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Overview of Medical Imaging & Basic Al Tasks

Introduction to medical imaging modalities

Radiology (X-ray, CT, MRI)

Oncology imaging (PET scans, specialized MRI for tumor detection)
Pathology (digital slides)

Ultrasound, endoscopy, and other modalities

Basic Al tasks in medical imaging

Classification (detection of disease)

Regression (e.g., lesion size or tumor volume)
Segmentation (delineating tumors, organs, or structures)
Registration (aligning structures between 2 different images)
Enhancement (denoising, artifact removal, augmentation)



Importance of Medical Imaging in Clinical Practice

High Utilization in Healthcare

e Over 4.2 billion diagnostic medical imaging procedures performed globally each year (Radiology
estimate)

e Inthe US alone, ~691 million exams are performed annually, typically from CT scans, conventional
radiology, dental radiography, nuclear medicine

Impact on Diagnosis & Treatment

e Critical for cancer detection, surgical planning, chronic disease management
e Radiology drives ~80% of hospital diagnoses (stat often cited by radiology organizations)

Challenges

e Huge data volume — Necessitates automation and Al
e Variability in acquisition, reconstruction parameters



The Physics of Medical Imaging

How images are formed (broad principle):
. . _ Lietected = Lemitted * exp(_;u d) (exponential attenuation)
° Emission or transmission of a wave (electromagnetic or
acoustic)
° Detectors measure wave attenuation or
reflection/scattering to reconstruct an image

Key ideas in mathematics/physics:
e Inverse problem: Reconstructing internal structure from 4
measured signals
e Modalities differ by type of wave (X-rays, radiofrequency

for MRI, sound waves for ultrasound, positrons for PET)

Note: These fundamental physics principles underlie all imaging
approaches



Radiology — X-ray, CT, MRI, Ultrasound

X-ray

e 2D projection imaging using X-ray photons
e Attenuation depends on tissue density
e Applications: Chest radiographs, bone fractures

Computed Tomography (CT)

Multiple X-ray projections from different angles
Reconstructed via Radon transform or filtered
back-projection

e Generates 3D volumetric data




Radiology — X-ray, CT, MRI, Ultrasound

Magnetic Resonance Imaging (MRI)

e Manipulates proton spin alignments via strong
magnetic fields & RF pulses

e Signal measured in k-space, reconstructed via
inverse Fourier transform

e (Good soft-tissue contrast

Ultrasound

e Uses high-frequency sound waves, reflection
captured by a transducer

e Real-time imaging, widely used for obstetrics,
cardiac echo

e Safe (no ionizing radiation), but
operator-dependent




Oncology Imaging — PET & Specialized MRI

Positron Emission Tomography (PET)

e Inject radioactive tracer (e.g., FDG) that
emits positrons

e Detect annihilation photons, reconstruct
distribution of tracer uptake

e Highlights metabolic activity, commonly
used for tumor detection and staging

Specialized MRI

e fMRI for brain function mapping

e DWI/ADC for tumor characterization and
cellularity

e MRS (Magnetic Resonance Spectroscopy)
for metabolic profiling

fMRI DWI MRS



Digital Pathology
e  High-resolution scanning of tissue slides (e.g., 40x
magnification)
e Resulting images can be gigapixel-level

Types of Microscopy & Staining

e H&E (Hematoxylin & Eosin): Standard stain for tissue

morphology

e Histochemical stains: Highlight specific chemical
components

e Immunohistochemistry (IHC): Antibody-based staining
for specific proteins

e In situ hybridization: Detect specific nucleic acid

sequences

e PCR-based assays: Tissue-based molecular diagnostics
(though not always “imaging,” can produce visually
interpretable gels or signals)
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Other Modalities & 4D Imaging

Endoscopy

e Direct visualization using cameras inserted into
body cavities (Gl tract, lungs)
e Often recorded as video (temporal dimension)

4D Imaging

e 3D +time, e.g., 4D CT in radiotherapy planning
for moving organs (lungs)
e Real-time MRI sequences

Emerging or Specialized Modalities

e  Optical coherence tomography (OCT),
Photoacoustic imaging, etc.




Basic Al Tasks in Medical Imaging

Classification Regression Classification

e Detect presence/absence of disease (e.g., tumor vs.

normal) ]
e Multi-class scenarios (e.g., different tumor types) ﬁ

Regression
Segmentation

e Predict continuous outcomes (e.g., tumor volume, disease
progression)
e Often used in quantitative imaging biomarkers

Segmentation
) ) Registration Enhancement
e Delineate structures (tumors, organs) at pixel/voxel-level +

*
e Essential for measuring size, shape, and location
e Forms basis for surgical or radiotherapy planning | | ) I




Basic Al Tasks in Medical Imaging

Registration

e Align images from the same or different modalities (e.g.,
CT-MRI fusion)

e Correct for patient movement and acquisition differences

e Essential for multimodal data fusion and longitudinal

studies
e Enables precise anatomical mapping and improved
diagnosis
Enhancement

e Improve image quality by reducing noise and artifacts

e Enhance contrast and resolution to reveal fine anatomical
details

e Critical for revealing subtle pathologies and aiding
diagnosis

e Often used as a preprocessing step for better downstream
analysis

Regression Classification
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Segmentation
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Registration Enhancement
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Convolutional Neural Networks (CNNs) for Medical Imaging

CNN fundamentals

e Convolutional layers, filters/kernels, feature maps
e Pooling layers and their role
e Fully connected layers for classification tasks

Why CNNs are well-suited for medical imaging

e Local receptive fields and translation invariance
e Hierarchical feature extraction for complex patterns

Alternative Architectures

e Vision Transformers (ViT): self-attention instead of convolutions, potential for capturing global

context, but often data-intensive
e Capsule Networks: preserving spatial hierarchies and orientation information, potential advantages

for complex anatomical structures



Convolutional Layers — The Core Operation

2D Convolution

e For an input feature map X € R¥*W and a filter/kernel K € R¥*¥, the convolution output

at position (z,y) is:
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e Often implemented as cross-correlation in practice, but the concept is similar.
e Stride & Padding:
e Stride 8: controls how the filter steps across the image.
e Padding (e.g., zero-padding) preserves spatial dimensions.

Multiple Channels

e In practice, filters have depth matching the input’s channel dimension:
K = kakx(f-':_n

* Produces an output feature map with Cyy,, channels, each learned via separate filters.
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Pooling Layers & Nonlinearities

* Pooling

Reduces spatial dimensions to achieve translation invariance.

Common operations: max pooling or average pooling with kernel size p.

Example: MaxPool(2 x 2) halves both height and width.

¢ Nonlinear Activations

e Typically RelU: o'(z) = max(0, 2).

Other variants: Leaky RelU, ELU, etc.
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Fully Connected Layers & CNN Architectures

Transition to Dense Layers

e After repeated convolution + pooling, feature

maps are flattened into a vector.
e Fed into one or more fully connected (FC) 4
layers for classification/regression. T ——
. . = 64x7x7
e Parameter count in FC layers can be large if = | Rt frerrer
feature maps are not sufficiently downsampled.  32x28x28 _ 12810
Convolution c°g“1’.°"‘:°1" ) 3136 x 128
padding = 1, padding =1, Max pooling
. kernel = 3x3, Max pooling ke"tn%' =—3)1(3, Kemel =22,  Fjatten
Example Architectures =1 el g, e Stride =2
RelU RelU

e Classic CNNs: LeNet, AlexNet, VGG
e Deeper CNNs: ResNet (skip connections),
DenseNet (dense connections)



Why CNNs Are Well-Suited for Medical Imaging

Local Receptive Fields & Translation Equivariance

e Early layers learn low-level edges/textures (helpful for subtle tissue boundaries).
e Convolutions treat local neighborhoods the same across the image (translational
invariance).

Hierarchical Feature Extraction

e Increasing abstraction: edges — textures — organs/pathologies.
e Large images (e.g., high-resolution scans) can be handled in patches or via
downsampling.

Data Efficiency & Transfer Learning

e Pretrained networks on natural images can sometimes be fine-tuned for medical
tasks.
e Data augmentation crucial for relatively small medical datasets.



CNNs for Classification

VGG19 model

Input Image
X-1ay/CT

Flatten (512)

Dropout
Evaluation metrics for the different models.
Models Loss TP FP TN FN ACC Recall PPV SPC NPV F1-Score MCC AUC
VGG19 | CNN 0.3280 251 4 764 S5 98.05 98.05 98.43 99.5 99.3 98.24 97.7 99.66
ResNet]152V2 0.1693 244 12 756 2 95.31 95.31 95.31 98.4 98.4 95.31 93.8 99.17
ResNet152V2 | GRU 0.1350 246 10 758 10 96.09 96.09 96.06 98.7 98.7 96.09 94.8 99.34
ResNet152V2 | Bi-GRU 0.2554 477 34 1502 35 93.36 93.16 93.35 97.8 97.8 93.26 91.1 98.44

Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and
lung cancer chest diseases. Computers in biology and medicine, 132, 104348.



Deep learning in Pathology

CNNs for Regression

Evaluate diagnostic features Identify novel insights

used in pathology practice into disease

» Disease vs normal tissue « Predict outcome

« Grading « Predict disease recurrence

- Distinguish cancer types « Predict gene mutation status

Acs, B., Rantalainen, M., & Hartman, J. (2020). Artificial intelligence as the next step towards precision pathology. Journal of internal medicine, 288(1), 62-81.



Alternative Architectures | — Vision Transformers (ViT)

¢ Motivation: Move from convolution-based local receptive fields to global self-attention. Meningioma
Glioma - MLP
¢ Self-Attention Mechanism Pituitary Tumor

* Given Queries (Q), Keys (K), Values (V) of dimension d: bt Pincadis

KT

: Q
Attention(Q,K,V) = softmax( i )V Vs L Poadiibm 4 . .
Embedding

¢ Captures long-range dependencies without explicit convolution.

-~ 7Y
¢ Images split into patches, linearly embedded, then processed by transformer blocks. .. .
e Potential to capture global context better than CNNs. .i .

Linear Projection of Flattened Patches

¢ Drawback: Often requires large datasets or heavy pretraining; can be data-hungry.

Tummala, S., Kadry, S., Bukhari, S. A. C., & Rauf, H. T. (2022). Classification of brain tumor from magnetic resonance imaging using vision transformers
ensembling. Current Oncology, 29(10), 7498-7511.



Alternative Architectures Il — Capsule Networks

Concept: Retain spatial hierarchies & object pose in feature
vectors.

Capsule: A set of neurons whose output is a vector (or small

matrix), encoding both the presence and the parameters (pose,

orientation) of a feature.
Dynamic Routing (Sabour et al., NIPS, 2017)

e lteratively adjusts “routing coefficients” between
lower-level and higher-level capsules.

e Aims to preserve important spatial relationships that might

get lost in CNN pooling.

Potential for Medical Imaging

e Detailed structural nuances (organ shape, orientation) are

crucial.
° Still less common than CNNs in clinical practice, but a
promising research direction.

Capsule Networks
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Toraman, S., Alakus, T. B., & Turkoglu, I. (2020). Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray

images using capsule networks. Chaos, Solitons & Fractals, 140, 110122.



5 min. Break



Segmentation in Medical Imaging — Focus on U-Net

Importance of segmentation tasks

e Common use cases (tumor segmentation, organ delineation)
e Impact on treatment planning, diagnostics, and surgery

U-Net architecture

e Encoder-decoder structure with skip connections
e Advantages for medical image segmentation (handling fewer images, robust feature localization)
e Reference: Ronneberger et al. (2015)



Importance of Segmentation Tasks

Key Role in Diagnostics & Treatment

e Tumor boundary detection for radiation therapy
e Organ delineation for surgical planning
e Lesion quantification for disease progression

Granular Analysis

e Pixel/voxel-level detail — more precise than
classification or bounding boxes
e Enables volumetric and shape analyses

Clinical Impact

e Affects prognosis and treatment strategies (e.g.,
tumor growth rates)

e Provides consistent, reproducible measurements
vs. manual outlining

Ma, J., He, Y., Li, F. et al. Segment anything in medical images. Nat Commun 15, 654 (2024).
https://doi.org/10.1038/s41467-024-44824-z



Common Use Cases

Tumor Segmentation

e Brain tumors (gliomas, metastases)
e Lung nodules, liver lesions, breast cancer

Organ Delineation

e Heart chambers in cardiac MRI
e Liver, kidneys, prostate in CT/MRI

Microscopic Pathology Segmentation

e Nuclei, glands, or other histological structures in
whole-slide images




U-Net Architecture Overview

Historical Context

e Proposed by Ronneberger et al. (2015), originally

for biomedical microscopy

e Achieved top performance on the ISBI Cell

Tracking Challenge
High-Level Structure

e Encoder: Downsampling path for context
capturing (similar to CNN classification
backbones)

e Decoder: Upsampling path for precise
localization

e Skip Connections: Transfer high-resolution

features from encoder to decoder

I

. i 1L
—D*[:I*{:I =»conv 3x3, ReLU
a5 B o

output
segmentation
map

Ll AL o

copy and crop
¥ max pool 2x2
4 up-conv 2x2
=» conv 1x1



Encoder-Decoder Structure & Skip Connections

Encoder Path (Left side)
e  Series of convolution + ReLU + pooling i
e  Each downsampling roughly doubles the number of image (s s NN ggé‘;ﬁ;manon
feature maps, halves the spatial resolution . | 7 mep
Bottleneck :
’ 128 128
e Lowest resolution; deepest features (semantic ] i
information) | , H'{H
i
Decoder Path (Right side) \ — t
. . }’U"D —D*D*{:I =>conv 3x3, ReLU
e Transposed convolutions or up-convolutions to kil ‘ A T copy and crop
increase spatial dimension e e e e § max pool 2x2
e Merges (concatenation) with corresponding features i 4 e

. . . 1x1
from the encoder via skip connections T

e  Gradually refines the segmentation mask at higher
resolution



Advantages in Medical Image Segmentation

Handling Fewer Images

e U-Net can be trained effectively on relatively small datasets (typical in medical imaging)
e Use of heavy data augmentation is standard

Robust Feature Localization

e  Skip connections preserve spatial information lost by pooling
e Helps differentiate fine boundaries (tumor edges, organ interfaces)

2D vs. 3D U-Net Variants

e 2D: Processes slices independently, good if GPU memory is limited
e 3D: Captures volumetric context but more memory-intensive



Loss Functions & Evaluation Metrics (U-Net Context)

e Cross-Entropy (CE) Loss

e Pixel-wise classification:
N

1 .
Lcg = =i lg:Inp; + (1 - g:) In(1 —p;)],
i=1
where g; is the ground-truth label (0 or 1), p; is the predicted probability.

¢ Dice Coefficient & Dice Loss

» Dice Coefficient for predicted mask P and ground-truth mask G-

2N (p;g;
Dice(P,G) = 1'12)?1(1)::.‘1:')(]' :
 Dice Loss: Lpice = 1 — Dice(P, G).

* Robust for class imbalance; used widely in organ/tumor segmentation

e Composite Loss

* Often combine CE + Dice to balance region overlap and pixel-wise accuracy



State-of-the-Art Variants — nnU-Net & MedSAM

nnU-Net Loremcrn] Bese ey e [ e
o + [ sug| [EE |
e Self-configuring U-Net framework E - orll o T B E Pk oy
e Automatically adapts architecture and hyperparameters Ul | 7| 2 i |
e Top performance in multiple segmentation challenges SN o e w@@VE| |
Architecture template
MedSAM

e Adapts “Segment Anything Model” to medical images

e Uses large-scale pretrained embeddings + prompt-based N isiEen
segmentation elfcfﬁ; ;
e  Offers few-shot or zero-shot capabilities for new tasks P‘°m1°‘{“°°def
Image
Key Takeaway Input Image embedding ‘ D Segmentation
e  Both build on the U-Net paradigm with skip connections Bounding box prompts

e Ongoing improvements target automated tuning and broad
generalizability



UNet for Image Registration

Moving 3D Image (M)

l Moved (M (¢))

Spatial
Transform

Fixed 3D Image (F)

» Loss Function (£) <€

E(F. A[, @) - ['Si-m (F~ ]\[(@)) 5 3 )‘ﬁs-mooth(gb)a

Guo, C. K. (2019). Multi-modal image registration with unsupervised deep learning (Doctoral dissertation, Massachusetts Institute of Technology).



UNet for Image Enhancement

Noisy image 32 32 Denoised image
—p  Residual block
& i Skip connnection
LeakyReLU e o el e »  Conv2d 3x3 51
N )
Conv2D - —P  Conv2d 1x1 s=1
Flx) + identity
BN . + Conv2d 2x2 s=2
LeakyRel.U DeConv2d 2x2 s=2
Conv2D ) )
128 Mixed-attention block
-—>-—’- C:channel,S:spatial
F(x)tx . .
L @ Element-wise addition
(a) (b)

Lan, Y., & Zhang, X. (2020). Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. /[EEE Access, 8, 195327-195340.
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Applying CNNs to Biomedical Segmentation & Future Directions

Preprocessing and data preparation

e Data cleaning (artifact removal, normalization)
e Data augmentation (flips, rotations, intensity shifts)
e Handling class imbalance (sampling strategies, loss functions)

Training and evaluation strategies

e Train/validation/test splits, cross-validation
e Performance metrics (Dice coefficient, loU, sensitivity, specificity)
e Visual inspection and clinician-in-the-loop for validation

Next Steps & Federated Learning Mention

Federated Learning as a solution for data-sharing barriers among multiple hospitals/institutions.
High-level benefits (privacy-preserving, larger effective dataset) and challenges (communication overhead,
data heterogeneity).

e Encouragement to think about how this could improve generalizability across diverse patient populations.



Preprocessing & Data Preparation

Data Cleaning

e Artifact removal (e.g., motion, noise)
e Normalization & standardization (intensity
scaling)

Data Augmentation ‘ ——

Iﬁ. s o0 e o
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e Flips, rotations, elastic deformations
e Intensity shifts (brightness, contrast)

Handling Class Imbalance

e  Oversampling/undersampling methods
e Loss functions (e.g., focal loss)




Training & Evaluation Strategies

Splitting Protocols

e Train/Val/Test splits
e k-Fold cross-validation for small datasets

Metrics

e Dice Coefficient & loU for segmentation overlap
e Sensitivity/Specificity for binary outcomes

Clinician-in-the-Loop

e Importance of visual inspection
e lterative feedback for model refinement

https://scikit-learn.org/stable/modules/cross_validation.html

‘ All Data

’ Training data ‘ ‘

Test data ‘

‘ Fold 1 H Fold 2 H Fold 3 H Fold 4 H Fold 5 ‘\

spiit1 | Fold1 || Fold2 || Fold3 | Fold4 || Fold5 |

Spiit2 | Fold1 || Fold2 | Fold3 | Fold4 || Folds |

Spiit3 | Fold1 || Fold2 || Fold3 | Fold4 | Folds |

split4 | Fold1 || Fold2 || Fold3 || Fold4 || Folds5 |

> Finding Parameters

Spiit5 | Fold1 || Fold2 || Fold3 || Fold4 || Fold5 |/

Test data

Final evaluation {‘



Federated Learning

Motivation

e Train collaboratively across hospitals without
sharing raw data
e Larger effective dataset, privacy preserved

Challenges

e Communication overhead, model synchronization
e Data heterogeneity (different scanners, protocols)

Potential Impact

e Improved model generalizability
e Regulatory compliance (HIPAA, GDPR)

Step 1

Step 2

Central server
chooses a statistical
model to be trained

Central server
transmits the initial
model to several
nodes

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N,, ... & Zhao, S. (2021).

Advances and open problems in federated learning. Foundations and trends® in machine learning, 14(1-2),

1-210.

Step 3

Step 4

model-server

_—  —

Nodes train the
model locally with
their own data

Central server pools
model results and
generate one global
mode without
accessing any data
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Federated Learning
e Largest FL study in medical imaging — 71 sites,

6 continents
6,314 cases — Largest glioblastoma dataset b c
No data sharing — Privacy-preserving model e
training 0.8

Key Results

e  +33% improvement in surgically targetable tumor 30'6
segmentation 0
e +23% improvement in complete tumor o
segmentation
e Validated on: 0.0
o Local site data (n = 1,043 cases) d
o  Out-of-sample data (n = 518 cases)

Impact 0.8
e  More diverse, generalizable Al models 06
e  Public release of the consensus model g
e New standard for multi-site Al training o

0.2

Pati, S., Baid, U., Edwards, B., Sheller, M., Wang, S. H., Reina, G. A,, ... & Poisson, L.
(2022). Federated learning enables big data for rare cancer boundary detection. Nature
communications, 13(1), 7346.
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Conclusions & Key Takeaways

Medical Imaging Overview

e  Diverse modalities (X-ray, CT, MRI, Ultrasound, Pathology)

e Al tasks: classification, regression, segmentation, registration, enhancement
Deep Learning Foundations

e  CNNs: convolution, pooling, encoder-decoder structures (U-Net)

° Advanced methods: Vision Transformers, Capsule Networks
Segmentation & U-Net

e  Critical for accurate delineation (tumors, organs)

e  Skip connections, specialized loss functions (Dice)
Practical Considerations

e  Data preprocessing, augmentation, handling imbalance

° Training strategies, metrics, clinician-in-the-loop validation
Looking Ahead

° Federated learning for distributed data

e  Continued progress in robustness, explainability, and generalizability
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