

# AIM 2: Artificial Intelligence in Medicine II

Harvard - BMI 702 and BMIF 203, Spring 2026

Lecture 2: Embeddings and their role in NLP, Transformers and BERT, Clinical BERT, Encoder-only and decoder-only architectures, Medical question-answering, Human-AI evaluation loops.



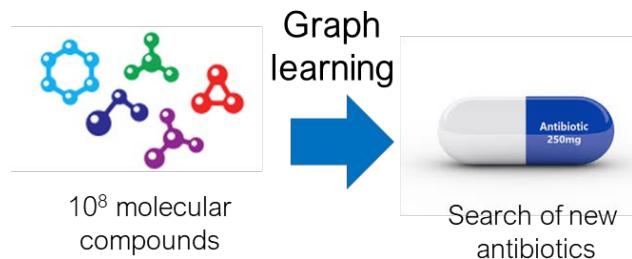
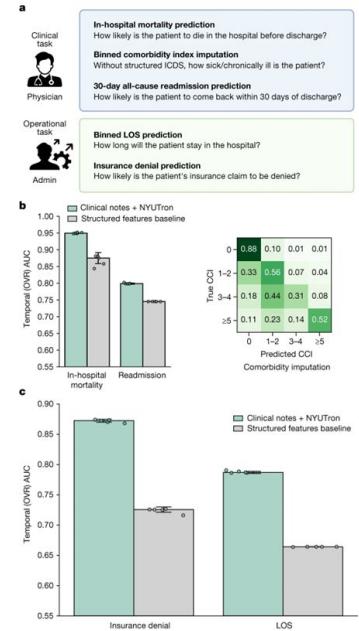
# Review From Last Week

## What Makes Biomedical Data Unique

- High stake → High Standards
- Unsupervised in Nature and lack labels
- Underlying Causal Framework
- Trustworthy
- Immense Class Imbalance (outlier predictions)
- Inconsistent Measurements
- Medical Culture is hard to change



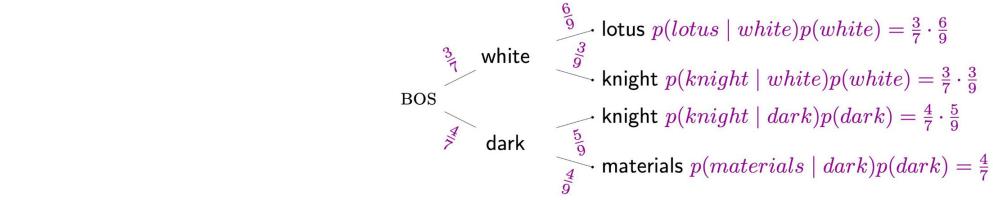
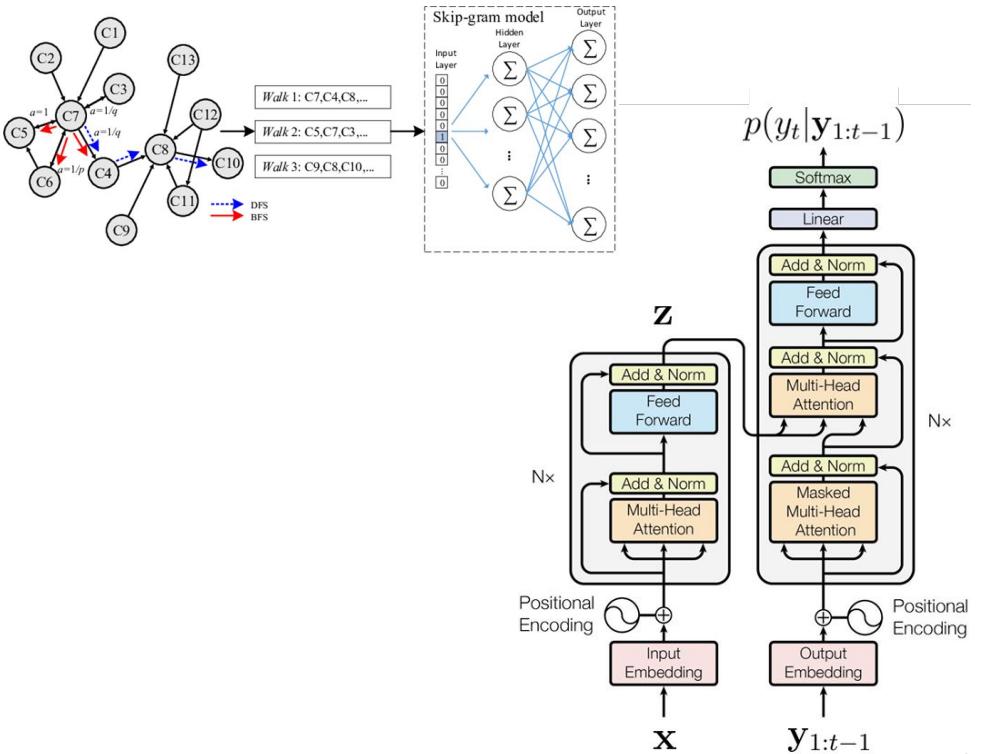
High-stakes decisions



# Review From Last Week

## Intro to Distributed Language Representation

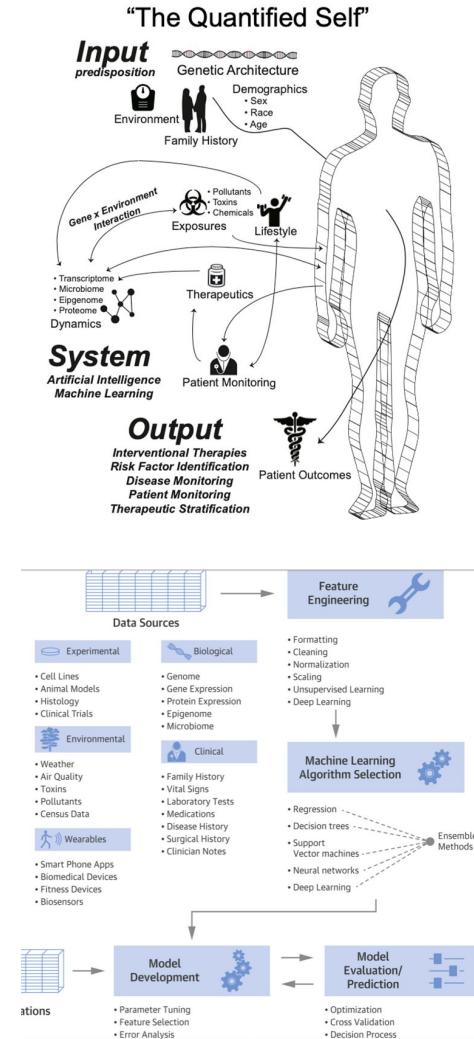
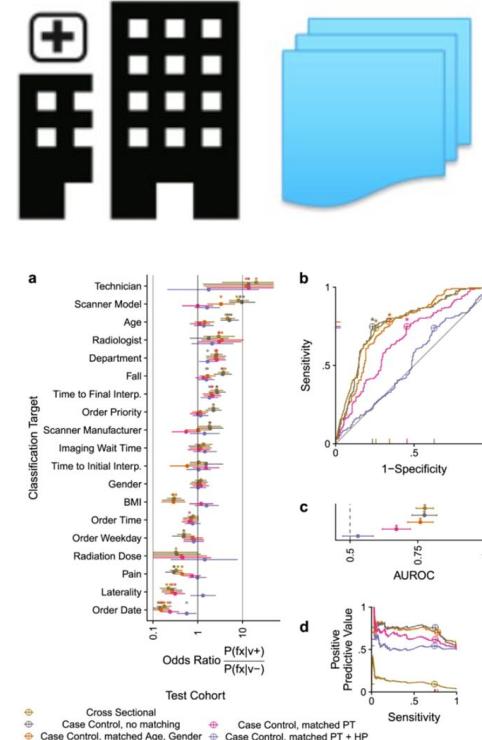
- Distributional Hypothesis
- Syntax, Grammar, and Semantics
- Probabilistic Models of Language
- Word2vec, node2vec, sentence2vec, and many more
- Transformer Architecture



# Review From Last Week

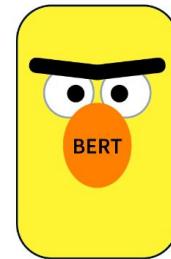
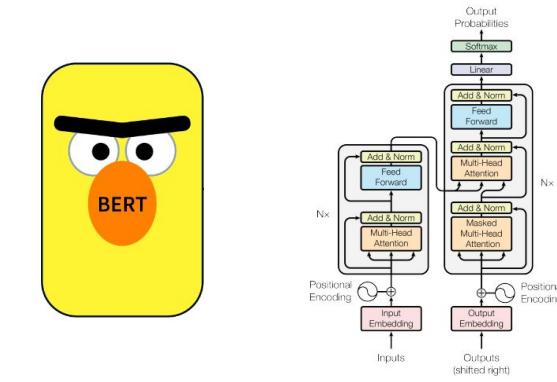
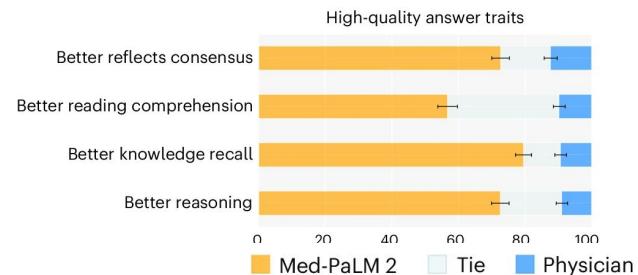
## Intro to NLP in Clinical Settings

- Multi Level Dataset which doesn't exist
- EHR: data types, structure
- ML Workflow for EHR data
- How well do various data types define disease?
- Challenges:
  - Simplify patients too much
  - Learn the wrong information
  - Cheat
  - Generalizability

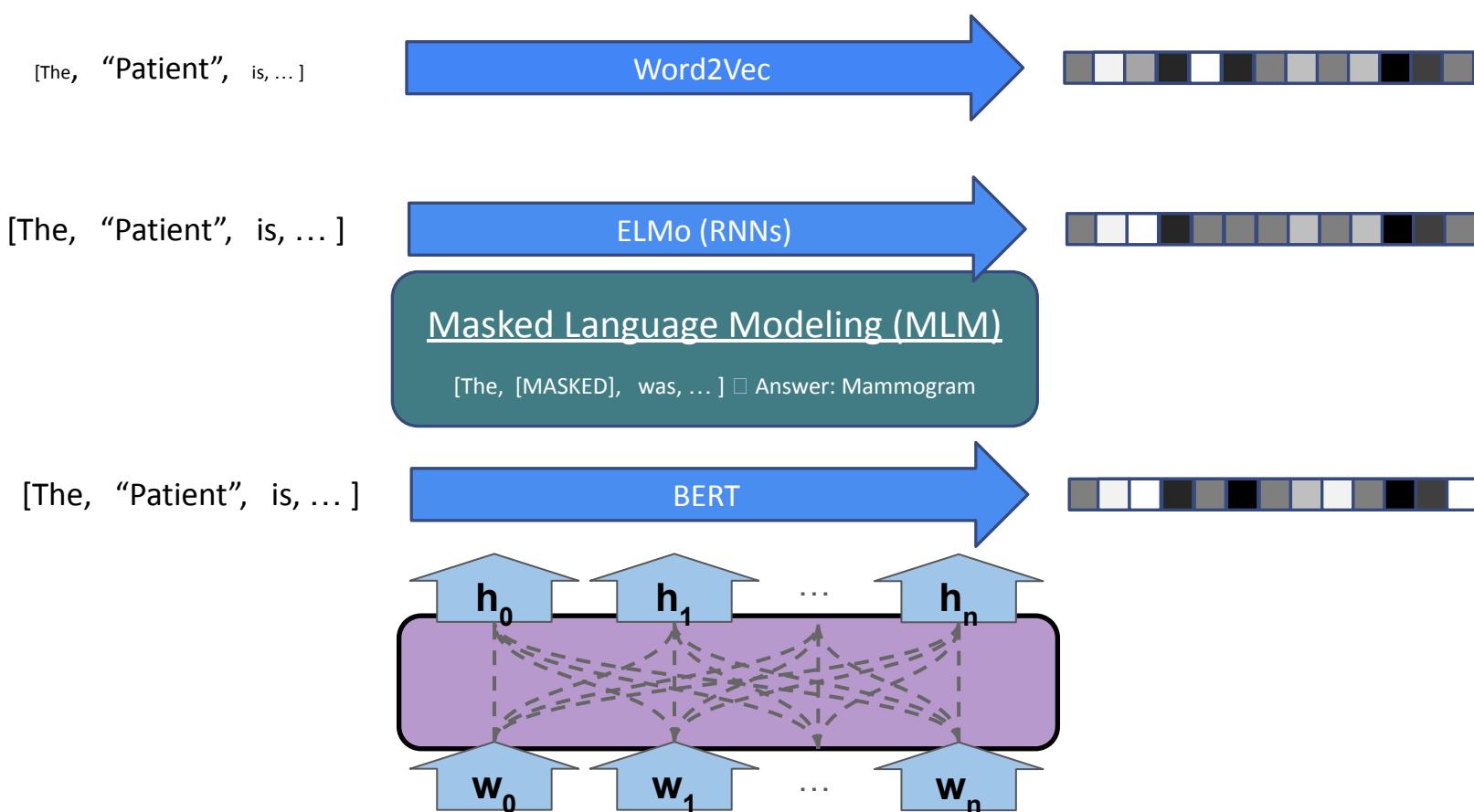


# This Week's Lecture Agenda:

1. Embeddings and their role in NLP
2. Transformers, BERT, & Clinical BERT
3. Stack Encoders and Stack Decoders
4. Real-World Applications & Challenges
  - a. Medical question-answering
  - b. Human-AI evaluation loops



# Embeddings and their role in NLP



[The, "Patient", is, ...]

Word2Vec



- Introduced by **Mikolov et al. (2013)** at Google, Word2Vec was a major shift in NLP, replacing sparse representations with **dense vector embeddings**.
- Prior methods:
  - a. **One-hot encoding** (binary vectors, no meaning).
  - b. **TF-IDF** (word frequency-based, ignores context).
  - c. **Latent Semantic Analysis (LSA)** (matrix factorization, computationally heavy).
- Word2Vec learns **word meanings from co-occurrence**, using **two architectures**:
  - a. **CBOW (Continuous Bag of Words)** – Predicts a word from its context.
  - b. **Skip-gram** – Predicts surrounding words from a central word.
- These models use **shallow neural networks** with **weight matrices as word vectors**.

 **Key Insight:** Similar words have **similar vectors**, allowing for analogy reasoning (e.g., "king - man + woman ≈ queen").

[The, “Patient”, is, ...]

Word2Vec



### CBOW Objective:

- Given a context window  $C = \{w_{t-k}, \dots, w_{t-1}, w_{t+1}, \dots, w_{t+k}\}$ , the model predicts the target word  $w_t$ .
- Softmax probability of target word:**

$$P(w_t|C) = \frac{e^{v_{w_t}^T u_C}}{\sum_{w \in V} e^{v_w^T u_C}}$$

- $v_w$  = output vector of word  $w$ .
- $u_C$  = averaged input context vector.
- $V$  = vocabulary size (large, making softmax expensive).

[The, “Patient”, is, ...]

Word2Vec



### Skip-gram Objective:

- Given a target word  $w_t$ , predict surrounding words  $w_c$ .
- **Probability of context words given  $w_t$ :**

$$P(w_c|w_t) = \frac{e^{v_{w_c}^T u_{w_t}}}{\sum_{w \in V} e^{v_w^T u_{w_t}}}$$

- Optimized using **negative sampling** (reduces computational cost from full softmax).

[The, “Patient”, is, ...]

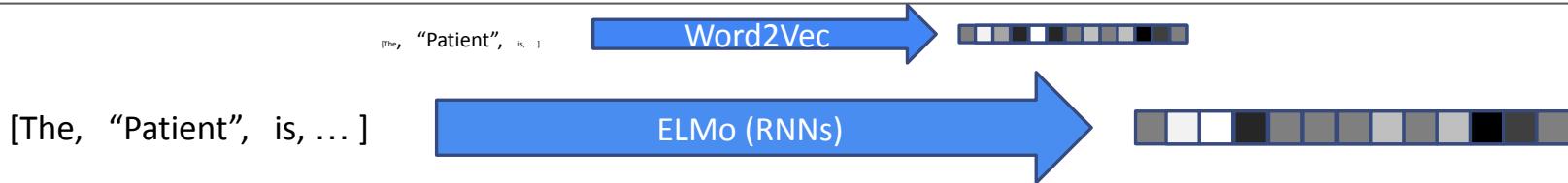
Word2Vec



- Embeddings are learned as row vectors in matrices  $W$  and  $W'$ .
- Cosine similarity measures word similarity:

$$\cos(\theta) = \frac{v_{w_1} \cdot v_{w_2}}{\|v_{w_1}\| \|v_{w_2}\|}$$

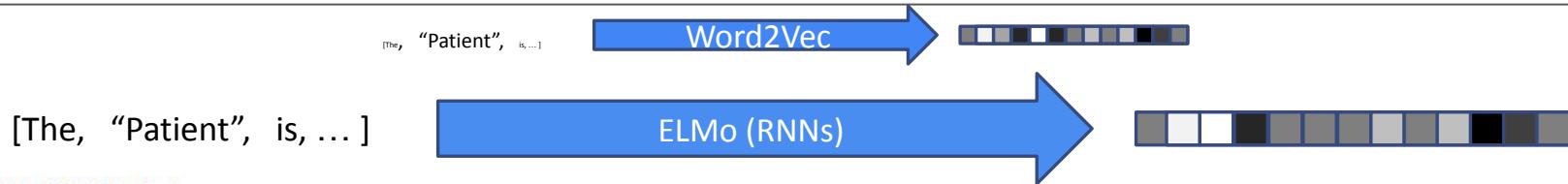
**Impact:** Word2Vec led to **context-aware embeddings**, inspiring later models like GloVe, FastText, and Transformer-based embeddings (BERT).



- Introduced by **Peters et al. (2018)** at the Allen Institute for AI, **ELMo (Embeddings from Language Models)** improved word embeddings by making them **context-sensitive**.
- Unlike Word2Vec & GloVe (static embeddings), ELMo generates **dynamic embeddings** that change based on sentence context.
- Uses a **bidirectional LSTM (BiLSTM)** trained on a **language modeling task**:
  - **Forward LSTM** predicts next word.
  - **Backward LSTM** predicts previous word.
- Concatenates hidden states from **both LSTMs** to get **contextual word embeddings**.

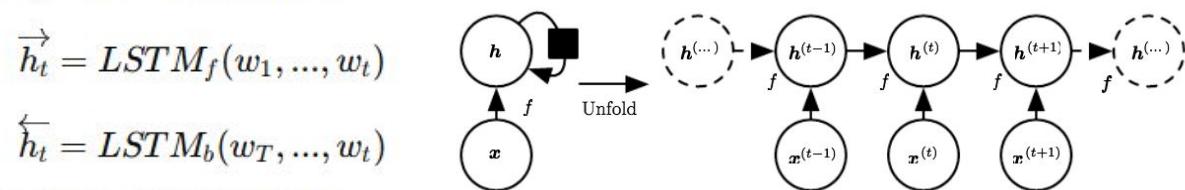
### Example:

- "He wore a **\*\*mask\*\*** to the **\*\*hospital\*\***." → "mask" = medical meaning.
- "She wore a **\*\*mask\*\*** to the **\*\*party\*\***." → "mask" = costume meaning.



### BiLSTM Model:

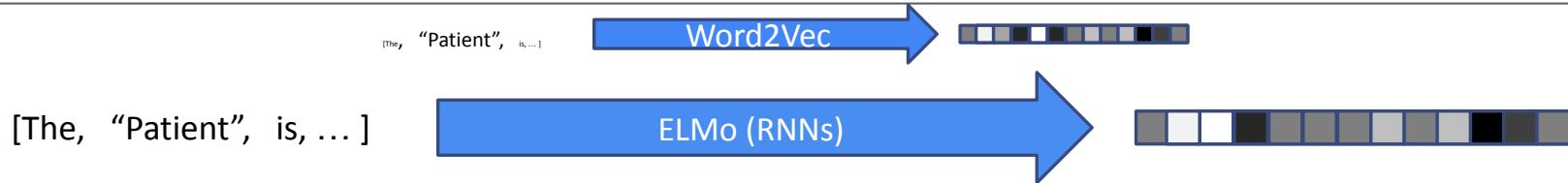
- ELMo computes embeddings from **stacked BiLSTM hidden states**.
- Given a sequence  $(w_1, w_2, \dots, w_T)$ , computes hidden states:



- Final ELMo embedding is a **weighted sum of hidden layers**:

$$ELMo(w_t) = \gamma \sum_{l=1}^L s_l h_t^{(l)}$$

- $s_l$  = learned scalar weights for layer  $l$ .
- $\gamma$  = scaling parameter.



### Training Objective:

- **Bidirectional Language Model (BiLM):**
  - Maximize log likelihood of forward & backward sequences:

$$L = \sum_t (\log P(w_t | w_1, \dots, w_{t-1}) + \log P(w_t | w_{t+1}, \dots, w_T))$$

### Why ELMo Was a Breakthrough:

- **Dynamic embeddings** → captures different meanings based on context.
- **Predecessor to BERT** → but still uses **RNNs instead of transformers**.
- **Outperformed Word2Vec & GloVe on NLP benchmarks.**

# Applications: Clinical Name Entity Recognition

## Problem

Clinical text is messy. Abbreviations, misspellings, shorthand, local jargon. Rule-based systems and bag-of-words models break constantly.

## Why embeddings mattered

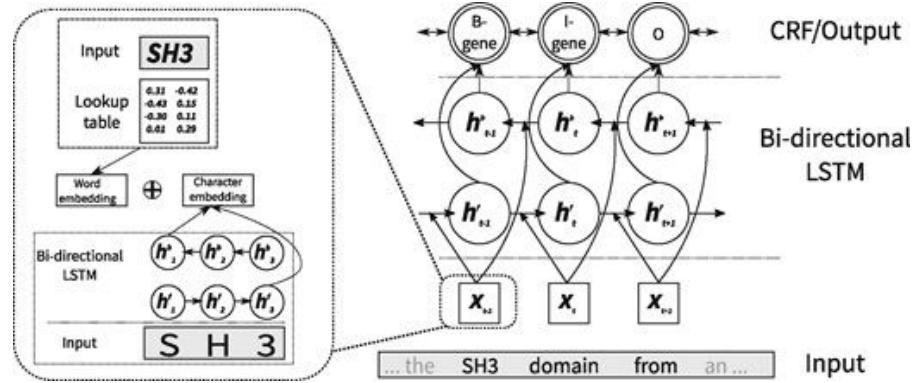
Word embeddings gave a way to encode *semantic similarity* and *contextual relatedness*:

- “MI”, “myocardial infarction”, “heart attack” land close in vector space
- Models generalize across surface forms
- Much less brittle than dictionaries or regex

This was one of the *first* places embeddings showed clear value in medicine.

## Key embedding methods

- word2vec (skip-gram / CBOW)
- Later: ELMo (contextual, but still non-generative)



**biLSTM (bidirectional Long Short-Term Memory):**  
builds word vectors from characters + context.

**Word embedding:** pretrained vector for each word from large text.

**CRF (Conditional Random Field):** picks the best overall tag sequence.

# Application: Clinical Document & Patient-Level Phenotyping

## Problem

Identify patients with a condition (HF, pneumonia, antibiotic use, etc.) from EHR notes. ICD codes are noisy. Rules don't scale.

## Why embeddings mattered

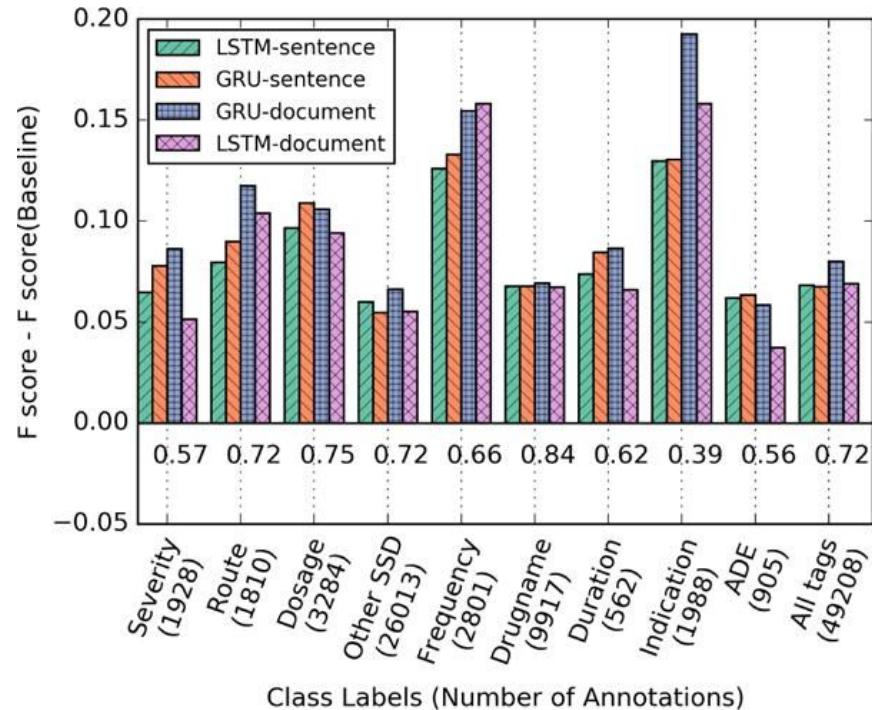
Embeddings enabled:

- Dense representations of notes or sentences
- Better document-level classifiers
- Semantic retrieval (find similar patients or notes)
- Much better performance with less feature engineering

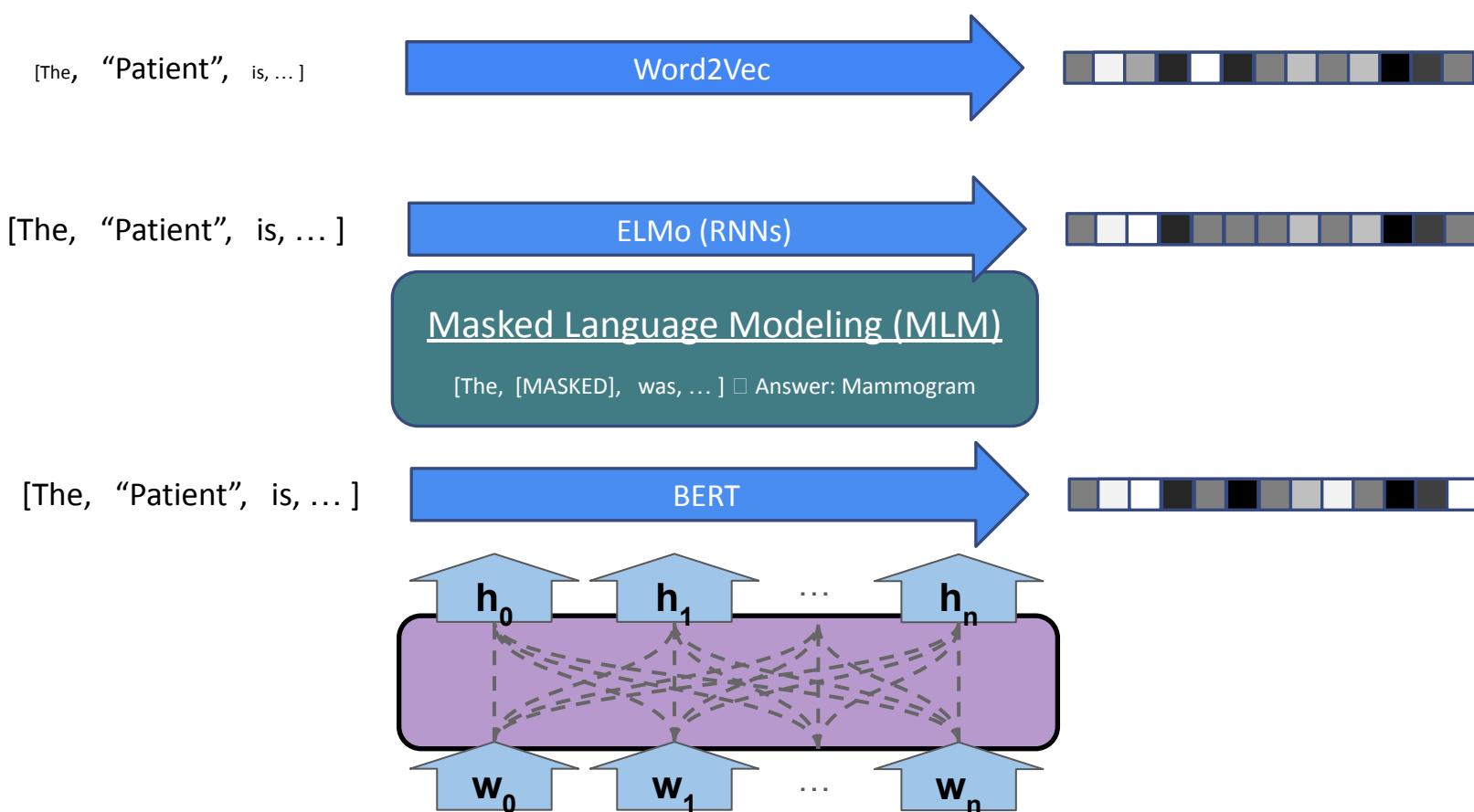
This is where embeddings quietly replaced TF-IDF.

## Key embedding uses

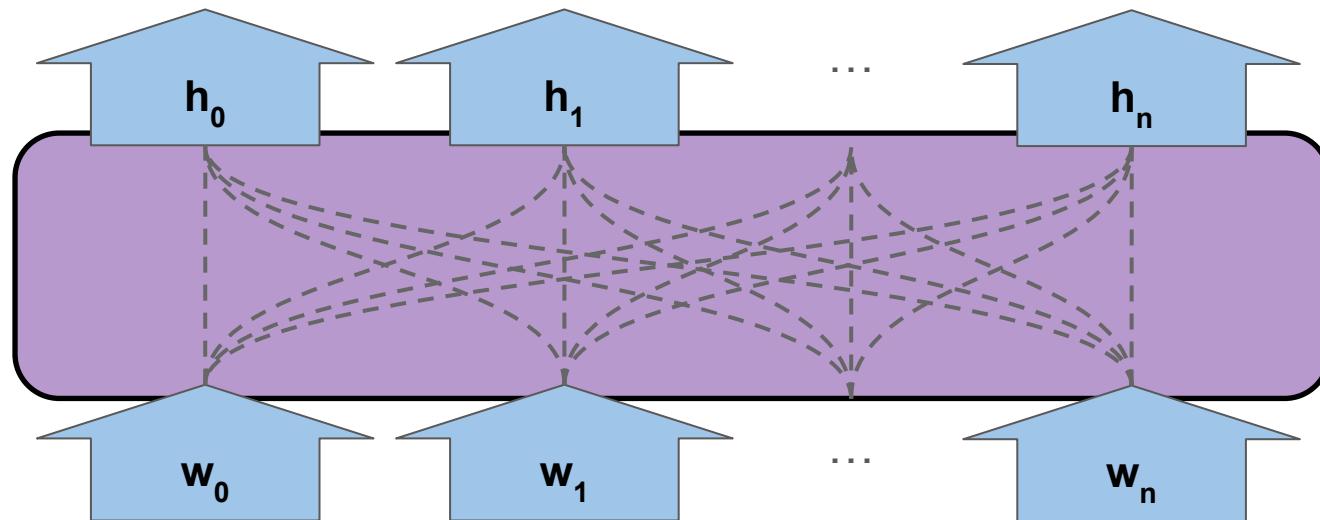
- Averaged word embeddings
- CNN/LSTM over embeddings
- Sentence/document embeddings for retrieval



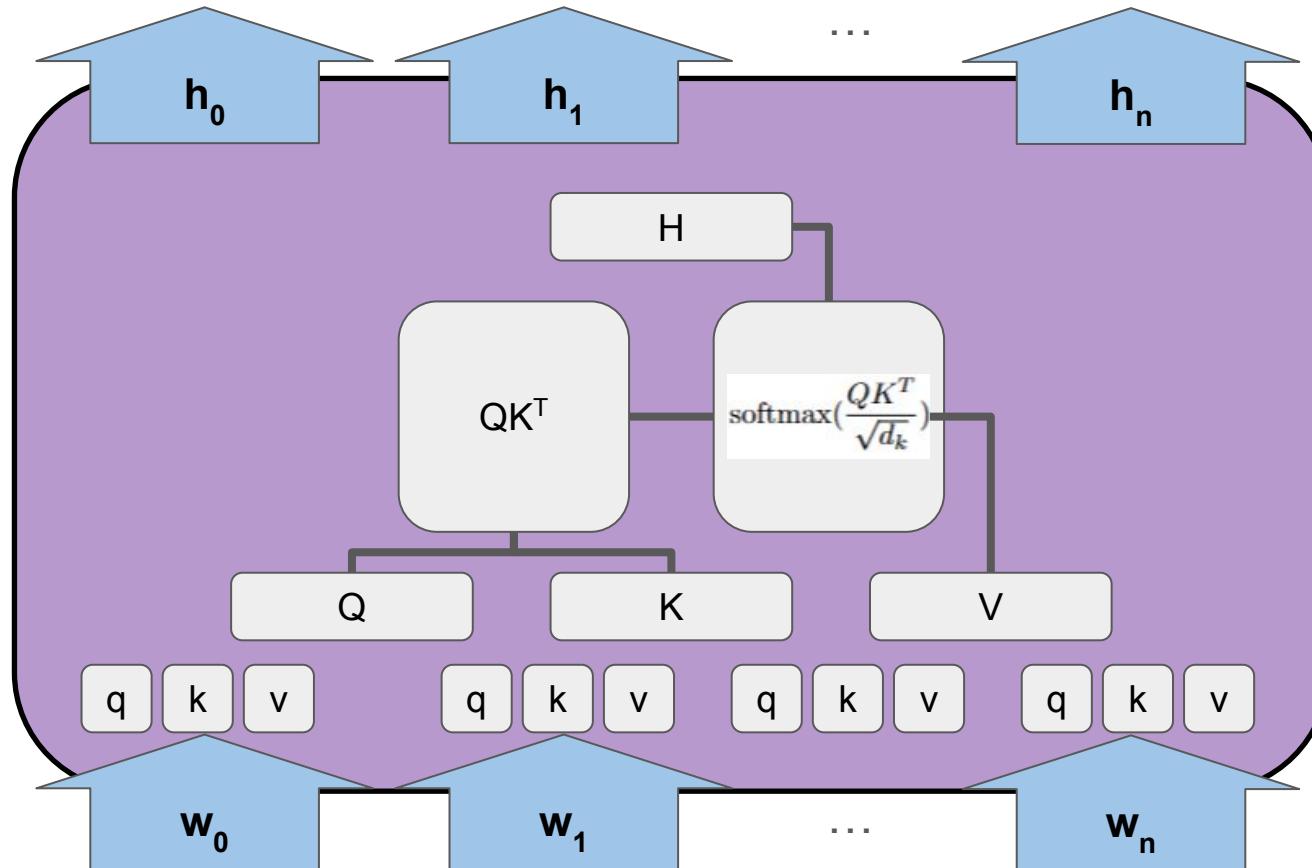
# Transformers, BERT, & Clinical BERT



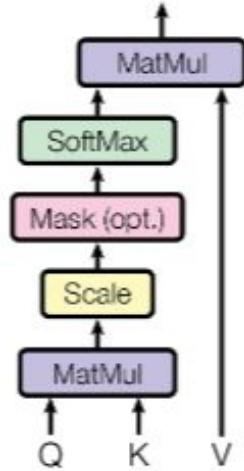
# Core Concept of Self-Attention



# How Scaled Dot-Product Attention Works



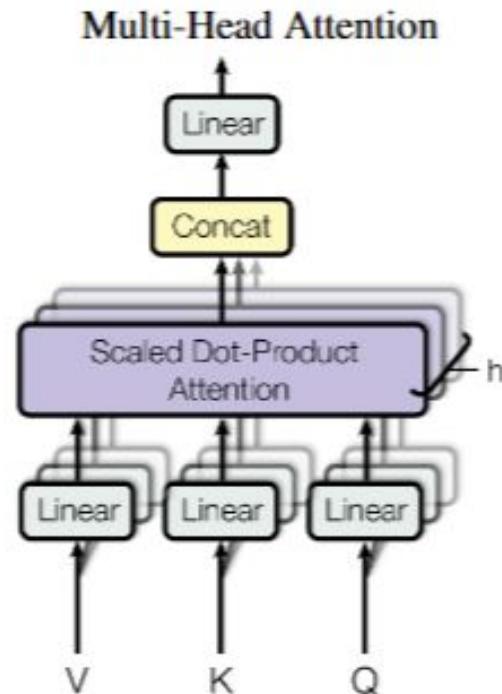
Scaled Dot-Product Attention



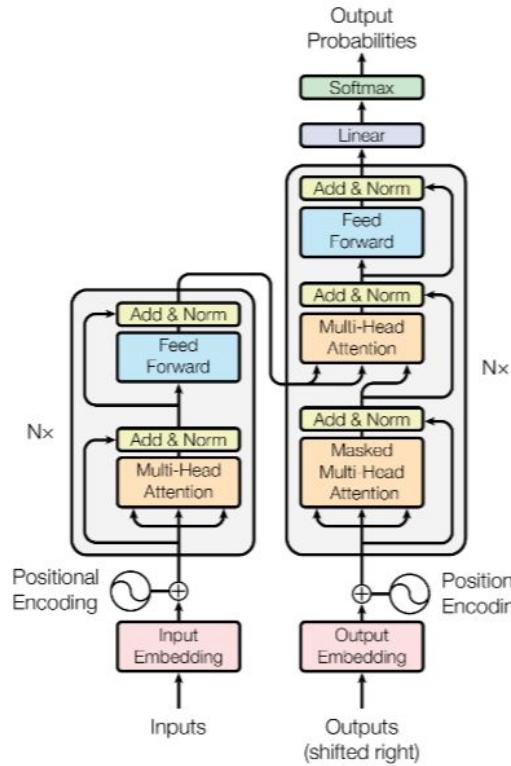
$$\text{Attention}(Q, K, V) =$$

$$\text{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

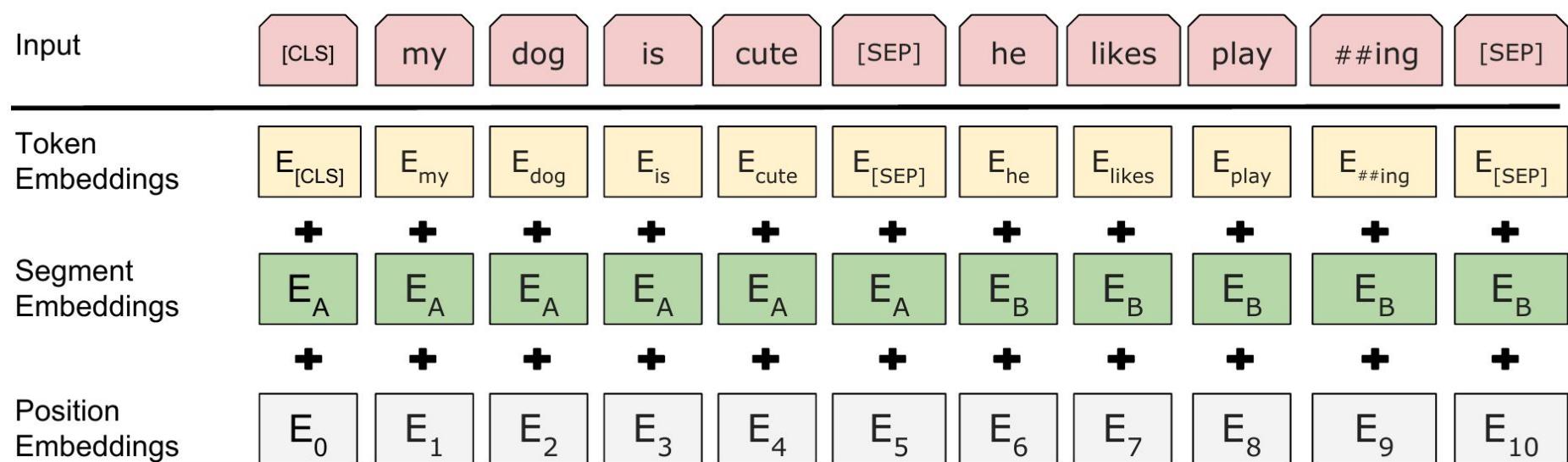
# Multi-Head Attention: Diversifying Focus



# Transformer Structure: Encoder and Decoder Stacks



# Adding Position to Attention: Positional Encoding



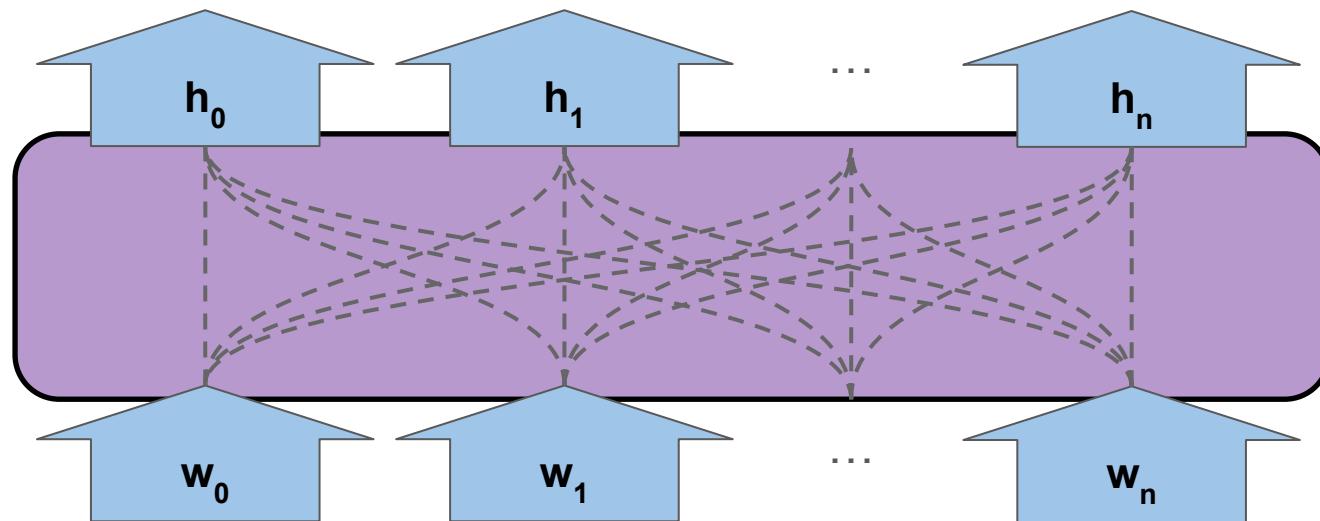
# Benefits: Speed and Parallel Processing

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations for different layer types.  $n$  is the sequence length,  $d$  is the representation dimension,  $k$  is the kernel size of convolutions and  $r$  the size of the neighborhood in restricted self-attention.

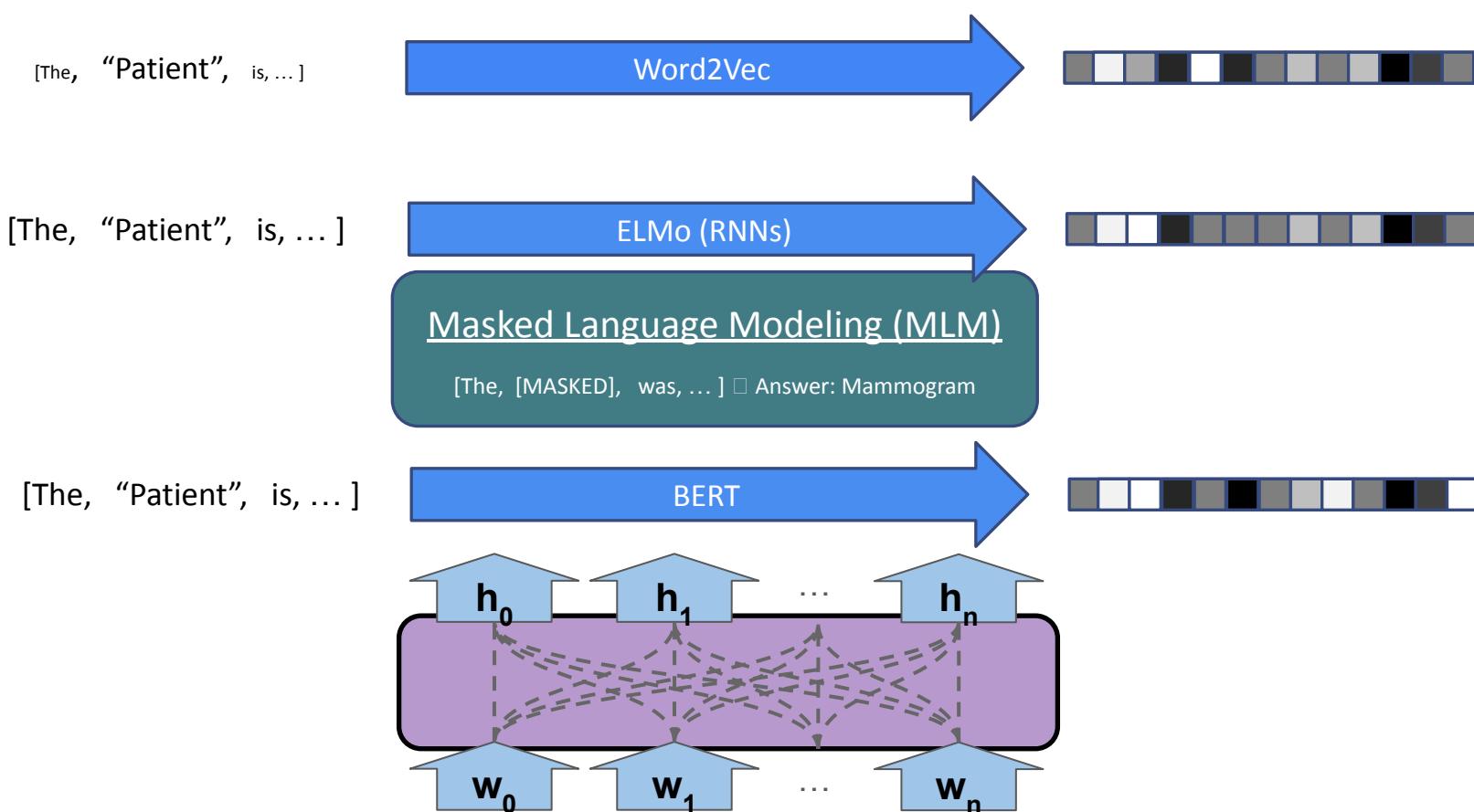
| Layer Type                  | Complexity per Layer     | Sequential Operations | Maximum Path Length |
|-----------------------------|--------------------------|-----------------------|---------------------|
| Self-Attention              | $O(n^2 \cdot d)$         | $O(1)$                | $O(1)$              |
| Recurrent                   | $O(n \cdot d^2)$         | $O(n)$                | $O(n)$              |
| Convolutional               | $O(k \cdot n \cdot d^2)$ | $O(1)$                | $O(\log_k(n))$      |
| Self-Attention (restricted) | $O(r \cdot n \cdot d)$   | $O(1)$                | $O(n/r)$            |

# Applications: Language Translation and Beyond

Hallo, mein Name ist Gray



Hello, My name is Grey



# BERT: Bidirectional Encoder Representations from Transformers

- **Introduced by Devlin et al. (2018)**, BERT revolutionized NLP by introducing **deep bidirectional context modeling** using transformers.
- Unlike RNNs, BERT **processes all words simultaneously** using self-attention, allowing full-context understanding.
- **Pre-trained on massive corpora** (Wikipedia + BooksCorpus) using **two self-supervised tasks**:
  1. **Masked Language Model (MLM)**: Randomly masks 15% of words and predicts them.
  2. **Next Sentence Prediction (NSP)**: Determines if two sentences are consecutive.
- Key innovation: **Contextual embeddings** change based on sentence structure.

## Example:

- "He unlocked the **\*\*bank\*\*** vault." vs. "He sat by the **\*\*bank\*\*** of the river." → Same word, different vectors!

# Mathematical Formulation of BERT Pre-training

## Transformer Architecture:

- Uses **stacked self-attention layers** with query, key, value vectors:

$$\text{Attention}(Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) V$$

- $Q, K, V$  = learned matrices for queries, keys, and values.
- $d_k$  = scaling factor.
- **Token embeddings:** Word pieces encoded numerically.
- **Positional embeddings:** Since transformers lack recurrence, a **positional encoding** is added:

$$PE_{(pos,2i)} = \sin(pos/10000^{2i/d})$$

$$PE_{(pos,2i+1)} = \cos(pos/10000^{2i/d})$$

# Mathematical Formulation of BERT Pre-training

1. Masked Language Model (MLM) Loss:

$$L_{MLM} = - \sum_{i \in M} \log P(w_i | W_{/M})$$

2. Next Sentence Prediction (NSP) Loss:

$$L_{NSP} = - \sum_{(A,B)} [y \log P(A|B) + (1 - y) \log(1 - P(A|B))]$$

- $y = 1$  if  $A, B$  are consecutive, else 0.

# Domain-Specific BERT Models: Clinical BERT & BioBERT

- **BioBERT (2019)**: Trained on **PubMed abstracts + PMC full texts** (over 29M articles).
- **Clinical BERT (2020)**: Fine-tuned on **MIMIC-III clinical notes** to understand **EMRs & clinical language**.
- Differences from standard BERT:
  - **BioBERT** improves biomedical entity recognition & relation extraction.
  - **Clinical BERT** excels in **patient notes analysis** (e.g., de-identification, diagnosis prediction).
- **Key Insight**: General BERT struggles with **medical jargon & abbreviations**.

## Example:

- "The patient has AFib."
  - **BERT**: Confuses **AFib** with random word.
  - **Clinical BERT**: Knows **AFib = Atrial Fibrillation**.

# Fine-Tuning BERT for Medical NLP Tasks

- **Fine-tuning = Adjusting pre-trained BERT weights for specific tasks.**
- Process:
  - **Add a task-specific layer (classifier, NER, QA head, etc.).**
  - **Feed labeled medical data** through BERT (e.g., MIMIC-III, PubMed).
  - **Train on a supervised loss function** (e.g., cross-entropy for classification).
- **Key architectures for fine-tuning:**
  - **NER tasks:** Linear layer on top of token embeddings.
  - **Medical QA:** Encoder-decoder with sequence output.

## Example:

- **Clinical Trial Matching:** Fine-tuned BERT predicts **eligibility** for trials from patient notes.

# Fine-Tuning BERT for Medical NLP Tasks

- Training optimizes task-specific loss functions:

- NER (Named Entity Recognition):

$$L = - \sum_{i=1}^N y_i \log P(y_i) + (1 - y_i) \log(1 - P(y_i))$$

- Medical Text Classification:

$$L = - \sum_i y_i \log P(y_i|x_i)$$

- Medical QA (Span Prediction Loss):

$$L = - \sum_i [\log P(start_i) + \log P(end_i)]$$

- Uses Adam optimizer with learning rate decay.

# Stack Encoders and Stack Decoders

# Beyond Standard Encoder-Decoder Models

- Standard transformer models (BERT, T5) use **encoder-decoder architectures** for **sequence-to-sequence tasks** (e.g., translation, summarization).
- **Stack Encoder:** Multiple encoder layers **process input at different depths**, allowing better hierarchical representations.
- **Stack Decoder:** Multiple decoder layers **iteratively refine generated output**, improving coherence in text generation.
- **Key difference from standard transformers:** Rather than a **single-pass encoder-decoder**, stack-based models **progressively encode and decode** information.

## Example Applications:

- **Machine translation** (deeper meaning capture).
- **Medical report generation** (structured summarization).
- **Chatbot response generation** (coherent multi-turn conversations).

# Stack Encoders: Hierarchical Information Processing

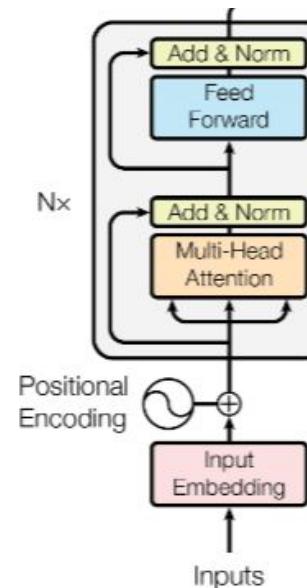
- A **stack encoder** consists of multiple encoder layers:

$$H^{(l)} = f(H^{(l-1)}, A^{(l)})$$

- $H^{(l)}$  = output at encoder layer  $l$ .
- $A^{(l)}$  = self-attention mechanism at layer  $l$ .
- $f$  = transformation function (feed-forward + attention).
- **Multi-head attention allows deep feature extraction:**

$$\text{Attention}(Q, K, V) = \text{softmax} \left( \frac{QK^T}{\sqrt{d_k}} \right) V$$

- Each head **extracts different representations** (e.g., syntax, semantics).



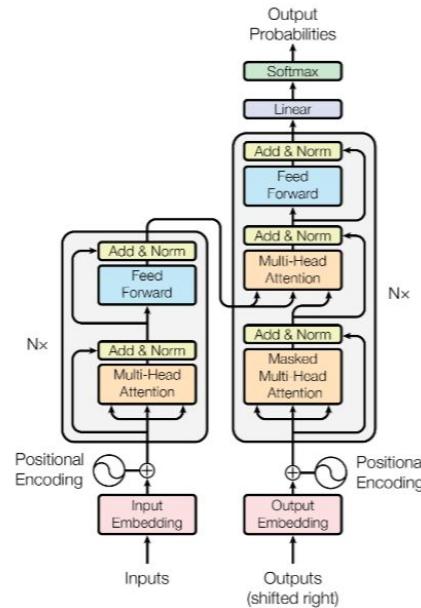
Stacking encoders **enables progressively refined feature representations**, essential for tasks like **medical entity linking & structured text understanding**.

# Stack Decoders: Iterative Refinement of Outputs

- A **stack decoder** follows a similar multi-layer structure, where each layer **iteratively refines the generated sequence**:

$$G^{(l)} = g(G^{(l-1)}, C, A^{(l)})$$

- $G^{(l)}$  = output of decoder layer  $l$ .
- $C$  = encoded representation from stack encoder.
- $A^{(l)}$  = attention mechanism at layer  $l$ .
- **Two types of attention in stack decoders:**
  - **Self-attention** (captures prior generated tokens).
  - **Cross-attention** (links to encoder representations).



The deeper the decoder stack, the more the model **refines generated text**, preventing incoherent responses.

# ChatGPT: Transformer Decoders in Action

- ChatGPT (GPT-based models) **use only decoders**—unlike BERT, which uses encoders.
- **Auto-regressive generation:** Predicts one token at a time:

$$P(w_t | w_{<t}) = \text{softmax}(W_o h_t)$$

- $h_t$  = hidden state of transformer at time  $t$ .
- $W_o$  = learned weight matrix.
- **Causal self-attention:** Future tokens are **masked** to prevent looking ahead.
- **Temperature & top-k sampling:** Controls diversity of generated responses.

## Why This Works for NLP:

- **Decoders capture long-range dependencies**, making ChatGPT effective at **dialogue generation**.

# Training & Fine-Tuning a Generative Model

- ChatGPT's training consists of **pre-training + fine-tuning**:
  1. **Pre-training (Unsupervised)**: Trained on massive text datasets using **causal language modeling (CLM)**:

$$L = - \sum_t \log P(w_t | w_{<t})$$

2. **Fine-tuning (Supervised RLHF)**: Human annotators rate responses, and reinforcement learning optimizes model behavior:

$$L = - \sum_t R(y_t) \log P(y_t | x_t)$$

- $R(y_t)$  = reward function based on response quality.

## Key Innovation:

- Reinforcement learning with human feedback (RLHF) **aligns ChatGPT's responses with human expectations**.

# Clinical Applications & Challenges

# Medical Question Answering: What it is and why it's hard

## Medical QA = answering clinical questions from evidence

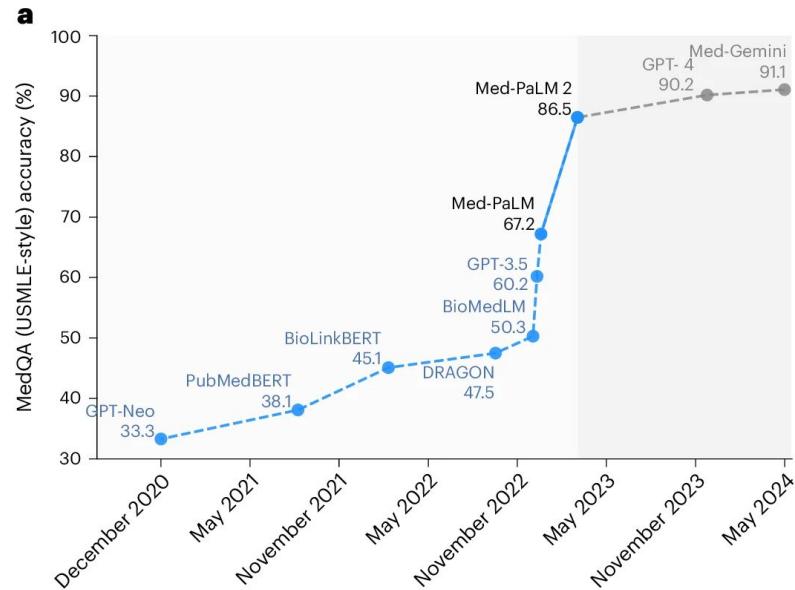
- Inputs: a question + patient context + reference sources (guidelines, UpToDate-style text, papers)
- Outputs: answer + supporting evidence (ideally with citations)

## Two main modes

- Retrieval: find the right passage(s)
- Reasoning: connect evidence to a clinically correct conclusion

## Why it's harder than “general QA”

- Ambiguity and missing context are common
- Errors are high-stakes (safety)
- Good answers need justification, not just fluency



# Medical QA: Expert-level medical QA with LLMs

## What they built

- **Med-PaLM 2**: a medically tuned LLM (PaLM 2 base) + prompting refinements

## How they evaluate “medical QA”

- **Multiple-choice exams** (MedQA / USMLE-style)
- **Long-form consumer questions** graded by physicians across clinical-utility axes

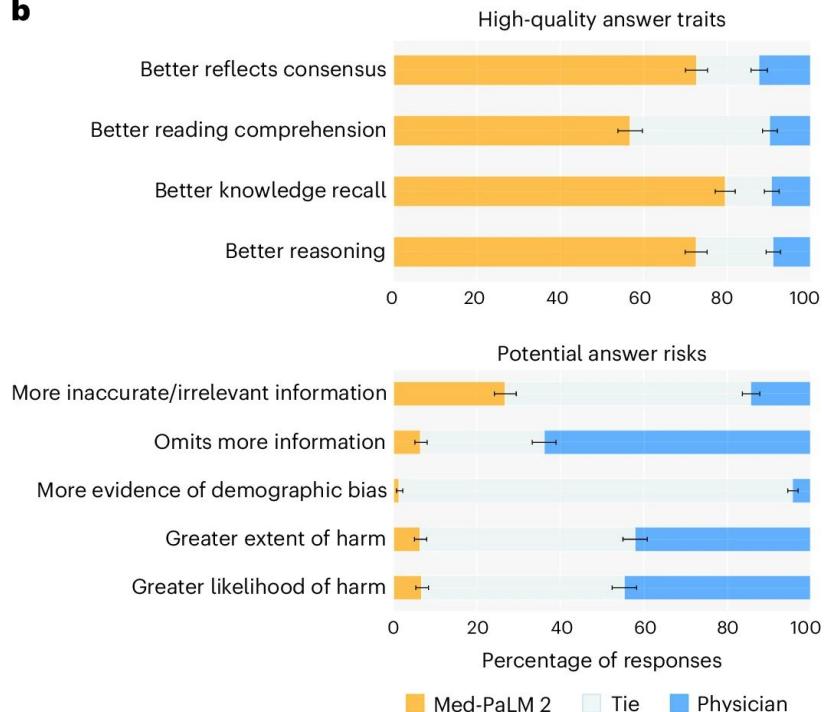
## Headline results

- 86.5% on MedQA (vs 67.2% Med-PaLM)
- On 1,066 consumer questions, physicians preferred Med-PaLM 2 over physician answers on 8/9 axes

## Teaching point

- Benchmarks show knowledge, but they emphasize **human rubric-based evaluation** for safety/utility

**b**



# Human–AI Evaluation Loops

**Human–AI loop = humans are part of the system, not just the end user**

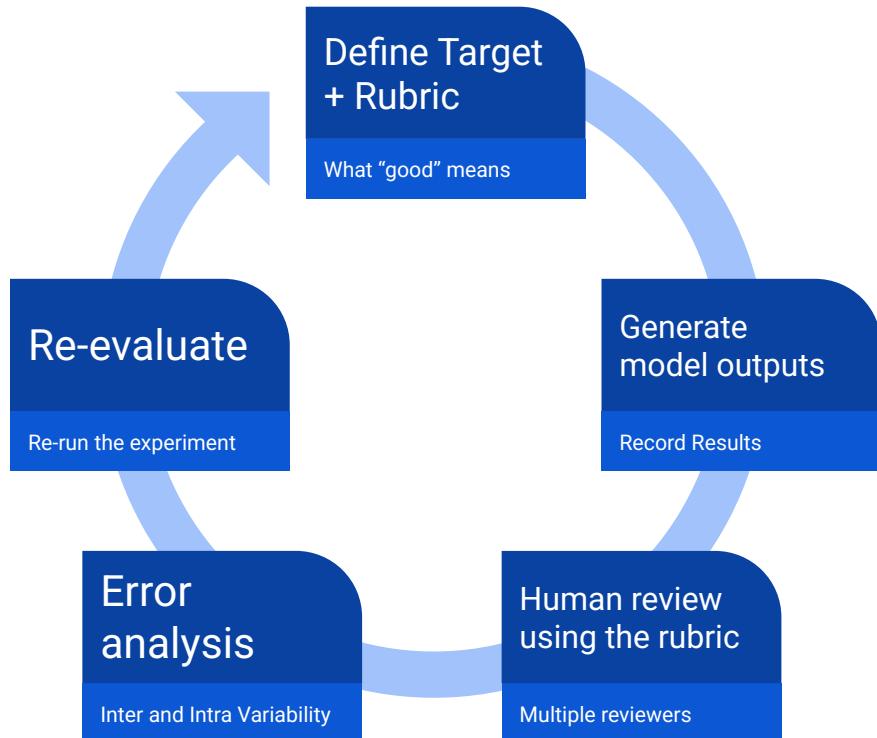
- Humans define rubrics, audit errors, and recalibrate model behavior
- Evaluation isn't one-time; it's iterative

## Why medicine needs this

- “Ground truth” is often noisy or subjective (even experts disagree)
- Safety demands monitoring for drift and rare failures
- Fairness: subgroup performance must be checked deliberately

## What you measure

- Accuracy + reliability (agreement)
- Calibration (does confidence match correctness?)
- Error types (what fails and why)



# Human–AI Evaluation Loop: LLM grading

## Use case

- LLM grades short-answer medical responses using an explicit rubric
- Compare to human graders and quantify agreement

## What the loop looks like

- Rubric design → LLM grading → human spot-check → revise prompts/rubric → re-test reliability

## Main insight

- LLM grading can be consistent when constrained by criteria
- Human oversight catches edge cases and keeps standards stable

## Why it matters

- Turns evaluation into an operational workflow, not a one-off benchmark

