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Lecture 2: Embeddings and their role in NLP, Transformers and BERT, Clinical BERT,
Encoder-only and decoder-only architectures, Medical question-answering, Human-Al
evaluation loops.
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Review From Last Week

What Makes Biomedical Data Unique

High stake — High Standards
Unsupervised in Nature and lack labels
Underlying Causal Framework
Trustworthy

Immense Class Imbalance (outlier
predictions)

Inconsistent Measurements

Medical Culture is hard to change

High-stakes decisions
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108 molecular Search of new
compounds antibiotics

In-hospital mortaiity prediction
How likely is the patient to die in the hospital before discharge?

Binned comorbidity index imputation
‘Without structured ICOS, how sick/chronically il is the patient?

30-day all-cause readmission prediction
How kel is the patient to come back within 30 days of discharge?

Binned LOS prediction
How long will the patient stay in the hospital?

Insurance denial prediction
How likely is the patient's insurance claim to be denied?




&
9 . lotus p(lotus | white)p(white) = 2

.8
“%l/white “gk oot e )723
: “ knight p(knight | white)p(white) = 3 - §
Review From Last Week O it light | dorkplar) =
\:}3‘ materials p(materials | dark)p(dark) = % . %
9
Intro to Distributed Language Representation "Siﬁ?-éx%?n:i?ﬂefl"""jf"‘%

Walk 1: C7,C4,C8,...

/
Distributional Hypothesis
rzcon. 1
[

Syntax, Grammar, and Semantics
Probabilistic Models of Language

Walk 3: C9,C8,C10.,...

-9 DFS
BFS

Word2vec, node2vec, sentence2vec, and B

many more
Transformer Architecture

p(yt|Y1:t—1)

Add & Norm

Feed
Forward

Add & Norm

(Add & Norm ] :
Cadisiorm Multi-Head
Feed Attention
Forward Nx
N | Add & Norm
Add & Norm Vaskea
Multi-Head Multi-Head
Attention Attention
\Q— J & |l
Positional ® @ Positional
Encoding Encoding
Input Output
Embedding Embedding
X Yit—1



Review From Last Week

Intro to NLP in Clinical Settings

Multi Level Dataset which doesn’t exist
EHR: data types, structure
ML Workflow for EHR data
How well do various data types define
disease?
Challenges:

o  Simplify patients too much

Learn the wrong information

O
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o  Generalizability

“The Quantified Self”
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This Week’s Lecture Agenda:
Hypertension m T T Ty
1.  Embeddings and their role in NLP

2. Transformers, BERT, & Clinical ( \
BERT ==
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Embeddings and their role in NLP



[The, “Patient”, is, ...] ELMo (RNNs)

Masked Language Modeling (MLM)

[The, [MASKED], was, ... ] [J Answer: Mammogram




e Introduced by Mikolov et al. (2013) at Google, Word2Vec was a major shift in NLP,
replacing sparse representations with dense vector embeddings.
e Prior methods:
a. One-hot encoding (binary vectors, no meaning).
b. TF-IDF (word frequency-based, ignores context).
c. Latent Semantic Analysis (LSA) (matrix factorization, computationally heavy).
e Word2Vec learns word meanings from co-occurrence, using two architectures:
a. CBOW (Continuous Bag of Words) — Predicts a word from its context.
b. Skip-gram — Predicts surrounding words from a central word.
e These models use shallow neural networks with weight matrices as word vectors.

A~ Key Insight: Similar words have similar vectors, allowing for analogy reasoning (e.g.,
"king - man + woman = queen").
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CBOW Objective:

* Given a context window C' = {w;_j, ..., W;_1, W 1,..., W} the model predicts the

target word wy.

* Softmax probability of target word:
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P(w|C) =

e v, = output vector of word w.
e wuc = averaged input context vector.

e V = vocabulary size (large, making softmax expensive).




the, “Patient”, s, ..

Skip-gram Objective:
e Given a target word wy, predict surrounding words w..

* Probability of context words given w;:

T
Ve Uy

T
U Uy,
Zwev N

¢ Optimized using negative sampling (reduces computational cost from full softmax).

P(wc|wt) .




» Embeddings are learned as row vectors in matrices W and W',

e Cosine similarity measures word similarity:
R

[0y [ [V

cos(f) =

Impact: Word2Vec led to context-aware embeddings,
inspiring later models like GloVe, FastText, and
Transformer-based embeddings (BERT).
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e Introduced by Peters et al. (2018) at the Allen Institute for Al, ELMo (Embeddings from Language
Models) improved word embeddings by making them context-sensitive.
e Unlike Word2Vec & GloVe (static embeddings), ELMo generates dynamic embeddings that
change based on sentence context.
e Uses a bidirectional LSTM (BiLSTM) trained on a language modeling task:
o Forward LSTM predicts next word.
o Backward LSTM predicts previous word.
e Concatenates hidden states from both LSTMs to get contextual word embeddings.

Example:

e 'He wore a **mask** to the **hospital**." — "mask"” = medical meaning.
"She wore a **mask** to the **party**." — "mask" = costume meaning.
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[The, “Patient”, is, ... ]
BiLSTM Model:
¢ ELMo computes embeddings from stacked BiLSTM hidden states.

* Given a sequence (wy, Ws, ..., Wz ), computes hidden states:

_>

: D)
h[ LSTM]('LU],...,’!UL) S i f f f f\\—’
he = LSTMy(wr, .., w;) @ Q
¢ Final ELMo embedding is a weighted sum of hidden layers:

&

ELMo(w) =~ Z s,hgl)
=1
e §; = learned scalar weights for layer L.

e 7y = scaling parameter.
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Training Objective:
» Bidirectional Language Model (BiLM):

e Maximize log likelihood of forward & backward sequences:

L= Z (log P(w;|wy, ...;wy_1) + log P(w,|wyy 1, ...y wr))
t
Why ELMo Was a Breakthrough:

e Dynamic embeddings — captures different meanings based on context.
e Predecessor to BERT — but still uses RNNs instead of transformers.
e Outperformed Word2Vec & GloVe on NLP benchmarks.




Applications: Clinical Name Entity Recognition

Problem

Clinical text is messy. Abbreviations, misspellings, shorthand, local
jargon. Rule-based systems and bag-of-words models break
constantly.

Why embeddings mattered
Word embeddings gave a way to encode semantic similarity and
contextual relatedness:
e  “MI”, “myocardial infarction”, “heart attack” land close in vector
space
° Models generalize across surface forms
° Much less brittle than dictionaries or regex

This was one of the first places embeddings showed clear value in
medicine.

Key embedding methods

e  word2vec (skip-gram / CBOW)
° Later: ELMo (contextual, but still non-generative)

Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., & Leser, U. (2017). Deep learning with word
embeddings improves biomedical named entity recognition. Bioinformatics, 33(14), i37-i48.

CRF/Output

Bi-directional
LST™M

PR (7] SH3 domain  from

| Input

biLSTM (bidirectional Long Short-Term Memory):

builds word vectors from characters + context.

Word embedding: pretrained vector for each word
from large text.

CRF (Conditional Random Field): picks the best
overall tag sequence.
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Application: Clinical Document & Patient-Level Phenotyping
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Jagannatha, A., & Yu, H. (2016, June). Bidirectional RNN for medical event detection in electronic
health records. In Proceedings of the 2016 conference of the north American chapter of the 16
association for computational linguistics: Human language technologies (pp. 473-482).



Transformers, BERT, & Clinical BERT



[The, “Patient”, is, ...] ELMo (RNNs)

Masked Language Modeling (MLM)

[The, [MASKED], was, ... ] [J Answer: Mammogram




Core Concept of Self-Attention

19
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How Scaled Dot-Product Attention Works

Scaled Dot-Product Attention

o Attention(Q, K, V) =
il OOO O0o OonoG -

W
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Multi-Head Attention:

Diversifying Focus

Multi-Head Attention

i

Linear
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Transformer Structure: Encoder and Decoder Stacks
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Adding Position to Attention: Positional Encoding

Input [CLS]W my || dog || is [cute ’ (ser] || he | likes M playH ##ingw [SEP]

Token
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Segment
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Position

Embeddings EO El E2 E3 E4 ES E6 E7 E8 E9 E10
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Benefits: Speed and Parallel Processing

Table 1: Maximum path lengths, per-layer complexity and minimum number of sequential operations
for different layer types. n is the sequence length, d is the representation dimension, k is the kernel
size of convolutions and r the size of the neighborhood in restricted self-attention.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n? -d) o(1) o(1)

Recurrent O(n -d*) O(n) O(n)

Convolutional Ok -n-d?%) 0(1) O(logi(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)




Applications: Language Translation and Beyond

Hallo, mein Name ist Gray

Hello, My name is Grey

25



[The, “Patient”, is, ...] ELMo (RNNs)

Masked Language Modeling (MLM)

[The, [MASKED], was, ... ] [J Answer: Mammogram
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BERT: Bidirectional Encoder Representations from
Transformers

e Introduced by Devlin et al. (2018), BERT revolutionized NLP by introducing deep bidirectional
context modeling using transformers.
e Unlike RNNs, BERT processes all words simultaneously using self-attention, allowing full-context
understanding.
e Pre-trained on massive corpora (\Wikipedia + BooksCorpus) using two self-supervised tasks:
1.  Masked Language Model (MLM): Randomly masks 15% of words and predicts them.
2. Next Sentence Prediction (NSP): Determines if two sentences are consecutive.
e Key innovation: Contextual embeddings change based on sentence structure.

Example:

e "He unlocked the **bank** vault." vs. "He sat by the **bank** of the

river." — Same word, different vectors!

27



Mathematical Formulation of BERT Pre-training

Transformer Architecture:

» Uses stacked self-attention layers with query, key, value vectors:

Attention(Q, K,V) = softmazx (QKT) V
J o \/E;

e @, K,V =learned matrices for queries, keys, and values.

e d}. = scaling factor.

¢ Token embeddings: Word pieces encoded numerically.

* Positional embeddings: Since transformers lack recurrence, a positional encoding is added:

PE(pos 2:) = sin(pos/10000™/)

PE 5, 5i+1) = cos(pos/10000%/¢)

28



Mathematical Formulation of BERT Pre-training

1. Masked Language Model (MLM) Loss:

Lyim = — Z log P(w;|W )

iceM

2. Next Sentence Prediction (NSP) Loss:

Lysp=— ) [ylog P(A|B) + (1 —y)log(1 — P(A|B))]
(A,B)

e y=1if A, B are consecutive, else 0.
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Domain-Specific BERT Models: Clinical BERT & BioBERT

e BioBERT (2019): Trained on PubMed abstracts + PMC full texts (over 29M articles).
e Clinical BERT (2020): Fine-tuned on MIMIC-III clinical notes to understand EMRs & clinical
language.
e Differences from standard BERT:
o BioBERT improves biomedical entity recognition & relation extraction.
o Clinical BERT excels in patient notes analysis (e.g., de-identification, diagnosis prediction).
o Key Insight: General BERT struggles with medical jargon & abbreviations.

Example:

e "The patient has AFib."
o BERT: Confuses AFib with random word.
o Clinical BERT: Knows AFib = Atrial Fibrillation.

30



Fine-Tuning BERT for Medical NLP Tasks

e Fine-tuning = Adjusting pre-trained BERT weights for specific tasks.
e Process:

o Add a task-specific layer (classifier, NER, QA head, etc.).

o Feed labeled medical data through BERT (e.g., MIMIC-IIl, PubMed).

o Train on a supervised loss function (e.g., cross-entropy for classification).
e Key architectures for fine-tuning:

o NER tasks: Linear layer on top of token embeddings.

o Medical QA: Encoder-decoder with sequence output.

Example:

e Clinical Trial Matching: Fine-tuned BERT predicts eligibility for trials from patient notes.

31



Fine-Tuning BERT for Medical NLP Tasks

» Training optimizes task-specific loss functions:
e NER (Named Entity Recognition):

L=— Z yilog P(y;) + (1 — yi) log(1 — P(y;))

i=1

* Medical Text Classification:
L=-) ylogP(yix:)
i
* Medical QA (Span Prediction Loss):

E=— Z log P(start;) + log P(end;)|

i

* Uses Adam optimizer with learning rate decay.
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Stack Encoders and Stack Decoders



Beyond Standard Encoder-Decoder Models

Standard transformer models (BERT, T5) use encoder-decoder architectures for
sequence-to-sequence tasks (e.g., translation, summarization).

Stack Encoder: Multiple encoder layers process input at different depths, allowing better
hierarchical representations.

Stack Decoder: Multiple decoder layers iteratively refine generated output, improving coherence
in text generation.

Key difference from standard transformers: Rather than a single-pass encoder-decoder,
stack-based models progressively encode and decode information.

Example Applications:

Machine translation (deeper meaning capture).
Medical report generation (structured summarization).
Chatbot response generation (coherent multi-turn conversations).
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Stack Encoders: Hierarchical Information Processing

L

e A stack encoder consists of multiple encoder layers: (\
Feed
HO = f(H(l_l),Am) Forward
(1)
e H'Y = output at encoder layer . Nix (AazNom)
o AW = self-attention mechanism at layer . Multi-Head
Attention
e f = transformation function (feed-forward + attention). & — A
* Multi-head attention allows deep feature extraction: Positional e
Encoding
. C KT input
Attention(Q,K,V) = softmax ( \J/d_ "4 Embedding
k
» Each head extracts different representations (e.g., syntax, semantics). Inputs

Stacking encoders enables progressively refined feature representations, essential for
tasks like medical entity linking & structured text understanding.
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Stack Decoders: lterative Refinement of Outputs

A stack decoder follows a similar multi-layer structure, where each layer iteratively refines the

generated sequence:

) — q(G“_l),C,A(”)

e GW-= output of decoder layer [.
e (' = encoded representation from stack encoder.

o AW = attention mechanism at layer L.

¢ Two types of attention in stack decoders:

» Self-attention (captures prior generated tokens).

¢ Cross-attention (links to encoder representations).

Nx

Output
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Add & Norm
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Mulli-Head
Attention
Nx
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Attention

AL g
. J J
Positional A Positional
Encoding 0 & Encodin
g
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

The deeper the decoder stack, the more the model refines generated text,

preventing incoherent responses.
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ChatGPT: Transformer Decoders in Action

ChatGPT (GPT-based models) use only decoders—unlike BERT, which uses encoders.

Auto-regressive generation: Predicts one token at a time:
P(w,|w-,) = softmaz(W,h)

e h; = hidden state of transformer at time t.

o W, = learned weight matrix.

Causal self-attention: Future tokens are masked to prevent looking ahead.

Temperature & top-k sampling: Controls diversity of generated responses.

Why This Works for NLP:

e Decoders capture long-range dependencies, making ChatGPT effective at
dialogue generation.
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Training & Fine-Tuning a Generative Model

e ChatGPT's training consists of pre-training + fine-tuning:

1. Pre-training (Unsupervised): Trained on massive text datasets using causal language

modeling (CLM):
L = — Z log P(’wl ,’w'::t)
!

2. Fine-tuning (Supervised RLHF): Human annotators rate responses, and reinforcement

learning optimizes model behavior:

[ o S— ZR(y,) log P(y;|x;)
i

e R(y;) = reward function based on response quality.

Key Innovation:

e Reinforcement learning with human feedback (RLHF) aligns ChatGPT’s responses

with human expectations. %



Clinical Applications & Challenges



Medical Question Answering: What it is and why it's hard

Medical QA = answering clinical questions from evidence

* Inputs: a question + patient context + reference sources a i
(guidelines, UpToDate-style text, papers) GPT. 2= R
. . . . s ) o Med-PaLM 2 902 o -
- Outputs: answer + supporting evidence (ideally with citations) g 865
g 80 - ,’I
. )
Two main modes 8 /
: . . = Med-PaLM /
« Retrieval: find the right passage(s) ? 704 = s J
» Reasoning: connect evidence to a clinically correct conclusion @ o Gm,g,b;
= bl 60.2
. % BioMedLM ,’I
Why it’s harder than “general QA” i/ 50 - BioLinkBERT 5034
o o o S o
« Ambiguity and missing context are common g AbMediEir | ™ DRAGON
. 40 A o 475
* Errors are high-stakes (safety) = Gpraveo %
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Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Amin, M., ... & Natarajan, V. (2025). Toward
expert-level medical question answering with large language models. Nature Medicine, 31(3), 943-950.



Medical QA: Expert-level medical QA with LLMs

What they built b High-quality answer traits
Better reflects consensus — -
° Med-PaLM 2: a medically tuned LLM (PaLM 2 base) +
prompting refinements Better reading comprehension — —
How they evaluate “medical QA” Better knowledge recall —
e  Multiple-choice exams (MedQA / USMLE-style) Better reasoning — g
° Long-form consumer questions graded by physicians across 5 55 16 a0 - o

clinical-utility axes
. Potential answer risks
Headline results

More inaccurate/irrelevant information — e
e  86.5% on MedQA (vs 67.2% Med-PaLM) Omits more information | — 5
e On 1,066 consumer questions, physicians preferred Med-PaLM i o b B
2 over physician answers on 8/9 axes More-svlaenceiataemaaraphie Blasg L
Greater extent of harm = — —
Teaching point
Greater likelihood of harm = ~— —
° Benchmarks show knowledge, but they emphasize human o 20 40 60 80 100
rubric-based evaluation for safety/utility Percentage of responses
Med-PalLM 2 Tie Physician

Singhal, K., Tu, T., Gottweis, J., Sayres, R., Wulczyn, E., Amin, M., ... & Natarajan, V. (2025). Toward
expert-level medical question answering with large language models. Nature Medicine, 31(3), 943-950.
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Human—Al Evaluation Loops

Human-Al loop = humans are part of the system, not just the Defi nbe .Target
end user + Rubric
* Humans define rubrics, audit errors, and recalibrate model .

What “good” means
behavior

» Evaluation isn’t one-time; it's iterative

Why medicine needs this

* “Ground truth” is often noisy or subjective (even experts Re-evaluate Ger:jerla lie tout
disagree) rmodet outputs
» Safety demands monitoring for drift and rare failures R R— Record Results

* Fairness: subgroup performance must be checked deliberately

What you measure
* Accuracy + reliability (agreement) Error Human review
+ Calibration (does confidence match correctness?) . ina th bri
. _ anaIyS|s using the rubric

Error types (what fails and why)

Inter and Intra Variability Multiple reviewers

Kuling, G., Pullman, S., Vasilev, D., Ozimek, N., Palmer, N., King, R. W,, ... & Besche, H. (2025).
Assessment of short-answer questions by ChatGPT in a medical school course. NEJM Al, Alcs2500239.
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Human—Al Evaluation Loop: LLM grading

Use case
* LLM grades short-answer medical responses using an explicit
rubric

» Compare to human graders and quantify agreement
abs_diff distribution (Accuracy, T=0.7)

0.5

What the loop looks like i
« Rubric design — LLM grading — human spot-check — revise 541 et v

prompts/rubric — re-test reliability

0.3 1

Proportion

Main insight 021
* LLM grading can be consistent when constrained by criteria i
* Human oversight catches edge cases and keeps standards .
stable 00

0 1 2 3
Absolute Difference

Why it matters
» Turns evaluation into an operational workflow, not a one-off
benchmark

Kuling, G., Pullman, S., Vasilev, D., Ozimek, N., Palmer, N., King, R. W, ... & Besche, H. (2025).
Assessment of short-answer questions by ChatGPT in a medical school course. NEJM Al, Alcs2500239.



