
AIM 2: Artificial Intelligence 
in Medicine II
Embeddings and Transformers

Carlos Morato, Phd.



Outline for today’s class

• Embeddings and their role in NLP
• Transformers and RNNs 
• Stack-encoder and Stack-decoder architectures
• BERT and GPT
• Hugging Face library for NLP applications
• Clinical BERT and BioBERT
• LLM-based medical question-answering.



Text Representations

• Co-occurrence statistics
• Brown Clusters
• Count vectors, TF-IDF vectors, co-occurrence matrix decomposition

• Predictive
• word2vec, GloVe, CBOW, Skip-Gram, etc

• Contextualized language models
• Representation of word changes based on context
• CoVE, ELMo, GPT, BERT, etc



Word Embeddings

Representing words as vectors in a canonical space:
• Two distinct models

• CBoW
• Skip-Gram   (SG)

• Various training methods
• Negative Sampling  (NS)
• Hierarchical Softmax

• A rich preprocessing pipeline
• Dynamic Context Windows
• Subsampling
• Deleting Rare Words



Embeddings capture relational meaning

vector(‘king’) - vector(‘man’) + vector(‘woman’)  ≈ vector(‘queen’)
vector(‘Paris’) - vector(‘France’) + vector(‘Italy’) ≈ vector(‘Rome’)



6

0

1

0

0

0

0

0

0

…

0

0

0

0

1

0

0

0

0

…

0

xcat

xon

0

0

0

0

0

0

0

1

…

0

Input layer

Hidden layer

sat

Output layer

V-dim

V-dim

N-dim

V-dim

+ �𝑣𝑣 =
𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐 + 𝑣𝑣𝑜𝑜𝑜𝑜

2

0.1 2.4 1.6 1.8 0.5 0.9 … … … 3.2

0.5 2.6 1.4 2.9 1.5 3.6 … … … 6.1

… … … … … … … … … …

… … … … … … … … … …

0.6 1.8 2.7 1.9 2.4 2.0 … … … 1.2

×

0

1

0

0

0

0

0

0

…

0

𝑊𝑊𝑉𝑉×𝑁𝑁
𝑇𝑇  × 𝑥𝑥𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑣𝑣𝑐𝑐𝑐𝑐𝑐𝑐

2.4

2.6

…

…

1.8

=

www.cs.ucr.edu/~vagelis/classes/CS242/slides/word2vec.pptx

We must learn W and W’ 

𝑊𝑊𝑊𝑁𝑁×𝑉𝑉

N will be the size of word vector

Computing Embeddings



Word embedding applications

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

• The use of word representations… has become a key “secret sauce” for 
the success of many NLP systems in recent years, across tasks including 
named entity recognition, part-of-speech tagging, parsing, and semantic 
role labeling. (Luong et al. (2013))

• Learning a good representation on a task A and then using it on a task B is 
one of the major tricks in the Deep Learning toolbox. 

• Pretraining, transfer learning, and multi-task learning. 
• Can allow the representation to learn from more than one kind of data.

• Can learn to map multiple kinds of data into a single 
representation.

http://nlp.stanford.edu/%7Elmthang/data/papers/conll13_morpho.pdf


Word embedding applications

http://colah.github.io/posts/2014-07-NLP-RNNs-Representations/

• Can apply to get a joint embedding of words and images or 
other multi-modal data sets.  

• New classes map near similar existing classes:  e.g., if ‘cat’ is 
unknown, cat images map near dog.  



Massive text Embedding Benchmark

https://huggingface.co/spaces/mteb/leaderboard



Encoder-Decoder

• RNN: input sequence is transformed into 
output sequence in a one-to-one fashion.

• Goal: Develop an architecture capable of generating 
contextually appropriate, arbitrary length, output sequences

• Applications: 
• Machine translation, 
• Summarization, 
• Question answering,
• Dialogue modeling.



Simple recurrent neural network illustrated as 
a feed-forward network

Most significant change: new set of weights, U
• connect the hidden layer from the previous time step to the current hidden layer. 
• determine how the network should make use of past context in calculating the 

output for the current input.

ℎ𝑡𝑡 = g(Uℎ𝑡𝑡−1+W𝑥𝑥𝑡𝑡)

𝑦𝑦𝑡𝑡 = f(Vℎ𝑡𝑡)𝑦𝑦𝑡𝑡 = softmax(Vℎ𝑡𝑡)



Simple-RNN abstraction

y2
y1 y3



RNN Applications 

• Language Modeling 

• Sequence Classification 
(Sentiment, Topic, intent, 
..)  

• Sequence to Sequence



Sentence Completion using an RNN

• Trained Neural Language Model can be used to generate novel sequences 
• Or to complete a given sequence (until end of sentence token <\s> is generated)

ℎ𝑡𝑡 = g(ℎ𝑡𝑡−1+W𝑥𝑥𝑡𝑡)

𝑦𝑦𝑡𝑡 = softmax(Vℎ𝑡𝑡)



Extending (autoregressive) generation to Machine 
Translation

• Build an RNN language model on the concatenation of source 
and target 

• Training data are parallel text  e.g., English / French

there lived a hobbit       vivait un hobbit
……..

there lived a hobbit <\s> vivait un hobbit <\s>
……..

Autoregressive: word generated at each time step is 
conditioned on word from previous step.



Extending (autoregressive) generation to Machine 
Translation

• Translation 
as Sentence 
Completion 



(simple) Encoder Decoder Networks

• Encoder generates a contextualized representation of the input (last state).
• Decoder takes that state and autoregressively generates a sequence of outputs

Limiting design 
choices
• E and D assumed 

to have the same 
internal structure 
(here RNNs)

• Final state of the E 
is the only context 
available to D

• this context is only 
available to D as its 
initial hidden state. 



h1

h1

h2

h2

hn

h
m

General Encoder Decoder Networks 
Abstracting away from these choices
1. Encoder: accepts an input sequence, x1:n 

and generates a corresponding sequence 
of contextualized representations, h1:n 

2. Context vector c:  function of h1:n and 
conveys the essence of the input to the 
decoder.

3. Decoder: accepts c as input and 
generates an arbitrary length sequence of 
hidden states h1:m from which a 
corresponding sequence of output states 
y1:m can be obtained.



Popular architectural choices: Encoder
Widely used encoder 
design: stacked Bi-
LSTMs 
• Contextualized 

representations for 
each time step: hidden 
states from top layers 
from the forward and 
backward passes



Decoder Basic Design

Last hidden 
state of the 
encoder

First hidden 
state of the 
decoder

z1 z2

• produce an output sequence 
an element at a time

(Vℎ𝑑𝑑𝑡𝑡)



z1 z2

Decoder Design
Enhancement

Context available at 
each step of decoding



z1 z2

Decoder: How output y is chosen

• Sample soft-max distribution (OK for generating 
novel output, not OK for e.g. MT or Summ)

• Most likely output (doesn’t guarantee individual 
choices being made make sense together)



• 4 most likely  “words” decoded from initial state
• Feed each of those in decoder and keep most likely 4 sequences 

of two words
• Feed most recent word in decoder and keep most likely 4 

sequences of three words …….
• When EOS is generated. Stop sequence and reduce Beam by 1



Flexible context: Attention
Context vector c:  function of 
h1:n and conveys the essence 
of the input to the decoder.

h1

h1

h2

h2

hn

hmFlexible?  
• Different for each hi

• Flexibly combining the hj 



• Replace static context vector with dynamic 
ci 

• derived from the encoder hidden states at 
each point i during decoding

Attention (1): dynamically derived context

Ideas: 
• should be a linear 

combination of those 
states 

•      should depend on ?



• Compute a vector of scores that 
capture the relevance of each encoder 
hidden state to the decoder state

Attention (2): computing ci

• Just the similarity

• Give network the ability to learn which aspects of 
similarity between the decoder and encoder states 
are important to the current application.



• Create vector of weights  by 
normalizing scores

Attention (3): computing ci
From scores to weights

• Goal achieved: compute a fixed-length context vector for the 
current decoder state by taking a weighted average over all 
the encoder hidden states.



Attention: Summary

Encoder

Decoder



Explain Y. Goldberg different notation



Transformers (Attention is all you need 2017)

• Just an introduction: These are two valuable 
resources to learn more details on the architecture and 
implementation

• https://nlp.seas.harvard.edu/annotated-transformer/ 

• https://jalammar.github.io/illustrated-transformer/ (slides come 
from this source)

https://nlp.seas.harvard.edu/annotated-transformer/
https://jalammar.github.io/illustrated-transformer/


• Will only 
look at the 
ENCODER(
s) part in 
detail

High-level architecture



The encoders are all identical in structure 
(yet they do not share weights). Each one is 
broken down into two sub-layers

helps the encoder look at other 
words in the input sentence as 
it encodes a specific word.

outputs of the self-attention are fed 
to a feed-forward neural network. 
The exact same one is independently 
applied to each position.



Key property of Transformer: 
word in each position flows 
through its own path in the 
encoder. 
• There are dependencies 

between these paths in the 
self-attention layer. 

• Feed-forward layer does not 
have those dependencies => 
various paths can be 
executed in parallel !

Word embeddings



Visually clearer on two words

Word embeddings

• dependencies in self-
attention layer. 

• No dependencies in 
Feed-forward layer 



Self-Attention

Step1: create three vectors 
from each of the encoder’s 
input vectors: 
Query, a Key, Value  (typically 
smaller dimension). 
by multiplying the embedding 
by three matrices that we 
trained during the training 
process.

While processing each word it allows to look at other positions in the 
input sequence for clues to build a better encoding for this word.



Self-Attention
Step 2: calculate a score 
(like we have seen for regular 
attention!)  how much focus 
to place on other parts of the 
input sentence as we encode 
a word at a certain position.
Take dot product of the query 
vector with the key vector of 
the respective word we’re 
scoring. 

E.g., Processing the self-attention for word “Thinking” in position #1, the 
first score would be the dot product of q1 and k1. The second score 
would be the dot product of q1 and k2.



Self Attention
• Step 3 divide scores by 

the square root of the 
dimension of the key 
vectors  (more stable 
gradients). 

• Step 4 pass result 
through a SoftMax 
operation. (all positive 
and add up to 1)

Intuition: SoftMax score determines how much each word will 
be expressed at this position. 



Self Attention
• Step6 : sum up the weighted 

value vectors. This produces 
the output of the self-
attention layer at this 
position

More details:
• What we have seen for a word is 

done for all words (using matrices) 
• Need to encode position of words
• And improved using a mechanism 

called “multi-headed” attention
(kind of like multiple filters for CNN)
see 
https://jalammar.github.io/illustrated-
transformer/

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/


The Decoder Side
• Relies on most of the concepts on the encoder side
• See animation on https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Stack for Decoder only and Stack for 
Encoder only

• The RNN and LSTM neural models were designed to process 
language and perform tasks like classification, 
summarization, translation, and sentiment detection

• RNN: Recurrent Neural Network
• LSTM: Long Short Term Memory

• In both models, layers get the next input word and have 
access to some previous words, allowing it to use the word’s 
left context

• They used word embeddings where each word was encoded 
as a vector of 100-300 real numbers representing its meaning



Stack for Decoder only and Stack for 
Encoder only

• Transformers extend this to allow the network to process a 
word input knowing the words in both its left and right context

• This provides a more powerful context model

• Transformers add additional features, like attention, which 
identifies the important words in this context

• And break the problem into two parts:
• An encoder (e.g., Bert)
• A decoder (e.g., GPT)

https://en.wikipedia.org/wiki/Attention_(machine_learning)


Transformer model

Encoder (e.g., BERT) Decoder (e.g., GPT)



Transformers, GPT-2, and BERT

1. A transformer uses an encoder stack to
model input, and uses decoder stack to
model output (using input information from encoder side)

2. If we do not have input, we just want to model the “next word”, 
we can get rid of the encoder side of a transformer and output 
“next word” one by one. This gives us GPT

3. If we are only interested in training a language model for the 
input for some other tasks, then we do not need the decoder 
of the transformer, that gives us BERT



Training a Transformer
• Transformers typically use semi-supervised learning with

• Unsupervised pretraining over a very large dataset of general text
• Followed by supervised fine-tuning over a focused data set of 

inputs and outputs for a particular task

• Tasks for pretraining and fine-tuning commonly include:
• language modeling
• next-sentence prediction (aka completion) 
• question answering 
• reading comprehension
• sentiment analysis 
• paraphrasing 



Pretrained models
• Since training a model requires huge datasets of text and 

significant computation, researchers often use common 
pretrained models

• Examples (circa December 2021) include
• Google’s BERT model 
• Huggingface’s various Transformer models
• OpenAI’s and GPT-3 models 

https://github.com/google-research/bert
https://huggingface.co/docs/transformers/index
https://openai.com/api/


Huggingface Models

https://huggingface.co/models
https://huggingface.co/models


OpenAI Application Examples

https://beta.openai.com/examples/
https://beta.openai.com/examples/


Text Representations

• Co-occurrence statistics
• Brown Clusters
• Count vectors, TF-IDF vectors, co-occurrence matrix decomposition

• Predictive
• word2vec, GloVe, CBOW, Skip-Gram, etc

• Contextualized language models
• Representation of word changes based on context
• CoVE, ELMo, GPT, BERT, etc



Who is BERT? 

BERT is a 12 (or 24) layer Transformer language model trained on two 

pretraining tasks, masked language modeling (fill-in-the-blank) and next 

sentence prediction (binary classification), and on English Wikipedia and 

BooksCorpus.



BERT is a 12 (or 24) layer Transformer language model trained on 

two pretraining tasks, masked language modeling (fill-in-the-blank) 

and next sentence prediction (binary classification), and on English 

Wikipedia and BooksCorpus.

About BERT and friends
Why this size and architecture?

Why these tasks?

Other 
languages?

What’s special 
about this data?

How much 
“language”?-base, -large, -small, -xl, etc.

linguistic probing tasks, 
attention, few-shot evaluation

XLNet, ELECTRA, SpanBERT, LXMERT, etc.

BioBERT, Covid-Twitter-BERT, etc

mBERT, XLM, XLM-R, mT5, 
RuBERT, etc



Using these *BERTs

• Pretrain  finetune
• Pretrain encoders on pretraining tasks (high-resource/data, possibly 

unsupervised)
• Finetune encoders on target task (low-resource, expensive annotation)

• Primary method of evaluation: Natural Language “Understanding” 
(NLU)

• Question Answering and Reading Comprehension
• Commonsense
• Textual Entailments



GPT-2 - BERT03



03

1542M762M345M117M parameters

GPT released June 2018
GPT-2 released Nov. 2019 with 1.5B parameters
GPT-3  released in 2020 with 175B parameters



GPT-2 in action

not

injure

injure

a

a

human

human

being

being



Byte Pair Encoding (BPE)

Word embedding sometimes is too high level, pure character embedding 
too low level. For example, if we have learned
     old       older        oldest
We might also wish the computer to infer
    smart    smarter    smartest

But at the whole word level, this might not be so direct. Thus the idea is to 
break the words up into pieces like er, est, and embed frequent fragments 
of words.
     
GPT adapts this BPE scheme.



Byte Pair Encoding (BPE)

GPT uses BPE scheme. The subwords are calculated by:
1. Split word to sequence of characters (add </w> char)
2. Joining the highest frequency pattern.
3. Keep doing step 2, until it hits the pre-defined maximum number of sub-

words or iterations.

Example (5, 2, 6, 3 are number of occurrences) 
{‘l o w </w>’: 5, ‘l o w e r </w>’: 2, ‘n e w e s t </w>’: 6, ‘w i d e s t </w>’: 3 }
{‘l o w </w>’: 5, ‘l o w e r </w>’: 2, ‘n e w es t </w>’: 6, ‘w i d es t </w>’: 3 }
{‘l o w </w>’: 5, ‘l o w e r </w>’: 2, ‘n e w est </w>’: 6, ‘w i d est </w>’: 3 } (est freq. 9)

{‘lo w </w>’: 5, ‘lo w e r </w>’: 2, ‘n e w est</w>’: 6, ‘w i d est</w>’: 3 } (lo freq 7)

….. 



Masked Self-Attention (to compute more efficiently)



Masked Self-Attention

Note: encoder-decoder attention block is gone



Masked Self-Attention Calculation

Note: encoder-decoder attention block is gone

Re-use previous computation results: at any step, 
only  need to results of q, k , v related to the new 
output word, no need to re-compute the others. 
Additional computation is linear, instead of 
quadratic.



GPT-2 fully connected network has two layers (Example for GPT-2 small) 

768 is small model size



GPT-2 has a parameter top-k, so that we sample words from top k 

(highest probability from SoftMax) words for each output 



GPT Training

GPT-2 uses unsupervised learning approach to 
training the language model.

There is no custom training for GPT-2, no 
separation of pre-training and fine-tuning like 
BERT.



Transformer / GPT prediction



GPT-2 Application: Translation 



GPT-2 Application: Summarization 



Using Wikipedia data 



BERT (Bidirectional Encoder Representation from Transformers)



Model input dimension 512

Input and output vector size



BERT pretraining

ULM-FiT (2018): Pre-training ideas, transfer learning in NLP.
ELMo: Bidirectional training (LSTM)
Transformer: Although used things from left, but still missing 
from the right.
GPT: Use Transformer Decoder half.
BERT: Switches from Decoder to Encoder, so that it can use 
both sides in training and invented corresponding training 
tasks: masked language model



BERT Pretraining Task 1: masked words

Out of this 15%,
80% are [Mask],
10% random words
10% original words



BERT Pretraining Task 2: two sentences 



BERT Pretraining Task 2: two sentences 

50% true second sentences
50% random second sentences



Fine-tuning BERT for other specific tasks 

SST (Stanford 
sentiment 
treebank):  215k 
phrases with fine-
grained sentiment 
labels in the parse 
trees of 11k 
sentences.

MNLI
QQP (Quaro Question Pairs)
 Semantic equivalence)
QNLI (NL inference dataset)
STS-B (texture similarity)
MRPC (paraphrase, Microsoft)
RTE (textual entailment)
SWAG (commonsense inference)
SST-2 (sentiment)
CoLA (linguistic acceptability
SQuAD (question and answer)



NLP Tasks: Multi-Genre Natural Lang. Inference  

MNLI:  433k 
pairs of 
examples, 
labeled by 
entailment, 
neutral or 
contraction



NLP Tasks (SQuAD -- Stanford Question Answering Dataset): 

Sample: Super Bowl 50 was an American football game to 
determine the champion of the National Football League 
(NFL) for the 2015 season. The American Football Conference 
(AFC) champion Denver Broncos defeated the National 
Football Conference (NFC) champion Carolina Panthers 24–
10 to earn their third Super Bowl title. The game was played on 
February 7, 2016, at Levi's Stadium in the San Francisco Bay 
Area at Santa Clara, California. As this was the 50th Super 
Bowl, the league emphasized the "golden anniversary" with 
various gold-themed initiatives, as well as temporarily 
suspending the tradition of naming each Super Bowl game 
with Roman numerals (under which the game would have 
been known as "Super Bowl L"), so that the logo could 
prominently feature the Arabic numerals 50. 

Which NFL team represented the 
AFC at Super Bowl 50?

Ground Truth Answers: Denver 
Broncos

Which NFL team represented the 
NFC at Super Bowl 50?

Ground Truth Answers: Carolina 
Panthers



Add indices for sentences and paragraphs

SegaTron/SegaBERT

H. Bai, S. Peng, J. Lin, L. Tan, K. Xiong, W. Gao, M. Li: SgaTron: Segment-aware transformer for language modeling
 and understanding. AAAI’2021



Conversion speed much faster:



Testing on GLUE dataset

H. Bai, S. Peng, J. Lin, L. Tan, K. Xiong, W. Gao, M. Li: SgaTron: Segment-aware transformer for language modeling
 and understanding. AAAI’2021



Reading comprehension – SQUAD tasks

F1 = 2 (P*R) / (P+R), P is precision, R is recall, all in percentage, EM – exact match



Improving Transformer-XL



Looking at Attention



Looking at Attention



Feature Extraction 

We start with 
independent 
word embedding
at first level

We end up with 
some embedding 
for each word 
related to current 
input



Feature Extraction, which embedding to use? 03



BioGPT

BioGPT was fine-tuned and evaluated on several downstream tasks, including NER, 
QA, relation extraction, and document classification.

• Hard prompts: Hard prompts are manually designed discrete language phrases or templates that are prepended 
to the input text to guide the language model towards a specific task.

• Soft prompts, on the other hand, are continuous embeddings learned during the fine-tuning process.

“We have that [head entity] [relation] 
[tail entity],” “In conclusion, [head 
entity] [relation] [tail entity],” and “We 
can conclude that [head entity] [relation] 
[tail entity].” 



BioBERT

• First, BioBERT is intialized with weights from BERT, which was pretrained on general domain 
corpora (English Wikipedia and BooksCorpus).

• Then, BioBERT is pre-trained on biomedical domain corpora (PubMed abstracts and PMC full-
text articles).

• Finally, BioBERT is fine-tuned and evaluated on three popular biomedical text mining tasks 
(NER, RE and QA).

https://sh-tsang.medium.com/59b1684882db


The model is pre-trained on a large corpus of clinical notes from the Medical Information Mart for Intensive Care III 
(MIMIC-III) dataset, which contains de-identified electronic health records of patients admitted to the intensive care 
unit.

The main goal of ClinicalBERT is to improve the prediction of hospital readmission within 30 days based on the 
information contained in clinical notes.

ClinicalBERT



Thank you!



Literature & Resources for Transformers

Resources: 

OpenAI GPT-2 implementation: https://github.com/openai/gpt-2

BERT paper: J. Devlin et al, BERT, pretraining of deep bidirectional 

transformers for language understanding. Oct. 2018.

ELMo paper: M. Peters, et al, Deep contextualized word representation, 2018

ULM-FiT paper: Universal language model fine-tuning for text classification. J. 

Howeard, S. Ruder., 2018

Jay Alammar, The illustrated GPT-2, https://jalammar.github.io/illustrated-

gpt2/

           

https://github.com/openai/gpt-2
https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/

	AIM 2: Artificial Intelligence in Medicine II
	Outline for today’s class
	Text Representations
	Word Embeddings
	Embeddings capture relational meaning
	Computing Embeddings
	Word embedding applications
	Word embedding applications
	Massive text Embedding Benchmark
	Encoder-Decoder
	Simple recurrent neural network illustrated as a feed-forward network
	Simple-RNN abstraction
	RNN Applications 
	Sentence Completion using an RNN
	Extending (autoregressive) generation to Machine Translation
	Extending (autoregressive) generation to Machine Translation
	(simple) Encoder Decoder Networks
	General Encoder Decoder Networks 
	Popular architectural choices: Encoder
	Decoder Basic Design
	Decoder Design�Enhancement
	Decoder: How output y is chosen
	Slide Number 23
	Flexible context: Attention
	Attention (1): dynamically derived context
	Attention (2): computing ci
	Attention (3): computing ci�From scores to weights
	Attention: Summary
	Explain Y. Goldberg different notation
	Transformers (Attention is all you need 2017)
	High-level architecture
	Slide Number 32
	Slide Number 33
	Slide Number 34
	Self-Attention
	Self-Attention
	Self Attention
	Self Attention
	The Decoder Side
	Stack for Decoder only and Stack for Encoder only
	Stack for Decoder only and Stack for Encoder only
	Transformer model
	Slide Number 43
	Training a Transformer
	Pretrained models
	Slide Number 46
	Slide Number 47
	Text Representations
	Who is BERT? 
	About BERT and friends
	Using these *BERTs
	Slide Number 52
	Slide Number 53
	Slide Number 54
	Slide Number 55
	Slide Number 56
	Slide Number 57
	Slide Number 58
	Slide Number 59
	Slide Number 60
	Slide Number 61
	Slide Number 62
	Slide Number 63
	Slide Number 64
	Slide Number 65
	Slide Number 66
	Slide Number 67
	Slide Number 68
	Slide Number 69
	Slide Number 70
	Slide Number 71
	Slide Number 72
	Slide Number 73
	Slide Number 74
	Slide Number 75
	Slide Number 76
	Slide Number 77
	Slide Number 78
	Slide Number 79
	Slide Number 80
	Slide Number 81
	Slide Number 82
	Slide Number 83
	Slide Number 84
	Slide Number 85
	Slide Number 86
	Slide Number 87
	Slide Number 88
	Slide Number 89

