset a reward model was trained to 

predict which model output a human would prefer

• Wish to minimize this loss function:
𝑙𝑜𝑠𝑠 𝜃 = −

1
%
!
𝐸 ',(%,(& ~*[log 𝜎 𝑟# 𝑥, 𝑦+ − 𝑟# 𝑥, 𝑦, ]

• 𝑥 is the prompt, 𝑦+ is preferred completion and 𝑦,  is the 
unpreferred completion, all from the dataset 𝐷

• 𝐾 is the number of outputs to rank, making %!  possible 
comparisons

• 𝑟$ 𝑥, 𝑦  produces the scalar output of the reward model



RLHF
• Using the RM as a reward function the SFT model is 

fine-tuned to maximize this reward using the PPO 
algorithm
• 𝑟" 𝑥, 𝑦 	is our RM’s scalar reward for the generated 

output given the prompt
𝑀𝐴𝑋	𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝜙
= 𝐸 ),+ ~-!"

#$[𝑟! 𝑥, 𝑦 − 𝛽	log(𝜋./0 𝑦	 𝑥)/𝜋123 𝑦	 𝑥))]

+ γ	𝐸())~-%&'(&)*+[log	(𝜋.
/0(𝑥))]

• KL Penalty to keep policy gradients from deviating far
• 𝜋./0	is the learned RL policy, 𝜋123 is the supervised trained 

model’s policy
• 𝛽	is a hyperparameter for the strength of this term



RLHF
• Using the RM as a reward function the SFT model 

is fine-tuned to maximize this reward using the 
PPO algorithm
• Wish to maximize this objective function:

𝑜𝑏𝑗𝑒𝑐𝑡𝑖𝑣𝑒 𝜙
= 𝐸 ),+ ~-!"

#$[𝑟! 𝑥, 𝑦 − 𝛽	log(𝜋./0 𝑦	 𝑥)/𝜋123 𝑦	 𝑥))]

+ γ	𝐸())~-%&'(&)*+[log	(𝜋.
/0(𝑥))]

• Mixing pretraining gradients into PPO gradients to 
fix the performance regressions on public NLP 
datasets controlled by γ



Multimodal Pre-training



Large Multimodal Models



Q-Former: Lightweight Querying Transformer to bridge the 
modality gap
•Goal:

The queries can learn to extract visual representation that is most informative of the text

Q-Former functions as an information bottleneck that feeds the most useful information to the LLM while 
removing irrelevant visual information



Emu2: Objective & Architecture
• Unified autoregressive objective:

    Predict-the-next-multimodal-element (either visual embeddings or textual tokens)

• Model Architecture
   Visual Encoder + autoregressive Multimodal Modeling + Visual Decoder

EVA-02-CLIP-E-plus

LLaMA-33B

SDXL

Connected by mean pooling each image to 8 
x 8 image patches, followed by a linear 
projection

Trained as a detokenizer → can be 
trained off-the-self without the 
language model



Overall Comparison

Model Contrib. Zero/few 
shot or 
fine-tuned

size VQAv2 NoCap GQA TextVQA

Flamingo The first LMM Few shot 80B 56.3 - - 36.0 few shot
57.1 fine-tuned

LLaVA Visual instruction tuning Few shot 1.5-
13B

80.0 - 63.3* few-
shot

61.3* few-shot

InstructBLIP Visual instruction tuning & instruction 
aware visual feature extraction

13B - 121.9 
few-shot

49.5 f-show 50.7 few-shot

PALI Scaling up the Vision, multilingual Fine-tuned 55B 86.1 126.3 
zero-shot

54.2 fine-
tuned

73.06 zero-shot

PALI-3 Contrastively trained visual encoder Fine-tuned 5B 85.2 - - 79.51 fine

EMU2 Strong in-context learning ability Few shot 37B 84.9 - 65.1* few-
shot

66.6* few-shot

InternVL Bridge the gap between vision encoder 
and LLM

Zero shot 24B 81.2 126.2 
few-shot

66.6* few-
shot

-

Gemini Natively multimodal Zero shot - 77.8 - - -



LLM & Tool Augmentation



Two Types of RAG Models

• 𝑝6789:;<=;>?; 𝑦|𝑥 ≈ ∑@∈-BC9D C E|F 𝑝G 𝑧|𝑥 ∏H
I 𝑝J 𝑦H|𝑥, 𝑧, 𝑦K:H9K

• Marginalized over each top-𝑘 document…
• Generate probability for entire output sequence

• 𝑝6789MBD;> 𝑦|𝑥 ≈ ∏H
I∑@∈-BC9D C E|F 𝑝G 𝑧|𝑥 𝑝J 𝑦H|𝑥, 𝑧, 𝑦K:H9K

• For each token…
• Marginalized over each each top-𝑘 document…
• Generate distribution for next output token



Implementation: Fine-Tuning

• Joint Fine-Tuning Update:
• Update: Retriever query encoder and generator
• Don’t Update: Retriever document encoder

1. Expensive since document index must be periodically updated
2. Authors find it isn’t necessary for strong performance
3. Aside: REALM does this during pre-training

• Fine-Tuning Data: A collection of pairs 𝑥# , 𝑦#
• Objective: Minimize ∑#−log 𝑝 𝑦#|𝑥#  using SGD (via Adam)



Retrieval Augmented Generation

The	Divine
Comedy	(x) q

Query
Encoder

q(x)

MIPS pθ

Generator pθ
(Parametric)

Margin-
alize

This	14th	century	work
is	divided	into	3
sections:	"Inferno",
"Purgatorio"	&
"Paradiso"									(y)

End-to-End Backprop through q and pθ

Barack	Obama	was
born	in	Hawaii.(x)

Fact Verification: Fact Query

supports	(y)

Question Generation

Fact Verification:
Label Generation

Document
Index

Define	"middle	ear"(x)

Question Answering:
Question Query

The	middle	ear	includes
the	tympanic	cavity	and
the	three	ossicles.		(y)

Question Answering:
Answer GenerationRetriever pη

(Non-Parametric)
z4

z3
z2

z1

d(z)

Jeopardy Question
Generation:

Answer Query



Motivation: RAG for Black-Box LLMs

• Issue: Fine-tuning LLMs with retrieval requires white-box access      
(i.e., access to the LLM parameters)
• To train the model
• To index the datastore

• In Practice: Many LLMs are only accessible via API
• Can’t access model parameters!
• Can’t fine-tune!



• Focus: Retrieval-augmentation 
in the black-box setting (no 
access to model parameters)
• LM is a black box
• Retriever is optionally tunable

• How does it work?
1. Get documents from retriever
2. Prepend documents to LM 

input
3. Feed input to LM

REPLUG



REPLUG LSR (LLM-Supervised Retrieval)
Idea: Train retriever to find documents that minimize LM perplexity

1. Retrieve 𝑘	relevant documents 𝐷N ⊂ 𝐷
2. Compute retrieval likelihood of each document

• 𝑃- 𝑑|𝑥 = .( ),+ /-

∑).∈0. .(().,+)/-

3. Compute LM likelihood of each document (𝑦 = ground truth)
• 𝑄&0 𝑑|𝑥, 𝑦 = .345 6|),+ /8

∑).∈0. .
345(6|).,+)/8

4. Minimize KL divergence between retriever and LM (ℬ = contexts)
• ℒ = 1

ℬ
∑'∈ℬ𝐾𝐿 𝑃- 𝑑|𝑥 ∥ 𝑄&0 𝑑|𝑥, 𝑦



Implementation: Training

• REPLUG: No training, use off-the-shelf retriever (Contriever)
• REPLUG LSR: Use retriever (Contriever) + LM (GPT-3 Curie)
• Sample training queries from Pile dataset (256 tokens x 800K sequences)
• Query split into:

• Input context 𝑥 (128 tokens)
• Ground truth continuation 𝑦 (128 tokens)

• Sample external documents from Pile (128 tokens x 36M documents)
• Training queries and documents are verified for non-overlapping



REPLUG



Self-RAG: Learning to Retrieve, Generate, 
and Critique through Self-Reflection



Problems of RAG Models

• Robustness to Irrelevant Contexts

"Write an essay of your best summer vacation"

"The 2022 FIFA World Cup, also branded as Qatar
2022 was the 22nd FIFA World Cup, the world
championship for national football teams organized
by FIFA."

Ram, Ori, et al. "In-context retrieval-augmented language models." arXiv preprint arXiv:2302.00083 (2023).



Discussion

• What types of tasks are not suitable for RAG?
oLack of expert knowledge (i.e., retrieval coverage)
oDoesn't require factual supports (i.e., writing a fiction)

• What's the down-side of Self-RAG and RePLUG?
oLatency: Processing multiple passages in parallel still bring 

up computational cost (depending on the GPU usage).

• What are the pros and cons of different types of RAG?
o Input text concatenation, cross-attention, output interpolation

• Do we need RAG with long-context large language models?
oLost in the Middle: How Language Models Use Long Contexts



Care Coordination
• Data fragmentation across the healthcare continuum



GenAI in Healthcare



Providers
• Paperwork and repetitive administrative tasks contribute to 

healthcare worker burnout



Ethical Behavior
• AI solutions that support algorithmic empathy, synthetic patient data 

and greater compliance



Health data

• How much health data the average person 
generates?

• How much data a consumer's smart phone, smart 
watch, or fitness tracker generates daily?

• The difference between health information and 
Protected Health Information (PHI)

• Health Insurance Portability & Accountability Act 
(HIPAA) provides Covered Entities (plans, providers & 
clearing houses) with requirements to protect the 
privacy and security of health information and must 
provide individuals with certain rights with respect to 
their health information

Sources of Health Data

Medications

Medical
records Blood test

Microbiome

Smartphone ECG

EEG

DNA data

Fitness 
tracker



Risks associated with AI in healthcare

Privacy issues for data used for AI model training

• Pregnancy tracking app Ovia Health
• Helpful monitoring tool for millions of users
• Monitoring tool for employers
• Employers could pay the app developer 

for access to aggregated data of the users

Privacy experts worry that issues like this 
could impact the career path of employees 
without their knowledge



Risks associated with AI in healthcare

• Big Tech and startups are investing heavily 
in AI health care. They will need vast 
amounts of data to stay relevant

• For AI to function accurately it needs to 
leverage data, which often is coming from 
patients themselves

• Some algorithms are biased and scaling 
that bias [Ross 2021]

• Achieving generalization in AI requires 
exposing algorithms to diverse data while 
training (e.g., Evaluation of the clinical value 
of the Epic Sepsis Model [Wong, et al. 
2021])

https://www.statnews.com/2021/06/21/algorithm-bias-playbook-hospitals/
https://www.theverge.com/2021/6/22/22545044/algorithm-hospital-sepsis-epic-prediction
https://jamanetwork.com/journals/jamainternalmedicine/article-abstract/2781307



HIPAA

HIPAA Privacy and Security Rules require healthcare organizations 
to adopt processes and procedures



HIPAA compliance

HIPAA defines three categories of covered entities:

• Health care providers: Hospitals, clinics, medical laboratories, pharmacies, nursing 
homes, doctors, psychologists, dentists, chiropractors, et cetera

• Health care plans: Health insurance and health maintenance companies, government 
programs such as Medicare and Medicaid, military healthcare programs

• Health care clearinghouses: Organizations that create, receive, maintain, edit, or 
transmit any protected health information (PHI)



Thank you!


