
Lecture 5: Medical Imaging I



Today’s Lecture outline

1. Overview of Medical Imaging and 
Basic AI Tasks 

2. Convolutional Neural Networks 
(CNNs) for Medical Imaging

3. Segmentation in Medical Imaging – 
Focus on U-Net

4. Applying CNNs to Biomedical 
Segmentation & Future Directions



Overview of Medical Imaging & Basic AI Tasks

Introduction to medical imaging modalities

● Radiology (X-ray, CT, MRI)
● Oncology imaging (PET scans, specialized MRI for tumor detection)
● Pathology (digital slides)
● Ultrasound, endoscopy, and other modalities

Basic AI tasks in medical imaging

● Classification (detection of disease)
● Regression (e.g., lesion size or tumor volume)
● Segmentation (delineating tumors, organs, or structures)
● Registration (aligning structures between 2 different images)
● Enhancement (denoising, artifact removal, augmentation) 



Importance of Medical Imaging in Clinical Practice

High Utilization in Healthcare

● Over 4.2 billion diagnostic medical imaging procedures performed globally each year (Radiology 
estimate)

● In the US alone, ~691 million exams are performed annually, typically from CT scans, conventional 
radiology, dental radiography, nuclear medicine

Impact on Diagnosis & Treatment

● Critical for cancer detection, surgical planning, chronic disease management
● Radiology drives ~80% of hospital diagnoses (stat often cited by radiology organizations)

Challenges

● Huge data volume → Necessitates automation and AI
● Variability in acquisition, reconstruction parameters



The Physics of Medical Imaging

How images are formed (broad principle):

● Emission or transmission of a wave (electromagnetic or 
acoustic)

● Detectors measure wave attenuation or 
reflection/scattering to reconstruct an image

Key ideas in mathematics/physics:

● Inverse problem: Reconstructing internal structure from 
measured signals

● Modalities differ by type of wave (X-rays, radiofrequency 
for MRI, sound waves for ultrasound, positrons for PET)

Note: These fundamental physics principles underlie all imaging 
approaches



Radiology – X-ray, CT, MRI, Ultrasound

X-ray

● 2D projection imaging using X-ray photons
● Attenuation depends on tissue density
● Applications: Chest radiographs, bone fractures

Computed Tomography (CT)

● Multiple X-ray projections from different angles
● Reconstructed via Radon transform or filtered 

back-projection
● Generates 3D volumetric data



Radiology – X-ray, CT, MRI, Ultrasound

Magnetic Resonance Imaging (MRI)

● Manipulates proton spin alignments via strong 
magnetic fields & RF pulses

● Signal measured in k-space, reconstructed via 
inverse Fourier transform

● Good soft-tissue contrast

Ultrasound

● Uses high-frequency sound waves, reflection 
captured by a transducer

● Real-time imaging, widely used for obstetrics, 
cardiac echo

● Safe (no ionizing radiation), but 
operator-dependent



Oncology Imaging – PET & Specialized MRI

Positron Emission Tomography (PET)

● Inject radioactive tracer (e.g., FDG) that 
emits positrons

● Detect annihilation photons, reconstruct 
distribution of tracer uptake

● Highlights metabolic activity, commonly 
used for tumor detection and staging

Specialized MRI

● fMRI for brain function mapping
● DWI/ADC for tumor characterization and 

cellularity
● MRS (Magnetic Resonance Spectroscopy) 

for metabolic profiling

fMRI DWI MRS



Pathology Imaging – Digital Slides & Advanced Stains
Digital Pathology

● High-resolution scanning of tissue slides (e.g., 40× 
magnification)

● Resulting images can be gigapixel-level

Types of Microscopy & Staining

● H&E (Hematoxylin & Eosin): Standard stain for tissue 
morphology

● Histochemical stains: Highlight specific chemical 
components

● Immunohistochemistry (IHC): Antibody-based staining 
for specific proteins

● In situ hybridization: Detect specific nucleic acid 
sequences

● PCR-based assays: Tissue-based molecular diagnostics 
(though not always “imaging,” can produce visually 
interpretable gels or signals)



Other Modalities & 4D Imaging

Endoscopy

● Direct visualization using cameras inserted into 
body cavities (GI tract, lungs)

● Often recorded as video (temporal dimension)

4D Imaging

● 3D + time, e.g., 4D CT in radiotherapy planning 
for moving organs (lungs)

● Real-time MRI sequences

Emerging or Specialized Modalities

● Optical coherence tomography (OCT), 
Photoacoustic imaging, etc.



Basic AI Tasks in Medical Imaging

Classification

● Detect presence/absence of disease (e.g., tumor vs. 
normal)

● Multi-class scenarios (e.g., different tumor types)

Regression

● Predict continuous outcomes (e.g., tumor volume, disease 
progression)

● Often used in quantitative imaging biomarkers

Segmentation

● Delineate structures (tumors, organs) at pixel/voxel-level
● Essential for measuring size, shape, and location
● Forms basis for surgical or radiotherapy planning

Classification Regression

Segmentation

Registration Enhancement



Basic AI Tasks in Medical Imaging
Registration

● Align images from the same or different modalities (e.g., 
CT-MRI fusion)

● Correct for patient movement and acquisition differences
● Essential for multimodal data fusion and longitudinal 

studies
● Enables precise anatomical mapping and improved 

diagnosis

Enhancement

● Improve image quality by reducing noise and artifacts
● Enhance contrast and resolution to reveal fine anatomical 

details
● Critical for revealing subtle pathologies and aiding 

diagnosis
● Often used as a preprocessing step for better downstream 

analysis

Classification Regression

Segmentation

Registration Enhancement



Q&A



Convolutional Neural Networks (CNNs) for Medical Imaging

CNN fundamentals

● Convolutional layers, filters/kernels, feature maps
● Pooling layers and their role
● Fully connected layers for classification tasks

Why CNNs are well-suited for medical imaging

● Local receptive fields and translation invariance
● Hierarchical feature extraction for complex patterns

Alternative Architectures 

● Vision Transformers (ViT): self-attention instead of convolutions, potential for capturing global 
context, but often data-intensive

● Capsule Networks: preserving spatial hierarchies and orientation information, potential advantages 
for complex anatomical structures



Convolutional Layers – The Core Operation



Pooling Layers & Nonlinearities



Fully Connected Layers & CNN Architectures

Transition to Dense Layers

● After repeated convolution + pooling, feature 
maps are flattened into a vector.

● Fed into one or more fully connected (FC) 
layers for classification/regression.

● Parameter count in FC layers can be large if 
feature maps are not sufficiently downsampled.

Example Architectures

● Classic CNNs: LeNet, AlexNet, VGG
● Deeper CNNs: ResNet (skip connections), 

DenseNet (dense connections)



Why CNNs Are Well-Suited for Medical Imaging

Local Receptive Fields & Translation Equivariance

● Early layers learn low-level edges/textures (helpful for subtle tissue boundaries).
● Convolutions treat local neighborhoods the same across the image (translational 

invariance).

Hierarchical Feature Extraction

● Increasing abstraction: edges → textures → organs/pathologies.
● Large images (e.g., high-resolution scans) can be handled in patches or via 

downsampling.

Data Efficiency & Transfer Learning

● Pretrained networks on natural images can sometimes be fine-tuned for medical 
tasks.

● Data augmentation crucial for relatively small medical datasets.



CNNs for Classification 

Ibrahim, D. M., Elshennawy, N. M., & Sarhan, A. M. (2021). Deep-chest: Multi-classification deep learning model for diagnosing COVID-19, pneumonia, and 
lung cancer chest diseases. Computers in biology and medicine, 132, 104348.



CNNs for Regression

Acs, B., Rantalainen, M., & Hartman, J. (2020). Artificial intelligence as the next step towards precision pathology. Journal of internal medicine, 288(1), 62-81.



Alternative Architectures I – Vision Transformers (ViT)

Tummala, S., Kadry, S., Bukhari, S. A. C., & Rauf, H. T. (2022). Classification of brain tumor from magnetic resonance imaging using vision transformers 
ensembling. Current Oncology, 29(10), 7498-7511.



Alternative Architectures II – Capsule Networks
Concept: Retain spatial hierarchies & object pose in feature 
vectors.

Capsule: A set of neurons whose output is a vector (or small 
matrix), encoding both the presence and the parameters (pose, 
orientation) of a feature.

Dynamic Routing (Sabour et al., NIPS, 2017)

● Iteratively adjusts “routing coefficients” between 
lower-level and higher-level capsules.

● Aims to preserve important spatial relationships that might 
get lost in CNN pooling.

Potential for Medical Imaging

● Detailed structural nuances (organ shape, orientation) are 
crucial.

● Still less common than CNNs in clinical practice, but a 
promising research direction.

Toraman, S., Alakus, T. B., & Turkoglu, I. (2020). Convolutional capsnet: A novel artificial neural network approach to detect COVID-19 disease from X-ray 
images using capsule networks. Chaos, Solitons & Fractals, 140, 110122.



5 min. Break



Segmentation in Medical Imaging – Focus on U-Net

Importance of segmentation tasks

● Common use cases (tumor segmentation, organ delineation)
● Impact on treatment planning, diagnostics, and surgery

U-Net architecture

● Encoder-decoder structure with skip connections
● Advantages for medical image segmentation (handling fewer images, robust feature localization)
● Reference: Ronneberger et al. (2015)



Importance of Segmentation Tasks

Key Role in Diagnostics & Treatment

● Tumor boundary detection for radiation therapy
● Organ delineation for surgical planning
● Lesion quantification for disease progression

Granular Analysis

● Pixel/voxel-level detail → more precise than 
classification or bounding boxes

● Enables volumetric and shape analyses

Clinical Impact

● Affects prognosis and treatment strategies (e.g., 
tumor growth rates)

● Provides consistent, reproducible measurements 
vs. manual outlining

Ma, J., He, Y., Li, F. et al. Segment anything in medical images. Nat Commun 15, 654 (2024). 
https://doi.org/10.1038/s41467-024-44824-z



Common Use Cases

Tumor Segmentation

● Brain tumors (gliomas, metastases)
● Lung nodules, liver lesions, breast cancer

Organ Delineation

● Heart chambers in cardiac MRI
● Liver, kidneys, prostate in CT/MRI

Microscopic Pathology Segmentation

● Nuclei, glands, or other histological structures in 
whole-slide images



U-Net Architecture Overview

Historical Context

● Proposed by Ronneberger et al. (2015), originally 
for biomedical microscopy

● Achieved top performance on the ISBI Cell 
Tracking Challenge

High-Level Structure

● Encoder: Downsampling path for context 
capturing (similar to CNN classification 
backbones)

● Decoder: Upsampling path for precise 
localization

● Skip Connections: Transfer high-resolution 
features from encoder to decoder



Encoder-Decoder Structure & Skip Connections

Encoder Path (Left side)

● Series of convolution + ReLU + pooling
● Each downsampling roughly doubles the number of 

feature maps, halves the spatial resolution

Bottleneck

● Lowest resolution; deepest features (semantic 
information)

Decoder Path (Right side)

● Transposed convolutions or up-convolutions to 
increase spatial dimension

● Merges (concatenation) with corresponding features 
from the encoder via skip connections

● Gradually refines the segmentation mask at higher 
resolution



Advantages in Medical Image Segmentation

Handling Fewer Images

● U-Net can be trained effectively on relatively small datasets (typical in medical imaging)
● Use of heavy data augmentation is standard

Robust Feature Localization

● Skip connections preserve spatial information lost by pooling
● Helps differentiate fine boundaries (tumor edges, organ interfaces)

2D vs. 3D U-Net Variants

● 2D: Processes slices independently, good if GPU memory is limited
● 3D: Captures volumetric context but more memory-intensive



Loss Functions & Evaluation Metrics (U-Net Context)



State-of-the-Art Variants – nnU-Net & MedSAM

nnU-Net

● Self-configuring U-Net framework
● Automatically adapts architecture and hyperparameters
● Top performance in multiple segmentation challenges

MedSAM

● Adapts “Segment Anything Model” to medical images
● Uses large-scale pretrained embeddings + prompt-based 

segmentation
● Offers few-shot or zero-shot capabilities for new tasks

Key Takeaway

● Both build on the U-Net paradigm with skip connections
● Ongoing improvements target automated tuning and broad 

generalizability



UNet for Image Registration 

Guo, C. K. (2019). Multi-modal image registration with unsupervised deep learning (Doctoral dissertation, Massachusetts Institute of Technology).



UNet for Image Enhancement 

Lan, Y., & Zhang, X. (2020). Real-time ultrasound image despeckling using mixed-attention mechanism based residual UNet. IEEE Access, 8, 195327-195340.



Q&A



Applying CNNs to Biomedical Segmentation & Future Directions

Preprocessing and data preparation

● Data cleaning (artifact removal, normalization)
● Data augmentation (flips, rotations, intensity shifts)
● Handling class imbalance (sampling strategies, loss functions)

Training and evaluation strategies

● Train/validation/test splits, cross-validation
● Performance metrics (Dice coefficient, IoU, sensitivity, specificity)
● Visual inspection and clinician-in-the-loop for validation

Next Steps & Federated Learning Mention

● Federated Learning as a solution for data-sharing barriers among multiple hospitals/institutions.
● High-level benefits (privacy-preserving, larger effective dataset) and challenges (communication overhead, 

data heterogeneity).
● Encouragement to think about how this could improve generalizability across diverse patient populations.



Preprocessing & Data Preparation

Data Cleaning

● Artifact removal (e.g., motion, noise)
● Normalization & standardization (intensity 

scaling)

Data Augmentation

● Flips, rotations, elastic deformations
● Intensity shifts (brightness, contrast)

Handling Class Imbalance

● Oversampling/undersampling methods
● Loss functions (e.g., focal loss)



Training & Evaluation Strategies

Splitting Protocols

● Train/Val/Test splits
● k-Fold cross-validation for small datasets

Metrics

● Dice Coefficient & IoU for segmentation overlap
● Sensitivity/Specificity for binary outcomes

Clinician-in-the-Loop

● Importance of visual inspection
● Iterative feedback for model refinement

https://scikit-learn.org/stable/modules/cross_validation.html



Federated Learning 

Motivation

● Train collaboratively across hospitals without 
sharing raw data

● Larger effective dataset, privacy preserved

Challenges

● Communication overhead, model synchronization
● Data heterogeneity (different scanners, protocols)

Potential Impact

● Improved model generalizability
● Regulatory compliance (HIPAA, GDPR)

Kairouz, P., McMahan, H. B., Avent, B., Bellet, A., Bennis, M., Bhagoji, A. N., ... & Zhao, S. (2021). 
Advances and open problems in federated learning. Foundations and trends® in machine learning, 14(1–2), 
1-210.



Federated Learning 
● Largest FL study in medical imaging → 71 sites, 

6 continents
● 6,314 cases → Largest glioblastoma dataset
● No data sharing → Privacy-preserving model 

training
Key Results

● +33% improvement in surgically targetable tumor 
segmentation

● +23% improvement in complete tumor 
segmentation

● Validated on:
○ Local site data (n = 1,043 cases)
○ Out-of-sample data (n = 518 cases)

Impact
● More diverse, generalizable AI models
● Public release of the consensus model
● New standard for multi-site AI training

Pati, S., Baid, U., Edwards, B., Sheller, M., Wang, S. H., Reina, G. A., ... & Poisson, L. 
(2022). Federated learning enables big data for rare cancer boundary detection. Nature 
communications, 13(1), 7346.



Conclusions & Key Takeaways 
Medical Imaging Overview

● Diverse modalities (X-ray, CT, MRI, Ultrasound, Pathology)
● AI tasks: classification, regression, segmentation, registration, enhancement

Deep Learning Foundations
● CNNs: convolution, pooling, encoder-decoder structures (U-Net)
● Advanced methods: Vision Transformers, Capsule Networks

Segmentation & U-Net
● Critical for accurate delineation (tumors, organs)
● Skip connections, specialized loss functions (Dice)

Practical Considerations
● Data preprocessing, augmentation, handling imbalance
● Training strategies, metrics, clinician-in-the-loop validation

Looking Ahead
● Federated learning for distributed data
● Continued progress in robustness, explainability, and generalizability



Q&A


